文档库 最新最全的文档下载
当前位置:文档库 › 圆周率的历史

圆周率的历史

圆周率的历史
圆周率的历史

圆周率的历史

教学目标:

知识目标:了解圆周率发展历史。

能力目标:体会人类对数学知识的不断探索过程。

情感目标:感受数学文化的魅力,激发民族自豪感。

教学重点:体会人们探索圆周率的过程及方法的演变。

教学难点:体会人们探索圆周率的过程及方法的演变。

教学过程:

一、情境引入

课件回放教材12页第一幅图。

画外音:轮子是古代的重要发明,由于轮子的普遍应用,人们很容易想到这样一个问题:一个轮子滚一圈可以滚多远?它与轮子的直径之间有没有关系?有着怎样的关系呢?

二、小组活动。

1、把课前收集的资料集中,并按时间顺序进行整理,然后分小组做成报告。

2、全班交流。

各小组派代表进行交流。

三、阅读,交流。

1、独立阅读教材提供的资料。

2、小组交流

①从资料中“我”了解到了什么?(可以说说每幅图所展示的内容。)

②看完资料后有什么感受?

四、深入探究。

1、古希腊的阿基米德和我国魏晋时期的刘徽在探究圆周率方面有什么相同,有什么不同?

2、说说祖冲之在探究圆周率方面所取的成就从及这一成就获得的国际声誉。

3、电子计算机的出现给计算圆周率带来了怎样的突破性进度?有着怎样的作用?

五、交流收获。

六、布置作业:

根据本节的阅读、交流,写一篇小报告,题目自拟。

板书设计:

圆周率的历史

测量——正多边形逼近——近代人的方法和成就。

圆周率的历史

周率的历史 圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。圆周率是一个常数(约等于 3.1415926),是代表圆周长和直径的比例。它是一个无理数,即是一个无限不循环小数。圆周率在生产实践中应用非常广泛,在科学不很发达的古代,计算圆周率是一件相当复杂和困难的工作。因此,圆周率的理论和计算在一定程度上反映了一个国家的数学水平。 圆周率π 圆的周长与直径之比是个与圆的大小无关的一个常数,人们称之为圆周率。巴比伦人最早发现了圆周率。1600 年,英国威廉奥托兰特首先使用π表示圆周率,因为π是希腊之“圆周”的第一个字母。1706 年,英国的琼斯首先使用π。1737 年,欧拉在其著作中使用,后来被数学家广泛接受,一直沿用至今。 π是一个非常重要的常数,一位德国数学家评论道:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的重要标志,古今中外很多数学家都孜孜不倦地寻求过值的计算方法。从埃及到巴比伦到中国一直都在对圆周率的精确值做出研究。 早期的测算中人们使用了很粗糙方法。古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值。或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。 在我国东、西汉之交,新朝王莽令刘歆制造量的容器--律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。他得到一些关于圆周率的并不划一的近似值,分别为 3.1547,3.1992,3.1498,

3.2031,比径一周三的古率已有所进步。人类的这种探索的结果,当主要估计圆田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。转图为汉莽新嘉量铭文 公元前200 年间古希腊数学家阿基米德首先从理论上给出π值的正确求法。他专门写了一篇论文《圆的度量》用圆外切与内接多边形的周长以大小两个方向上同时逐步逼近圆的周长,巧妙地求得π。这是第一次在科学中创用上下界来确定近似值,公元前150 年左右,另一位古希腊数学家托勒密用弦表法(以 1 的圆心角所对弦长乘以360 再除以圆的直径)给出了π的近似值 3.1416。 公元200 年间,我国数学家刘徽在注释《九章算术》中独立发现了用几何方法求圆周率的方法,称之为“割圆术”。刘徽由正六边 正六边形正十二边形正二十四边形正四十八边形边数越多越接近圆,最后刘徽求得π≈ 3.1416。 刘薇与阿基米德的方法有所不同,他只从圆内接正六边形入手,也是不断将边数加倍,只是刘薇用正多边形的面积逼近圆的面积。刘薇认为:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无

