文档库 最新最全的文档下载
当前位置:文档库 › DNA bp和蛋白质kd 的换算

DNA bp和蛋白质kd 的换算

DNA bp和蛋白质kd 的换算

DNA的大小以bp或kp来反映核苷酸的个数多少,蛋白质的大小以D或KD来反映其分子量的高低

氨基酸平均分子质量为120,也就是120D

(DNA序列长度/3)*120可以估算蛋白的大小,一般几十KD的蛋白都为小分子

(基础:20种氨基酸的平均分子量为138.,小分子氨基酸出现的频率较大因此加权平均分子量为128,在此基础上减去一分子被脱去的水分子量,即128-18=110。所以“氨基酸残基”的平均分子量通常按110计算。)

根据上述14.4kD蛋白质的氨基酸数目为(14400/110=)131 个

因此其基因长度为(131X3 +3=)396 bp (所加的那个3 是指终止密码别忘了哦)

单位换算-

各种单位制换算 长度 1 m=3.280 8 ft=39.37 in 1 ft=1 2 in=0.304 8 m 1 in=2.54 cm 1 mil=5 280 ft=1.6093×103 m 质量 1 kg=1 000 g=2.204 6 lb=6.852 1×10-2 slug 1 lb=0.453 59 kg=3.108 01×10— 2 slug 1 slug=1 lbf·s2/ft=32.174 lb=14.594 kg 力1 N=1 kg·m/s2=0.102 kgf=9.8×105 dyn=0.2248 lbf 1 dyn=1 g·cm/s 2 =10—5 N 1 lbf=4.448×105 dyn=4.448 N=0.4536kgf 1 kgf=9.8 N=2.204 6 lbf=9.8×105dyn=9.8 kg·m/s2 能量1 J=1 kg·m/s2=0.102 kgf·m=0.2389×10—3cal=1 N·m 1 Btu=778.16 ft·lbf=252 cal=1055.0 J 1 kcal=4 186 J=427. 2 kgf·m=3.09 ft·lnf 1 ft·lbf=1.355 8 J=3.24×10—4kcal=0.138 3 kgf·m 1 erg=1 g·cm2/s 2 =10—7 J 1 eV=1.602×10—19 J 1 kJ=0.9478 Btu=0.238 8 kcal 功率1 W=1 kg·m2/s2=1 J/s=0.947 8 Btu/s=0.238 8kcal/s 1 kW=1 000 W=3 412 Btu/h=859.9 kcal/h=1 kJ/s 1 hp=0.746 kW= 2 545 Btu/h=550 ft·lbf/s 1 马力=75 kgf·m/s=735.5 W= 2 509 Btu/h=542. 3 ft·lbs/s

蛋白质结构解析的方法对比综述 (1)

蛋白质结构解析的方法对比综述 工程硕士李瑾 摘要:到目前为止,蛋白质结构解析的方法主要是两种,x射线衍射法和NMR法,这两种方法各有优点和不足。 关键词:x射线衍射法 NMR法 到目前为止,蛋白质结构解析的方法主要是两种,x射线衍射法和NMR法。其中X射线的方法产生的更早,也更加的成熟,解析的数量也更多,第一个解析的蛋白的结构,就是用x晶体衍射的方法解析的。而NMR方法则是在90年代才成熟并发展起来的。这两种方法各有优点和不足[1]。 首先是X射线晶体衍射法。该方法的前提是要得到蛋白质的晶体。通常是将表达目的蛋白的基因经PCR扩增后克隆到一种表达载体中,然后转入大肠杆菌中诱导表达,目的蛋白提纯之后摸索结晶条件,等拿到晶体之后,将晶体进行x射线衍射,收集衍射图谱,通过一系列的计算,得到蛋白质的原子结构[2]。 x射线晶体衍射法的优点是:速度快,通常只要拿到晶体,最快当天就能得出结构,另外不受肽链大小限制,无论是多大分子量的蛋白质或者RNA、DNA,甚至是结合多种小分子的复合体,只要能够结晶就能够得到其原子结构。所以x射线方法解析蛋白的关键是摸索蛋白结晶的条件。该方法得到的是蛋白质分子在晶体状态下的空间结构,这种结构与蛋白质分子在生物细胞内的本来结构有较大的差别。晶体中的蛋白质分子相互间是有规律地、紧密地排列在一起的,运动性较差;而自然界的生物细胞中的蛋白质分子则是处于一种溶液状态,周围是水分子和其他的生物分子,具有很好的运动性。而且,有些蛋白质只能稳定地存在于溶液状态,无法结晶[2]。 核磁共振NMR(nuclear magnetic resonance)现象很早就被科研人员观察到了,但将这种方法用来解析蛋白质结构,却是近一二十年的事情。NMR法具体原理是对水溶液中的蛋白质样品测定一系列不同的二维核磁共振图谱,然后根据已确定的蛋白质分子的一级结构,通过对各种二维核磁共振图谱的比较和解析,在图谱上找到各个序列号氨基酸上的各种氢原子所对应的峰。有了这些被指认的峰,就可以根据这些峰在核磁共振谱图上所呈现的相互之间的关系得到它们所对应的氢原子之间的距离。[3]可以想象,正是因为蛋白质分子具有空间结构,在序列上相差甚远的两个氨基酸有可能在空间距离上是很近的,它们所含的氢原子所对应的NMR峰之间就会有相关信号出现[4] 。通常,如果两个氢原子之间距离小于0.5纳米的话,它们之间就会有相关信号出现。一个由几十个氨基酸残基组成的蛋白质分子可以得到几百个甚至几千个这样与距离有关的信号,按照信号的强弱把它们转换成对应的氢原子之间的距离,然后运用计算机程序根据所得到的距离条件模拟出该蛋白质分子的空间结构。该结构既要满足从核磁共振图谱上得到的所有距离条件,还要满足化学上有关原子与原子结合的一些基本限制条件,如原子间的化学键长、键角和原子半径等[4]。 NMR解析蛋白结构常规步骤如下:首先通过基因工程的方法,得到提纯的目的蛋白,在蛋白质稳定的条件下,将未聚合,而且折叠良好的蛋白样品(通常是1mM-3mM,500ul,PH6-7的PBS)装入核磁管中,放入核磁谱仪中,然后由写好的程序控制谱仪,发出一系列的电磁波,激发蛋白中的H、13N、13C原子,等电磁波发射完毕,再收集受激发的原子所放出的“能量”,通过收集数据、谱图处理、电脑计算从而得到蛋白的原子结构[5] [6]。 用NMR研究蛋白质结构的方法,可以在溶液状态进行研究,得到的是蛋白质分子在溶液中的结构,这更接近于蛋白质在生物细胞中的自然状态[7]。此外,通过改变溶液的性质,还可以模拟出生物细胞内的各种生理条件,即蛋白质分子所处的各种环境,以观察这些周围环境的变化对蛋白质分子空间结构的影响。在溶液环境中,蛋白质分子具有与自然环境中类