圆周率的历史

圆周率的历史 圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π来表示。1706年,英国人琼斯首次创用π代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π已成为圆周率的专用符号,π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。 在古代,实际上长期使用π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将π值约为3.16。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。 公元460年,南朝的祖冲之利用刘徽的割圆术,把π值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7和355/113,

用分数来代替π,极大地简化了计算,这种思想比西方也早一千多年。 祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上: 3.14159265358979323846264338327950288这个数,从此也把它称为"卢道夫数"。 教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,

《圆周率的历史》教学设计

《圆周率的历史》教学设计 【教材分析】 教材是在学生通过简单试验初步体验了圆周率和利用圆周率计算圆的周长之后安排了这个数学阅读内容,为学生展示了圆周率的研究简史,介绍了相关的圆周率的研究方法,为学生打开了一扇窥视数学文化发展史的窗户,为进一步理解圆周率的意义,及今后中学的相关数学学习,留下一片想象的空间。教材罗列了在圆周率研究历史中最为重要的人物及方法,从古至今,涵盖中外,以圆周率的探索过程为主线,以体现圆周率的文化价值为主格调,来满足孩子们的好奇心,通过阅读来挖掘圆周率蕴含的教育价值,感受数学的魅力,激发研究数学的兴趣。 本阅读内容信息量大、数学术语多、理解困难。涉及到圆的内接、外切正多边形、割圆术、勾股定理、投针试验等数学术语,在给学生带来大量信息的同时,也为他们带来了大量的疑问,但这些疑问并非本节课的重点,重点在于“阅读——熏陶”。 【学生分析】 学生在接触这部分内容之前,在“圆的周长”部分进行了简单的圆周率的测量试验研究时,部分同学已经了解了祖冲之的相关成就,然而对阿基米德和刘徽的成就知之甚少,对“投针试验”基本上没有听说过;另外,学生的了解一般停留在简单的知识常识上,对于圆周率的计算研究方法及其蕴含的数学思想很少涉及。(经过简单调查,知道“祖冲之及其对圆周率的贡献的大约占90%,然而直到刘徽的割圆术的只有大约8%,听说过”投针试验“的人数为零。)

作为六年级的学生,作为处在高度现代化的城市——深圳的学生,他们运用图书、网络搜集信息的能力非常强,对于这部分阅读资料的兴趣浓厚,许多学生都已经迫不及待的阅读、查阅(已经提前阅读的人数大约占85%)。因此,不妨把阅读任务下放到课外,把搜集“圆周率的历史”资料作为课前实践作业,把课堂作为交流、释疑的平台。 【学习目标】 知识与技能:阅读圆周率的发展简史,感受数学知识的探索过程,了解圆周率的研究史上的相关知识及做出重要贡献的人物和研究方法。 过程与方法:通过自主搜集圆周率的相关资料、交流体验,培养收集信息、整合信息,提高质疑、理解的能力。在阅读理解过程中,体验数学研究方法发展的过程、极限思想、圆周率精确位数的现代价值等,为今后的数学学习提供一定的参考价值。 情感态度价值观:通过阅读“圆周率的历史”,体验数学文化的魅力,激发研究数学的兴趣,在阅读刘徽、祖冲之的相关成就时激发民族自豪感。 【教学过程】 (一)让我们来交流搜集到的信息 师:回忆一下,怎样计算一个圆的周长? 师:在计算圆的周长的时候,需要用到圆周率。说到圆周率,我们知道它是圆的周长和直径之间固定的倍数关系,这是一个无限不循环小数,这么复杂的一个数,它是怎么来的呢?是一个人研究的结果吗?都有哪些研究方法呢?人们什么时候就发现了圆周率?圆周率发展的历史是怎么样的呢?……许多同学早就阅读了课本上的关于圆周率的历史资料,昨天

圆周率计算公式

圆周率计算公式Revised on November 25, 2020

12 π= 22 π= 32 π= 42 π= 52 π= 62 π= 72 π= 82 π= 92 π= 102 π=314 112 π= 122 π= 132 π= 142 π= 152 π= 162 π= 172 π= 182 π= 192 π= 202 π=1256 212 π= 222 π= 232 π= 242 π= 252 π= 262 π= 272 π= 282 π= 292 π= 302 π=2826 312 π= 322 π= 332 π= 342 π= 352 π= 362 π= 372 π= 382 π= 392 π= 402 π=5024 412 π= 422 π= 432 π= 442 π=

452 π= 462 π= 472 π= 482 π= 492 π= 502 π=7850 512 π= 522 π= 532 π= 542 π= 552 π= 562 π= 572 π= 582 π= 592 π= 602 π=11304 612 π= 622 π= 632 π= 642 π= 652 π= 662 π= 672 π= 682 π= 692 π= 702 π=15386 712 π= 722 π= 732 π= 742 π= 752 π= 762 π= 772 π= 782 π= 792 π= 802 π= 812 π= 822 π= 832 π= 842 π= 852 π= 862 π= 872 π= 882 π=

892 π= 902 π=25434 912 π= 922 π= 932 π= 942 π= 952 π= 962 π= 972 π= 982 π= 992 π= 1002 π=31400 12~1002 12=1 22=4 32=9 42=16 52=25 62=36 72=49 82=64 92=81 102=100 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400 212=441 222=484 232=529 242=576 252=625 262=676 272=729 282=784 292=841 302=900 312=961 322=1024 332=1089 342=1156 352=1225 362=1296 372=1396 382=1444 392=1521 402=1600 412=1681 422=1764 432=1849 442=1936 452=2025

圆周率的计算方法

圆周率的计算方法 古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。 ?Machin公式 这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。 Machin.c 源程序 还有很多类似于Machin公式的反正切公式。在所有这些公式中,Machin公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,Machin 公式就力不从心了。下面介绍的算法,在PC机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform)算法。FFT可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。 关于FFT算法的具体实现和源程序,请参考Xavier Gourdon的主页 ?Ramanujan公式 1914年,印度数学家Srinivasa Ramanujan在他的论文里发表了一系列共14条圆周率的计算公式,这是其中之一。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。

圆周率的历史教学设计及反思

《圆周率的历史》教学设计及反思 【教学内容】新世纪小学数学六年级上册第14-15页“数学阅读——圆周率的历史” 【教材分析】 教材是在学生通过简单试验初步体验了圆周率和利用圆周率计算圆的周长之后安排了这个数学阅读内容,为学生展示了圆周率的研究简史,介绍了相关的圆周率的研究方法,为学生打开了一扇窥视数学文化发展史的窗户,为进一步理解圆周率的意义,及今后中学的相关数学学习,留下一片想象的空间。教材罗列了在圆周率研究历史中最为重要的人物及方法,从古至今,涵盖中外,以圆周率的探索过程为主线,以体现圆周率的文化价值为主格调,来满足孩子们的好奇心,通过阅读来挖掘圆周率蕴含的教育价值,感受数学的魅力,激发研究数学的兴趣。 【学生分析】 学生在接触这部分内容之前,在“圆的周长”部分进行了简单的圆周率的测量试验研究时,部分同学已经了解了祖冲之的相关成就,然而对阿基米德和刘徽的成就知之甚少,对“投针试验”基本上没有听说过;另外,学生的了解一般停留在简单的知识常识上,对于圆周率的计算研究方法及其蕴含的数学思想很少涉及。(经过简单调查,知道“祖冲之及其对圆周率的贡献的大约占90%,然而直到刘徽的割圆术的只有大约8%,听说过“投针试验”的人数为零。) 【学习目标】 知识与技能:阅读圆周率的发展简史,感受数学知识的探索过程,了解圆周率的研究史上的相关知识及做出重要贡献的人物和研究方法。 过程与方法:通过自主搜集圆周率的相关资料、交流体验,培养收集信息、整合信息,提高质疑、理解的能力。在阅读理解过程中,体验数学研究方法发展的过