常用导热系数单位之间的换算关系

常用导热系数单位之间的换算关系 下表为常用导热系数单位换算表。 上表中,关于几种温度单位: 开氏温度(K ):国际单位制基本单位。绝对零度℃为0开氏度。 摄氏温度(℃):一个大气压下,规定水的冰点为0℃,沸点为100℃。 华氏温度(℉):一个大气压下,规定水的冰点为32℉,沸点为212℉。 温度单位之间的换算关系为: 摄氏度与开氏度:K=℃- 摄氏度与华氏度:℉=(9/5)*℃+32 摄氏度与华氏度:K=5/9(℉+ 1 根据预制直埋保温管规范推算 2 根据埋深和聚氨酯和玻璃钢的承重计算 已知保温材料导热系数外墙保温厚度怎么计算 首先明确你用的外墙要达到什么标准,是50节能、还是65节能标准。以65%节能为例,传热系数Km≤ W/()。其倒数即为符合墙体传热阻,再减去内外墙传热阻以及基墙传热阻就可以得到你用的外墙的热阻,再根据公式R = δ/λ(热阻=材料厚度/导热系数),即可算出你所需要的厚度。 隔热保温层厚度计算

2009-05-25 13:37:15|分类:个人日记 |标签: |字号大中小订阅 聚氨酯泡沫塑料作为隔热保温材料已广泛用于建筑、冷库、油管、保温管道等。 正确地确定隔热层厚度将大大地节省原料,降低材料费用。 绝热工程包括保温和保冷两方面的内容。 经济厚度计算方法是一种最广泛使用的方法。 把绝热材料的投资和热冷损失的费用综合考虑后得出一种经济厚度,此时保温与保冷费用和热损失费用之和为最小。 一般控制绝热层表面单位面积的热损失不大于规定值。 在实际计算中,保温层表面温度ts如何确定与各方面都有关系。 从能耗考虑,ts与大气温度t0越接近越好,但是,相应的其投资费用也越大。 反之,则能源又随投资费用的减少而大幅度的增加。 因此,保温保冷层表面温度应分别高于大气温度和露点温度。 同时,式中a1的值(外部传热系数)对保温的场合往往直接取10,对保冷取7。 例1,某冷库,库内最低温度为-20℃,夏季平均气温为30℃,湿度为85%,采用聚氨酯泡沫作绝热材料,其厚度应为多少 已知tf=-20℃ta=30℃λ=Kcal/m·h·℃a1=7Kcal/m2·h·℃ ts的求法: ts为绝热层表面露点温度,查阅饱和蒸汽压表得: 30℃时的饱和蒸汽压为柱 ×=

常用单位换算对照表

1. 常用度量衡及常用参数单位换算 版 本 ? 量纲 K: 千 103 M: 兆 106 G: 吉 109 m: 毫 10-3 μ: -6 n: 纳(毫微) 10-9 P: 皮(微微) 10-12 f: 毫微-15 ? 常用度量衡 Linear Measure 长度 1 inch 英寸(in)= millimetres 毫米(mm) 1 foot 英尺(ft)=1 2 inches 英寸(in)= metre 米(m) 1 yard 码(yd)= 3 feet 英尺(ft)= metre 米(m) 1 (statute) mile 英里=1760 yards 码(yd)= kilometres 千米(km) 1 nautical mile 海里=185 2 metre 米(m) 1 mil 密耳(mil)= inch 英寸(in) Square Measure 面积 1 square inch 平方英寸= 平方厘米(cm 2) 1 square foo 平方英尺=144 .平方英寸= 平方分米(dm 2) 1 square yard 平方码=9 sq.ft. 平方英尺= 平方米(m 2) 1 acre 英亩=4840 .平方码= hectare 公顷 1 square mile 平方英里=640 acres 英亩=259 hectares 公顷 Cubic Measure 体积 页码:1 /5 深圳市京泉华电子有限公司 深圳兴万新电子有限公司

1. 常用度量衡及常用参数单位换算 版 本 1 cubic inch 立方英寸= 立方厘米(cm 3) 1 cubic foot 立方英尺=1728 . 立方英寸= 立方米(m 3) 1 cubic yard 立方码=27 cu.ft. 立方英尺= 立方米(m 3) Capacity Measure 容积 Britich 英制 1 pint 品脱=20 fluid oz.液量盎司= .立方英寸= litre 升(L) 1 quart 夸脱= 2 pints 品脱= litres 升(L) 1 gallon 加伦=4 quarts 夸脱= litres 升(L) 1 peck 配克=2 gallons 加伦= litres 升(L) 1 bushel 蒲式耳=4 pecks 配克= litres 升(L) 1 quarter 八蒲式耳=8 bushels 蒲式耳= hectolitres 百升 American dry 美制干量 1 pint 品脱= . 立方英寸= litre 升(L) 1 quart 夸脱= 2 pints 品脱= litres 升(L) 1 peck 配克=8 quarts 夸脱= litres 升(L) 1 bushel 蒲式耳=4 pecks 配克= litres 升(L) American liquid 美制液量 1 pint 品脱=16 fluid oz.液量盎司= .立方英寸= litre 升(L) 1 quart 夸脱= 2 pints 品脱= litre 升(L) 页码:2 /5 深圳市京泉华电子有限公司 深圳兴万新电子有限公司

常见材料导热系数全

常见材料导热系数全 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度 导热系数与材料的组成结构、密度、、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于(m·K)的材料称为保 温材料),而把导热系数在瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等 填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d,

100种常用计量单位换算系数表

100种常用计量单位换算系数表一、长度SI基本单位:米(m) 1(市)尺=1/3 m *1埃=10-10 m *1费密=10-15 m *1码=9.144000×10-1 m *1英寸=2.540000×10-2 m *1英尺=3.048000×10-1 m *1英里=1.609344×103m *1海里=1.852000×103 m 1光年=9.46055×1015 m *1μ=10-6 m *1密耳=2.540000×10-5 m 二、面积SI导出单位:平方米㎡ *1公亩=102㎡ *1公顷=104㎡ *1靶恩=10-28㎡ 1英亩=4.04686×103㎡ 1平方码=8.361274×10-1㎡ 三、体积、容积SI导出单位立方米(m3) 1升=10-3 m3 1桶(石油业)=1.589873×10-1m3

1蒲式耳(美)=3.523907×10-2m3 1加仑(英)4.546092×10-3 m3 1加仑(美)3.785412×10-3 m3 1液盎司(美)=2.957353×10-5m3 1液盎司(英)=2.841307×10-5 m3 1立方英寸=1.638706×10-5 m3 1立方英尺=2.831685×10-2 m3 1立方码=7.645549×10-1 m3 四、质量、重量SI基本单位:千克(公斤)(kg)*1市斤=0.5 kg *1吨=103 kg 1原子质量单位≈1.66×10-27kg *1(米制)克拉=2×10-4kg 1盎司(常衡)=2.834952×10-2kg 1盎司(金衡,药衡)=3.110340×10-2kg *1磅(常衡)=4.535920×10-1kg 1磅(金衡,药衡)=3.732417×10-1kg 1斯勒格=1.459390×10kg 1英吨(长)=1.016047×103kg 1英吨(短)=0.9071847×103 kg 五、时间SI基本单位:秒(s) 1分=60 s

小学数学常用公式大全(单位换算表)

小学数学常用图形周长面积体积计算公式: 1,正方形 C周长S面积a边长 周长=边长×4 面积=边长×边长 C=4a S=a×a S=a2 2,正方体 V体积a棱长 表面积=棱长×棱长×6体积=棱长×棱长×棱长S表=a×a×6 表=6a2 V=a×a×a V= a3 3,长方形 C周长S面积a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4,长方体 V体积S面积a长b宽h高 (1)表面积=(长×宽+长×高+宽×高)×2 (2)体积=长×宽×高 S=2(ab+ah+bh) V=abh 5,三角形 S面积a底h高 面积=底×高÷2 S=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6,平行四边形 S面积a底h高 面积=底×高S=ah 7,梯形 S面积a上底b下底h高 面积=(上底+下底)×高÷2 S=(a+b)× h÷2 8,圆形