程、极限思想、圆周率精确位数的现代价值等,为今后的数学学习提供一定的参考价值。 情感态度价值观:通过阅读“圆周率的历史”,体验数学文化的魅力,激发研究数学的兴趣,在阅读刘徽、祖冲之的相关成就时激发民族自豪感。 【教学过程】 (一)让我们来交流搜集到的信息 师:回忆一下,怎样计算一个圆的周长? 师:在计算圆的周长的时候,需要用到圆周率。说到圆周率,我们知道它是圆的周长和直径之间固定的倍数关系,这是一个无限不循环小数,这么复杂的一个数,它是怎么来的呢?是一个人研究的结果吗?都有哪些研究方法呢?人们什么时候就发现了圆周率?圆周率发 展的历史是怎么样的呢?……许多同学早就阅读了课本上的关于圆周率的历史资料,昨天也回去搜集了关于圆周率历史的信息,拿出来,让我们来交流一下搜集到的信息吧! 学生分小组交流信息,教师板书:圆周率的历史 (二)让我们这样来分享信息 师:我们收集到的资料可能各不相同,让我们来一同分享吧! 师:圆周率的研究历史经历的时间是很长的,我们搜集到的信息也是很丰富的,老师建议让我们这样来分享这些信息吧:把圆周率的历史分为三个时期——测量计算时期、推理计算时期、新方法时期,可以吗?

北师大版六年级数学上册教学设计-圆周率的历史教案

圆周率的历史。(教材第12~13页) 1.阅读圆周率发展的历史,体会人类对数学知识不断探索的过程,感受数学文化的魅力。 2.了解圆周率的历史,激发民族自豪感和探索精神。 重点:了解圆周率的历史。 难点:体验数学研究方法的发展过程,为今后的数学学习提供参考价值。 课件。 师:同学们,在研究圆的周长计算公式时,我们知道圆的周长除以直径的商是一个固定的数,我们把它叫作圆周率,用字母π表示,计算时通常取3.14。关于“圆周率”你还想了解什么呢? 学生可能会说: ?人类是怎样发现圆周率的? ?圆周率的值究竟是多少呢? ?计算圆周率的方法有哪些? …… 师:同学们的问题还真多。这节课我们就一起来了解圆周率的历史。 【设计意图:引导学生质疑,激发学生学习的兴趣,为本节课阅读了解圆周率的历史营造良好的学习氛围】 1.测量的方法计算圆周率。 师:请同学们认真阅读下面的文字,看看人类解决关于圆周率问题的最早方案是什么。(课件出示:教材第12页第1、2、3段文字及图) 学生独立阅读。 师:从中你了解了什么?跟大家分享一下。 学生可能会说: ?由于轮子等的广泛应用,人们很自然想到了圆周的周长与直径之间的关系,可见很多数学问题都来源于生活。