S面积C周长π圆周率 d直径r半径 周长=直径×π 周长=2×π×半径 面积=半径×半径×π C=πd C=2πr S=πr2 d=C÷π d=2r r=d÷2 r=C÷2÷πS环=π(R2-r2) 9,圆柱体 V体积h高S底面积r底面半径C底面周长 侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 S侧=Ch S侧=πdh V=Sh V=πr2h 圆柱体积=侧面积÷2×半径 10,圆锥体 V体积h高 S底面积r底面半径 体积=底面积×高÷3 V=Sh÷3 长度单位换算 1千米=1000米;1米=10分米 1分米=10厘米;1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷;1公顷=10000平方米;1平方米=100平方分米1平方分米=100平方厘米;1平方厘米=100平方毫米 1平方米=0.0015亩;1万平方米=15亩 1公顷=15亩=100公亩=10000平方米 1公亩等于100平方米 1(市)亩等于666.66平方米 体(容)积单位换算 1立方米=1000立方分米;1立方分米=1000立方厘米;1立方分米=1升1立方厘米=1毫升;1立方米=1000升 重量单位换算

常见材料导热系数全

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度 导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于0.12W/(m·K)的材料称为保温材料),而把导热系数在0.05瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等 填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有0.03w/m.k,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W K: 导热率,W/mk A:接触面积 d: 热量传递距离△T:温度差 R: 热阻值

常用法定计量单位换算表

常用法定计量单位换算表 我国的法定计量单位(以下简称法定单位)包括: 1.国际单位制的基本单位; 2.国际单位制的辅助单位; 3.国际单位制中具有专门名称的导出单位; 4.国家选定的非国际单位制单位; 5.由以上单位构成的组合形式的单位; 6.由词头和以上单位所构成的十进倍数和分数单位。 国际单位制中具有专门名称的导出单位 量的名称单位名称单位符号其它表示式例频率赫[兹] Hz s-1 力、重力牛[顿] N kgm/s2 压力、压强、应力帕[斯卡] Pa N/m2 能量、功、热焦[耳] J Nm 功率、辐射通量瓦[特] W J/s 电荷量库[仑] C As 电位、电压、电动势伏[特] V W/A 电容法[拉] F C/V 电阻欧[姆] S V/A 电导西[门子] Wb A/V 磁通量韦[伯] T Vs 磁通量密度、磁感应强度特[斯拉] H Wb/m2 电感亨[利] C Wb/A 摄氏温度摄氏度1m cdsr 光通量流[明] 1x 1m/ m2 光照度勒[克斯] Bq s-1

放射性活度贝可[勒尔] Gy J/kg 吸收剂量戈[瑞] Sv J/kg 剂量当量希[沃特] 国家选定的非国际单位制单位 量 的名称单位名 称 单位符号换算关系和说明 时间分 [小] 时天 (日) min h d 1min=60s 1h=60min=3600s 1d=24h=86400s 平面角[角]秒 [角] 分度 (″) (′) (°) 1″=( π/640800)rad (π为圆周率) 1′=60″=(π/10800)rad 1°=60′= (π/180)rad 旋 转 速 度 转每分 r/min 1r/min=(1/60)s-1 长 度 海里n mile 1n mile=1852m (只用于航行) 速度节kn 1kn=1n mile/h =(1852/3600)m/s (只用于航 行) 质量吨原 子质量 单位 t u 1t=103kg1u≈×10-27kg 体 积 升L,(1) 1L=1dm3=10-3m3 能电子伏 eV 1eV≈×10-19J 级 差 分贝dB 线密度特[克 斯] tex 1tex=1g/km

传热系数的单位

传热系数的单位 传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1H通过1平方米面积传递的热量,单位是瓦/平方米·度(W/㎡·K,此处K可用℃代替)。 6+12A +6的中空玻璃,门窗传热系数多少 断桥铝合金中空玻璃窗6+9A+6,按江苏省节能标准参照表K值=3.5执行DGJ32/J71-2008,实际因为窗型、型材不一样,也会差异。送检尺寸有关推拉窗有可能K值=3.5以上,在3.5-3.6左右;平开窗有可能K值=3.5以下,在3.2-3.4左右,具体情况要具体分细。 断桥铝合金门窗,采用隔热断桥铝型材和5+9+5中空玻璃,具有节能、隔音、防噪、防尘、防水等功能。断桥铝门窗的热传导系数K值为3W/m2?K以下,比普通门窗热量散失减少一半,降低取暖费用30%左右。 幕墙中空玻璃传热系数计算方法如下: 1.公式 P r=μc /λ 式中μ——动态黏度,取1.761×10-5kg/(m?s); c——比热容,空气取1.008×103J/(kg?K)、氩气取0.519×103J/(kg?K); λ——导热系数,空气取2.496×10-2W/(m?K)、氩气取1.684×10-2W/(m?K)。 G r=9.81s 3ΔTρ2/Tmμ2 式中 s——中空玻璃的气层厚度(m); ΔT ——外片玻璃表面温差,取15K; ρ——密度,空气取1.232kg/m3、氩气取1.669 kg/m3; T m——玻璃的平均温度,取283K; μ——动态黏度,空气取1.761×10-5kg/(m?s)、氩气取2.164×10-5kg/(m?s)。 N u= 0.035(G r Pr)0.38,如计算结果Nu<1,取Nu=1。 H g= N u λ/s W/(m2?K) H T =4ζ(1/ε1+1/ε2-1)-1×Tm 3 式中ζ——常数,取5.67×10-8 W/(m2?K4); ε 1 ——外片玻璃表面的校正辐射率; ε 2 ——内片玻璃表面的校正辐射率; ε1、ε2取值: 普通透明玻璃ην>15% 0.837 (GB/T2680表4) 真空磁控溅射镀膜玻璃ην≤15% 0.45 (GB/T2680表4) ην>15% 0.70 (GB/T2680表4) LOW-E镀膜玻璃ην>15% 应由试验取得,如无试验资料时可取0.09~0.115。 h s = h g + h T 1/h t=1/h s+δ/ r1 式中δ——两片玻璃总厚度; r1——玻璃热阻,取1(m?K)/W。 1/U=1/h e +1/h i+1/h t 式中 h e——玻璃外表面换热系数,取23(19)W/(m2?K); h i——玻璃内表面换热系数,取8(8.7)W/(m2?K)。括号中数字为GB50176有关

最经典总结-蛋白质的结构和功能

考点二蛋白质的结构和功能(5年6考) 1.蛋白质的结构及其多样性 (1)氨基酸的脱水缩合 ①过程:一个氨基酸分子中的氨基(—NH2)和另一个氨基酸分子中的羧基(—COOH)相连接,同时脱去一分子水。 ②二肽形成示例 ③肽键:连接两个氨基酸分子的化学键可表示为—CO—NH—。 (2)蛋白质的结构层次 ①肽的名称确定:一条多肽链由几个氨基酸分子构成就称为几肽。 ②H2O中各元素的来源:H来自—COOH和—NH2,O来自—COOH。 ③一条肽链上氨基数或羧基数的确定:一条肽链上至少有一个游离的氨基和一个游离的羧基,分别位于肽链的两端;其余的氨基(或羧基)在R基上。 (3)蛋白质的结构多样性与功能多样性

■助学巧记 巧用“一、二、三、四、五”助记蛋白质的结构与功能 2.氨基酸脱水缩合与相关计算 (1)蛋白质相对分子质量、氨基酸数、肽链数、肽键数和失去水分子数的关系 ①肽键数=失去水分子数=氨基酸数-肽链数; ②蛋白质相对分子质量=氨基酸数目×氨基酸平均相对分子质量-脱去水分子数×18。(不考虑形成二硫键) 肽链 数目 氨基 酸数 肽键 数目 脱去水 分子数 多肽链相 对分子量 氨基 数目 羧基 数目1条m m-1 m-1 am-18(m-1) 至少1个至少1个n条m m-n m-n am-18(m-n) 至少n个至少n个注:氨基酸平均分子质量为a。 (2)蛋白质中游离氨基或羧基数目的计算 ①至少含有的游离氨基或羧基数=肽链数×1。 ②游离氨基或羧基数目=肽链数×1+R基中含有的氨基或羧基数。

(3)利用原子守恒法计算肽链中的原子数 ①N原子数=肽键数+肽链数+R基上的N原子数=各氨基酸中N原子总数。 ②O原子数=肽键数+2×肽链数+R基上的O原子数=各氨基酸中O原子总数-脱去水分子数。 1.在分泌蛋白的合成、加工、运输和分泌的过程中,用含35S标记的氨基酸作为原料,则35S存在于图示①~④中的哪个部位? 提示35S存在于氨基酸的R基上,题图中①处是R基,②处是肽键,③处连接的是肽键或羧基,④处连接的是碳原子,故35S存在于①部位。 2.蛋白质是生命活动的主要承担者,在组成细胞的有机物中含量最多。下图为有关蛋白质分子的简要概念图,请思考: (1)图示a中一定具有S吗? (2)图示①为何种过程?该过程除产生多肽外,还会产生何类产物? (3)图中b、c、d内容是什么?请写出b、c的化学表达式。 (4)甲硫氨酸的R基是—CH2—CH2—S—CH3,则它的分子式是________? 提示(1)不一定。 (2)①为“脱水缩合”过程,该过程还可产生H2O。 (3)b、c、d依次为“氨基酸”、“肽键”、“蛋白质功能多样性”; b的化学表达式为 c的化学表达式为—CO—NH—。 (4)氨基酸共性部分为C2H4O2N,则甲硫氨酸分子式为C2+3H4+7O2NS即