?最早的解决方案是测量,通过测量得到了圆的周长和直径之间有一定的关系。 ?在我国,现存有关圆周率的最早记载是2000多年前的《周髀算经》。 ?用测量的方法计算圆周率,圆周率的精确程度取决于测量的精确程度,而许多实际困难限制了测量的精度,这就是测量方法的局限性。 …… 2.正多边形逼近圆的方法计算圆周率。 师:除此之外,后来的人们有什么好的办法吗?请继续阅读,可以在小组里交流自己的想法。(课件出示:教材第12页第4、5段文字及图) 学生独立阅读。 师:说说读过之后你有什么收获。 生1:我知道了古希腊的阿基米德和我国古代的刘徽想到的计算圆周率的方法,从本质上都是一致的,都是用正多边形逼近圆的方法。 生2:这两种方法不同的是阿基米德的方法是从两个方向同时逼近圆,而刘徽的方法是从一个方向逼近圆。 …… 3.祖冲之的贡献。 师:在研究圆周率的问题上,我国南北朝时期著名的数学家祖冲之做出了伟大的贡献,我 们一起来了解一下吧!(课件出示:教材第13页第1段文字及图) 学生独立阅读。 师:祖冲之做出了怎样的伟大贡献呢? 生1:他算出了π的值在3.1415926和3.1415927之间,这一成就在世界上领先了约1000年。 生2:我通过搜集还知道,祖冲之取得的这一非凡成果,正是基于对刘徽割圆术的继承与发展,他自己是否还用了其他的巧妙办法呢?这已经不得而知,祖冲之的这一研究成果享有世界 声誉,巴黎“发现宫”科学博物馆的墙壁上介绍了祖冲之求的圆周率,莫斯科大学礼堂的走廊上 镶嵌有祖冲之的大理石塑像,月球上有以祖冲之命名的环形山…… 师:是啊,祖冲之是世界上第一个把圆周率的值精确到7位小数的人,在研究圆周率方面 做出了伟大的贡献,取得了非凡的成就。圆周率的研究在不断地前进,用正多边形逼近圆,计算量很大,再向前推进,必须在方法上有所突破。随着数学的不断发展,人类开始摆脱求正多边形周长的繁难计算,求圆周率的方法也日新月异。电子计算机的出现带来了计算方面的革命,π 的小数点后面的精确数字越来越多。2000年,已经可以计算到小数点后12411亿位。 4.交流汇报。 师:阅读这些之后,与同学交流阅读后的感受,你又知道了哪些有关圆周率的知识? 生1:我知道了刘徽用割圆术得到了π的近似值。 生2:电子计算机太神奇了,能算到这么多位!我们可以再去查查资料。 师:你还收集到了其他哪些有关圆周率的历史资料?跟大家分享一下。 学生可能会说: ?英国数学家首先使用表示圆周率。π是希腊文圆周的第一个字母,而d是希腊文直径 ?1736年以后开始普遍用“π”表示圆周率。 【设计意图:将课内外相结合,把学生收集的有关人类研究圆及圆周率的资料,与教材内 容相结合,使学生体会到人类对计算圆周率的探索一直没有停止过。】

圆周率的计算历程及意义

圆周率π的计算历程及意义 李毫伟 数学科学学院数学与应用数学学号:080412047 指导老师:王众杰 摘要: 圆周率π这个数,从有文字记载的历史开始,就引起了人们的兴趣.作为一个非常重要的常数,圆周率π最早是出于解决有关圆的计算问题.仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了.几千年来作为数学家们的奋斗目标,古今中外的数学家为此献出了自己的智慧和劳动.回顾历史,人类对π的认识过程,反映了数学和计算技术发展情形的一个侧面.π的研究在一定程度上反映这个地区或时代的数学水平. 关键词: 圆周率; 几何法; 分析法; 程序 1、实验时期 通过实验对π值进行估算,这是计算π的第一个阶段.这种对π值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出来 π=这个数据,最早见于有文字记载的基督教《圣经》的.在古代,实际上长期使用3 中的章节,其上取圆周率π为3.这一段描述的事大约发生在公元前950年前后.其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值.在我国刘徽之前“圆径一而周三”曾广泛流传.我国第一部《周髀算经》中,就记载有“圆周三径一”这一结论.在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七,”意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7,这正反应了人们早期对π和2这两个无理数的粗略估计.东汉时期,官方还明文规定圆周率取3为计算圆的面积的标准,后人称之为古率. 早期的人们还使用了其它的粗糙方法.如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值.或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率π的稍好些的值.如古埃及人应用了约四千年的()≈2984 3.1605.在印度,公元前六世纪,曾取π≈10≈3.162.在我国东、西汉之