常用单位换算表大全

常用单位换算表大全 常用单位换算表大全 力 1牛顿(N)=0.225磅力(lbf)= 0.102千克力(kgf) 1千克力(kgf)= 9.81牛(N) 1磅力(lbf)= 4.45牛顿(N)1达因(dyn)= 10-5牛顿(N) 压力 1巴(bar)= 105帕(Pa) 1千帕(kPa)= 0.145磅力/英寸2(psi) = 0.0102千克力/厘米2(kgf/cm2) = 0.0098大气压(atm) 1磅力/英寸2(psi)= 6.895千帕(kPa) = 0.0703千克力/厘米2(kg/cm2) =0.0689巴(bar)= 0.068大气压(atm) 1物理大气压(atm)= 101.325千帕(kPa)= 14.696磅/英寸2(psi)= 1.0333巴(bar) 1工程大气压= 98.0665千帕(kPa) 1毫米水柱(mmH2O)= 9.80665帕(Pa)1毫米汞柱(mmHg)= 133.322帕(Pa) 1托(Torr) = 133.322帕(Pa)1达因/厘米2(dyn/cm2)= 0.1帕(Pa) 温度 K=5/9(°F+459.67)K = ℃+273.15 n°F= [(n-32)×5/9]℃n℃= (5/9×n+32)°F1°F= 5/9℃(温度差) 1千米(km)= 0.621英里(mile) 1米(m)= 3.281英尺(ft)= 1.094码(yd) 1厘米(cm)= 0.394英寸(in) 1埃(A)= 10-10米(m) 1英里(mile)= 1.609千米(km) 1英寻(fm)= 1.829(m)1英尺(ft)= 0.3048米(m) 1英寸(in)= 2.54厘米(cm)

蛋白结构分析和比较

蛋白结构分析和比较 姓名学号日期年月日 阅读分子月报科普短文,参阅相关文献,从蛋白质结构数据库下载以下蛋白质三维结构原子坐标文件,利用显示观察,说明其结构特点。 猪胰岛素(): 由几个亚基组成,每个亚基有几条多肽链,每条多肽链由哪些二级结构单元组成; 每条多肽链有几对链内二硫键,多肽链之间由几对二硫键连接; 每个亚基如何与锌原子结合。 抹香鲸肌红蛋白(): 由几股螺旋组成; 与血色素卟啉环中央铁原子以配位健结合的是哪个组氨酸,该组氨酸位于第几股螺旋; 与血色素携带的氧分子通过氢键连接的是哪个组氨酸,该组氨酸位于第几股螺旋。 小鼠免疫球蛋白(): 由几个亚基组成,每个亚基各有几个结构域; 两条重链之间由几对二硫键连接,重链和轻链之间由几对二硫键连接; 每个结构域内部的二硫键和色氨酸如何形成疏水内核; 多糖链对稳定分子结构的作用。 水母()绿色荧光蛋白(): 选择原始文件中二聚体链,保存为单个亚基; 打开,并用不同颜色显示二级结构折叠; 找出分子内部发光基团并说明其发光机理。 核小体(): 用不同颜色显示组蛋白个亚基; 观察分子碱基配对特点; 显示组蛋白表面与相互作用的碱性氨基酸。 斑头雁和灰雁血红蛋白比较实例 从数据库中提取斑头雁和灰雁血红蛋白亚基序列,进行序列比对,找出差异位点。 用软件中选择并保存灰雁氧合血红蛋白中四个亚基中的链链两个亚基。 用结构叠合方法分析比较灰雁氧合血红蛋白链链两个亚基与斑头雁血红蛋白两个亚基的结构,计算基于碳叠合后的均方根误差()。 找出斑头雁血红蛋白链第位丙氨酸侧链碳原子和链位亮氨酸侧链末端两个碳原子和,分别测量和、之间的距离。 找出灰雁血红蛋白链第位脯氨酸侧链碳原子和链位亮氨酸侧链末端两个碳原子和,分别测量和、之间的距离。 根据上述分析结果,参阅相关文献,说明斑头雁和灰雁血红蛋白侧链大小和柔性不同,如何影响其构象变化,从而进一步引起氧气结合能力的变化。 利用模拟突变的方法,将灰雁血红蛋白链第位脯氨酸突变成丙氨酸,测量突变后的和、之间的距离。 课题相关蛋白质结构分析 在蛋白质结构数据库中下载课题相关或分子月报中你最感兴趣的蛋白质分子,用显示其结构。 该蛋白质有几个亚基,其二级结构是否含有螺旋和折叠。 该蛋白质是否含二硫键,其配对方式如何。

热工单位换算表

湿度、常用热工计量单位换算表字体大小:大| 中| 小2007-04-17 19:36 - 阅读:936 - 评论:0 常用温度单位换算表 露点 绝对 湿度g/m3体积比 ppmV 重量比 在空气 中 ppmW 相对湿度 (20℃)% 露点 绝对 湿度 g/m3 体积比 ppmV 重量比 在空气 中 ppmW 相对湿度 (20℃)% ℃0F℃0F -70-940.00207 2.5 1.640.001-1014 2.062560159011 -60-760.0085711 6.590.005032 4.846020380026 -50-580.03123924.20.0210509.2112100772952 -40-400.10212779.10.05206818.523100100 -30-220.3013762340.2308636.641800 -20-40.816102063544010458.573000 常用热功计量单位及换算表 量名名称Si单位名称 Si单位符 号 单位换算 能[量],功,热焦[耳]J 1焦耳(J)=1牛顿.米(N.m) 1国际蒸汽表卡(cal1t)=4.1868J 1热化学卡(cal1n)=4.1840J 1 20℃卡(cal20)=4.1816J 1 15℃卡(cal15)=4.1855J 1 英热单位(Btu)=1.05506×103J 1 千瓦.时(kw.h)=3.6×106J 功率,辐射[能]通量瓦[特]W 1瓦特(W)=1牛顿.米/秒(N.m/s) 1千克力.米/秒(kgf.m/s)=9.80665W 1米制马力(ps)=7。35499×102W 1英制马力(hp)=7.45700×102W