圆周率的历史

圆周率的历史 教学目标: 1、阅读圆周率的发展简史,感受数学知识的探索过程。 2、通过自主搜集圆周率的相关资料、交流体验,培养收集信息、整合信息,提高质疑、理解的能力。 3、通过阅读“圆周率的历史”,体验数学文化的魅力,激发研究数学的兴趣,在阅读祖冲之的相关成就时激发民族自豪感。 教学重难点: 重点:阅读圆周率的发展简史,感受数学知识的探索过程。 难点:通过自主搜集圆周率的相关资料、交流体验,培养收集信息、整合信息,提高质疑、理解的能力。 教学准备:多媒体课件 教学过程: 一、引入课题。 在计算圆的周长的时候,需要用到圆周率。说到圆周率,我们知道它是圆的周长和直径之间固定的倍数关系,这是一个无限不循环小数,这么复杂的一个数,它是怎么来的呢?是一个人研究的结果吗?都有哪些研究方法呢?人们什么时候就发现了圆周率?圆周率发展的历史是怎么样的呢???许多同学早就阅读了课本上的关于圆周率的历史资料,昨天也回去搜集了关于圆周率历史的信息,拿出来,让我们来交流一下搜集到的信息吧! 学生分小组交流信息,教师板书:圆周率的历史 二、交流信息 我们收集到的资料可能各不相同,让我们来一同分享吧! 圆周率的研究历史经历的时间是很长的,我们搜集到的信息也是很丰富的,老师建议让我们这样来分享这些信息吧:把圆周率的历史分为三个时期——测量计算时期、推理计算时期、新方法时期,可以吗? 那大家先分小组商量一下怎么汇报,推荐代表,比一比,哪个小组汇报得清楚。 学生分小组商量,教师板书:实际测量时期、推理计算时期、新方法时期在汇报的时候请介绍清楚代表人物、基本方法、大约年代、主要结论。 1.测量计算时期 小组代表:人们很早就注意到了圆周率。大约在2000多年前,中国的《周髀算经》就有介绍。方法是通过轮子转一圈的长度,观察到圆的周长和直径之间有一定的联系,通过测量、计算出圆的周长总是直径的3倍多。《周髀算经》中的记载是“周三径一”。 (教师板书:研究方法:观察、测量、计算,研究结论:周三径一) 2.推理计算时期 小组代表:我来汇报推理计算时期。我们收集到的信息是几何法时期。代表人物有古希腊的阿基米德、中国的刘徽、祖冲之。阿基米德用的方法是利用圆内接正多边形和圆的外切正多边形进行研究;刘徽用的是“割圆术”;祖冲之用的方法已经不是很清楚了。小组代表:我们小组可以介绍!阿基米德在《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:<π<,这是数学史上最早的,明确指出误差限度的π值;刘徽得到圆周率的近似值是3.14;祖冲之算出π

圆周率的背景历史

希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》(约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≈3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71)) < π < (3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。 中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。 南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。 阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。 德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。 1579年法国数学家韦达给出π的第一个解析表达式。 此后,无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加。1706年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。 电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM -VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下新的纪录。 除π的数值计算外,它的性质探讨也吸引了众多数学家。1761年瑞士数学家兰回答者:oktete|一级| 2010-9-11 20:34 古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的William Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数

圆周率π的计算方法

圆周率π的计算方法 圆周率的计算方法 古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen 用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。 1、 Machin公式 这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。 用马青公式计算Pi至小数点后100位程序 program Pi_Value; {$APPTYPE CONSOLE} //将Pi计算精确小数点后100位 //Machin公式

//Pi=16arctan(1/5)-4arctan(1/239) uses SysUtils; const N=100; S=2*N+50; aNum=5; bNum=239; type Num=array [1..S] of byte; //初始化数组 procedure AZero(var arr:Num); var i:smallint; begin for i:=1 to S do arr:=0; end; //除法 procedure Division(var arr:Num;const b:smallint); var c,y,i:smallint; begin c:=0; for i:=1 to S do begin y:=arr+c*10; c:=y mod b; arr:=y div b; end; end; //加法 procedure Addition(var arr:Num;const b:Num); var i,y,c:smallint; begin c:=0; for i:=S downto 1 do

圆周率计算的发展史

圆周率计算的发展史 电气五班王占1301065606 摘要:中国的古代数学著作《周髀算经》中就有“周三径一”的说法,意思是说圆的周长是它直径的3倍。 很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称 之为圆周率. 希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》(约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3) ^4≈3.1604。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71)) < π < (3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。 中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。 南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。 阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。 德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。 1579年法国数学家韦达给出π的第一个解析表达式。

圆周率π的计算及简单应用

圆周率π的计算及简单应用 一、π的来历 π即圆周率,定义为:圆的周长与直径之比,是一个常数。通常用希腊字母π来表示。英国人琼斯在1706年首次创用π代表圆周率。但是,他的符号并未立刻被采用,后来,欧拉予以提倡,才渐渐被推广开来。此后π才成为圆周率的专用符号。π的历史是饶有趣味的。对π的研究程度,在一定程度上反映一个地区和时代的数学水平,。 实际上,在古代长期使用π=3这个数值,古巴比伦、古印度、古中国都是如此。直到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。后来东汉的数学家又将π值改为约为3.16。然而直正使圆周率的计算建立在科学的基础上,应归功于阿基米德。他用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71,为此专门写了一篇论文《圆的度量》,同时这也是第一次在科学中创用上、下界来确定近似值。但是第一次用正确方法计算π值的,是中国魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法即穷竭法,算得π值约为 3.14。在我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,也将圆周率称为徽率。 公元460年,南朝的祖冲之利用刘徽的割圆术,把π值算到小点后第七位即3.1415926,这个具有七位小数的圆周率在当时是世界首次。同时,祖冲之还找到了两个分数,分别是22/7和355/113。用

分数来代替π,极大地简化了计算,这种思想比西方也早一千多年。 由中国南朝数学家祖冲之计算出的圆周率,保持了一千多年的世界记录。直到在1596年,才由荷兰数学家卢道夫打破了。他把π值推到小数点后第15位小数,后来又推到了第35位。人们在他1610年去世后,为了纪念他的这项成就,为此在他的墓碑上刻上: 3.14159265358979323846264338327950288这个数,从此也把它称为"卢道夫数"。 之后,随着数学的发展,尤其是微积分的发现,西方数学家计算π的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出了808位小数的π值。π的人工计算时代随着电子计算机的问世而宣告结束。在20世纪50年代,人们借助计算机算得了10万位小数的π,在70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的π值已到4.8亿位。至2010年最新记录是2000万亿。π的计算经历了几千年的历史,它的每一次重大进步,都标志着算法和技术的革新。 二、π的定义 圆周率(Pi)是圆周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。因此,π是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足0 x的 sin= 最小正实数x。

关于圆周率的历史资料

关于圆周率的历史资料 圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π来表示。1706年,英国人琼斯首次创用π代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才逐步推广开来。现在π已成为圆周率的专用符号,π的研究,在一定水准上反映这个地区或时代的数学水平,它的历史是饶有趣味的。 在古代,实际上长期使用π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将π值改为(约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。第一次用准确方法计算π值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。 公元460年,南朝的祖冲之利用刘徽的割圆术,把π值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π,极大地简化了计算,这种思想比西方也早一千多年。 祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为卢道夫数。 之后,西方数学家计算π的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的π值。电子计算机问世后,π的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的π,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的π值已到4.8亿位。π的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新