蛋白结构分析和比较

蛋白结构分析和比较 姓名________ 学号______________ 日期________年___月___日 阅读分子月报科普短文,参阅相关文献,从蛋白质结构数据库下载以下蛋白质三维结构原子坐标文件,利用Swiss-PdbViewer显示观察,说明其结构特点。 猪胰岛素(4INS): 由几个亚基组成,每个亚基有几条多肽链,每条多肽链由哪些二级结构单元组成; 每条多肽链有几对链内二硫键,多肽链之间由几对二硫键连接; 每个亚基如何与锌原子结合。 抹香鲸肌红蛋白(1MBO): 由几股alpha螺旋组成; 与血色素卟啉环中央铁原子以配位健结合的是哪个组氨酸,该组氨酸位于第几股alpha 螺旋; 与血色素携带的氧分子通过氢键连接的是哪个组氨酸,该组氨酸位于第几股alpha螺旋。 小鼠免疫球蛋白(1IGT): 由几个亚基组成,每个亚基各有几个结构域; 两条重链之间由几对二硫键连接,重链和轻链之间由几对二硫键连接; 每个结构域内部的二硫键和色氨酸如何形成疏水内核; 多糖链对稳定分子结构的作用。 水母(Jellyfish)绿色荧光蛋白(1GFL): 选择PDB原始文件中二聚体A链,保存为单个亚基1GFLa.pdb; 打开1GFLa.pdb,并用不同颜色显示二级结构beta折叠; 找出分子内部发光基团Ser65-Tyr66-Gly67并说明其发光机理。 核小体(1AOI): 用不同颜色显示组蛋白8个亚基; 观察DNA分子碱基配对特点; 显示组蛋白表面与DNA相互作用的碱性氨基酸。 斑头雁和灰雁血红蛋白比较实例 从UniProt数据库中提取斑头雁和灰雁血红蛋白alpha亚基序列,进行序列比对,找出差异位点。 用SwissPDB-Viwer软件中选择并保存灰雁氧合血红蛋白1FAW中四个亚基中的A链B 链两个亚基。 用结构叠合方法分析比较灰雁氧合血红蛋白A链B链两个亚基与斑头雁血红蛋白1A4F 两个亚基的结构,计算基于alpha碳叠合后的均方根误差(RMSD)。 找出斑头雁血红蛋白A链第119位丙氨酸侧链beta碳原子CB和B链55位亮氨酸侧链末端两个碳原子CD1和CD2,分别测量A119CB和B55CD1、B55CD2之间的距离。 找出灰雁血红蛋白A链第119位脯氨酸侧链gamma碳原子CG和B链55位亮氨酸侧链末端两个碳原子CD1和CD2,分别测量A119CG和B55CD1、B55CD2之间的距离。 根据上述分析结果,参阅相关文献,说明斑头雁和灰雁血红蛋白A119侧链大小和柔性不同,如何影响其构象变化,从而进一步引起氧气结合能力的变化。 利用模拟突变的方法,将灰雁血红蛋白A链第119位脯氨酸突变成丙氨酸,测量突变后的A119CB和B55CD1、B55CD2之间的距离。 课题相关蛋白质结构分析

单位换算

单位换算 1平房公尺=1平方米,公尺就是米,叫法不用而已 亩有大亩小亩之分 按大亩算,一公顷=10亩=10*666.667平方米 按小亩算,一公顷=15亩=15*444.445平方米 那么也就是说 一大亩=666.667平方米 一小亩=444.445平方米 1平方公尺=1平方米 1平方公里等于1500亩,一亩等于666.67平方米 1 英寸=2.5400 厘米 1 英尺=1 2 英寸=0.3048 米 1 码=3 英尺=0.9144 米 1 英里=1760 码=1.6093 千米 50 ppm(百万分之五十) 1mmAQ=9.8Pa,mmAQ毫米水柱 1 kg = 2.2046 lbs英镑,1lbs=0.4536kg 20-25 micron 等于多少目(mesh )? 请尽可能地精确一些.

常用单位换算表 ◆压力单位换算表 ◆流量单位换算表

◆容积单位换算表 ◆重量单位换算表 ◆长度单位换算表

◆面积单位换算表 ◆主要力量单位换算表(国际标准单位与公制单位壶算) 一匹在国际上说就是一马力,也就是735W,中国是定为750W。1HP=735W是机械学上讲的,也是最通常的说法 功率换算

石油单位换算 长度换算 1千米(km)=0.621英里(mile)1米(m)=3.281英尺(ft)=1.094码(yd) 1厘米(cm)=0.394英寸(in)1英里(mile) =1.609千米(km) 1英寸(fm) =1.829(m) 1英寸(in)=2.54厘米(cm) 1海里(n mile)=1.852千米(km)1码(yd)=3英尺(ft) 1杆(rad)=16.5英尺(ft) 面积换算 1平方米(m)=10.764平方英尺(ft) 1平方英寸(in)=6.452平方厘米(cm) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2) =4047平方米(m2) 1平方英尺(ft2)=0.093平方米(m2) 1平方米(m)=10.764平方英尺(ft) 体积换算