圆周率的几种计算方法

圆周率的几种计算方法 姓名李至佳 学号 06205013 专业基础数学 摘要:本文简要的介绍了圆周率的起源及其计算方法,正是圆周率这个数的特殊性,致使从古到今许多数学家为之奉献毕生的经历来研究的精确值。因此,用什么样的方法计算使其值更加精确,这是一个很值得研究的问题。 关键词:圆周率,计算方法,正多边形,连分数 一、很早以前就有了 从人类祖先的祖先诞生在这个地球上算起,经历了几千万年的时间。我们看见的太阳几乎总是圆的,而月亮由于地球的遮挡,有圆有缺。 椭圆、抛物线,双曲线等都是很晚才发现的曲线。地球诞生之前,太阳就是圆形的。月亮大概是和地球同时诞生的. 在使用工具和火不久,人类对太阳和月亮,或者对动物和鱼类的眼睛是圆的,也就是说对圆这种形状一定感到很奇妙。远古,数刚诞生时,肯定只在1和许多个之间有区别。而且,很早以前,就只考虑1和2这两个数。以后因为1个人有2只脚和2只手,2个人就有4只脚和4只手,1头家畜有4只脚,2头家畜有8只脚,等等。不久,就知道了比例的概念。 到了这个阶段人们自然关顾圆周的长度与圆的直径之间一定的比例常数。尽管圆有大有小,但对一个圆来说,其周长与直径之间的比例常数就是圆周率 二、的几种计算方法 有一个关于圆周率的歌谣,盛行于古代:"山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐而乐。" 圆周率是圆的周长与直径之比,表示的是一个常数,符号是希腊字母。人们为了计算圆周率,公元前便开始对它进行计算。魏晋时期刘徽曾于公元263年用割圆术的方法求到3.14,这被称为"徽率"。 在公元460年,祖冲之应用了刘徽的割圆术(也就是下面提到的正多边形的方法),算得圆周率为3.1415926。祖冲之所求的值,保持了1000多年的世界纪录。 1596年,荷兰数学家鲁道夫经过长期的努力和探索,把值推算到15位小数,打破了祖冲之长达1000多年的纪录,后来他本人又把这个数推进到35位。 18世纪初,圆周率达到72位。19世纪时,圆周率又求到140位、200位、500位。1873年,威廉欣克用了几十年时间,将π值算到707位。 到了1946年,世界上第一台电子计算机(ENIAC)问世美国,有人在计算机上用了70个小时,算出圆周率达到2035位。1955年达到10 017位,1962年达到10万位。1973年达到100万位,1981年日本数学家把它推算到200万位。1990年美国数学家继续新的计算,将值推到新的顶点4.8亿位。 经过长时间艰苦的计算,值只是个近似值,这是一个永不循环的数学计算,也是数学史上的马拉松。 下面介绍几种计算的方法: (一)公元前利用正多边形计算 公元前1650年,埃及人著的兰德纸草书中提出=(4/3) 3=3.1604。但是对的第一次科学的尝试应归功于阿基米德。阿基米德计算值是采用内接和外切正多边形的方法。数学上一般把它称为计算机的古典方法。

π的历史

π的历史 圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π 已成为圆周率的专用符号,π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。 在古代,实际上长期使用π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将π值改为(约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π 值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。 公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π ,极大地简化了计算,这种思想比西方也早一千多年。 祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为"卢道夫数"。 之后,西方数学家计算π的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的π 值。电子计算机问世后,π的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的π,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的π 值已到4.8亿位。π 的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。

自己动手计算圆周率 教学设计

自己动手计算圆周率 圆周率的计算历程 圆周率是一个极其驰名的数。从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代又一代的数学家为此献出了自己的智慧和劳动。回顾历史,人类对π的认识过程,反映了数学和计算技术发展情形的一个侧面。π的研究,在一定程度上反映这个地区或时代的数学水平。德国数学史家康托说:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。”直到19世纪初,求圆周率的值应该说是数学中的头号难题。为求得圆周率的值,人类走过了漫长而曲折的道路,它的历史是饶有趣味的。我们可以将这一计算历程分为几个阶段。 (1)实验时期 通过实验对π 值进行估算,这是计算π 的的第一阶段。这种对π 值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出的。在古代世界,实际上长期使用π =3这个数值。在我国刘徽之前“圆径一而周三”曾广泛流传。我国第一部《周髀算经》中,就记载有圆“周三径一”这一结论。在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七”,意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7。这正反映了早期人们对圆周率π 和√2 这两个无理数的粗略估计。东汉时期官方还明文规定圆周率取3为计算面积的标准。后人称之为“古率”。在我国东、西汉之交,新朝王莽令刘歆制造量的容器――律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。为此,他大约也是通过做实验,得到一些关于圆周率的并不划一的近似值。现在根据铭文推算,其计算值分别取为 3.1547,3.1992,3.1498,3.2031比径一周三的古率已有所进步。人类的这种探索的结果,当主要估计园田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。

相关文档
相关文档 最新文档