常用单位换算表unit conversion

常用单位换算表 体积换算 1美吉耳(gi)=0.118升(1) 1美品脱(pt)=0.473升(1) 1美夸脱(qt)=0.946升(1) 1美加仑(gal)=3.785升(1)1桶(bbl)=0.159立方米(m3)=42美加仑(gal) 1英亩·英尺=1234立方米(m3) 1立方英寸(in3)=16.3871立方厘米(cm3) 10亿立方英尺(bcf)=2831.7万立方米(m3) 1万亿立方英尺(tcf)=283.17亿立方米(m3) 1百万立方英尺(MMcf)=2.8317万立方米(m3) 1千立方英尺(mcf)=28.317立方米(m3) 1英加仑(gal)=4.546升(1)1立方英尺(ft3)=0.0283立方米(m3)=28.317升(liter) 1立方米(m3)=1000升(liter)=35.315立方英尺(ft3)=6.29桶(bbl) 质量换算 1长吨(long ton)=1.016吨(t) 1千克(kg)=2.205磅(lb) 1磅(lb)=0.454千克(kg)[常衡] 1盎司(oz)=28.350克(g) 1短吨(sh.ton)=0.907吨(t)=2000磅(lb) 1吨(t)=1000千克(kg)=2205磅(lb)=1.102短吨(sh.ton) =0.984长吨(long ton) 密度换算 1磅/(lb/ft3)=16.02千克/米3(kg/m3) API度=141.5/15.5℃时的比重-131.5 1磅/英加仑(lb/gal)=99.776千克/米3(kg/m3) 1波美密度(B)=140/15.5℃时的比重-130 1磅/英寸3(lb/in3)=27679.9千克/米3(kg/m3) 1磅/美加仑(lb/gal)=119.826千克/米3(kg/m3) 1磅/(石油)桶(lb/bbl)=2.853千克/米3(kg/m3) 1千克/米3(kg/m3)=0.001克/厘米3(g/cm3)=0.0624磅/英尺3(lb/ft3) 运动粘度换算

导热系数

导热系数、传热系数(热阻值R、导热系数λ、修正系数、厚度---节能计算)概念及热工计算方法 (2011-06-03 10:35:47) 转载▼ 分类:知识 标签: 杂谈 导热系数: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。 传热系数: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻: R=δ/λ 式中:δ—材料层厚度(m) λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中: Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)] Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m.k)] Fp—外墙主体部位的面积 Fb1、Fb2、Fb3—外墙周边热桥部位的面积

常用热力单位换算表

常用热力单位换算表 一、热量单位换算 1、常用热量单位介绍 A、焦耳(J)、千焦(KJ)、吉焦(GJ),工程计算广为采用,国际单位制。热力计算、热计量、热量化验等实际操作中常见,国家标准及图表、线图查询等规性技术文件中主要表达的单位。但是,其他导出单位及工程习惯相互交织,使得这种单位在今天热力计算中不是很方便。 B、瓦特(W)、千瓦(KW)、兆瓦(MW),工程导出单位,是供热工程常用单位,如热水锅炉热容量:7MW、14MW、29MW、56MW...等,习惯上常说到的10t、20t、40t、80t...等锅炉,相当于同类容量蒸汽锅炉的设计出力.工程上热水锅炉和换热站热计量仪表、暖通供热设计计算、估算、供热指标等,广泛采用。 C、卡(car)、千卡(Kcal)...,已经淘汰的热量单位,但是工程中还在使用,特别是大量的技术书籍,例如煤的标准发热量7000Kcal。 2、基本计算公式 1W=0.86Kcal,1KW=860Kcal,1Kcal=1.163W; 1t饱和蒸汽=0.7MW=700KW=2.5GJ=60万Kcal; 1kg标煤=7000Kcal=29300KJ=29.3MJ=0.0293GJ=8141W=8.141KW; 1GJ=1000MJ;1MJ=1000KJ;1KJ=1000J 1Kcal=4.1868KJ 1W=3.6J(热工当量,不是物理关系,但热力计算常用)

4、制冷机热量换算 1美国冷吨=3024千卡/小时(kcal/h)=3.517千瓦(KW) 1日本冷吨=3320千卡/小时(kcal/h)=3.861千瓦(KW) 1冷吨就是使1吨0℃的水在24小时变为0℃的冰所需要的制冷量。) 1马力(或1匹马功率)=735.5瓦(W)=0.7355千瓦(KW) 1千卡/小时(kcal/h)=1.163瓦(W) 二、压力单位换算 1、1Mpa=1000Kpa;1Kpa=1000pa 2、1标准大气压=0.1Mp=1标准大气压 1标准大气压=1公斤压力=100Kpa=1bar 1mmHg = 13.6mmH20 = 133.32 Pa(帕) 1 mmH20=10Pa(帕) 1KPa=1000Pa=100mmH20(毫米水柱) 1bar=1000mbar 1mbar=0.1kpa=100pa

相关文档
相关文档 最新文档