文档库 最新最全的文档下载
当前位置:文档库 › 电路原理(邱关源)习题答案第四章 电路定理练习

电路原理(邱关源)习题答案第四章 电路定理练习

电路原理(邱关源)习题答案第四章 电路定理练习
电路原理(邱关源)习题答案第四章 电路定理练习

第四章 电路定理

电路定理是电路理论的重要组成部分,为我们求解电路问题提供了另一种分析方法,这些方法具有比较灵活,变换形式多样,目的性强的特点。因此相对来说比第三章中的方程式法较难掌握一些,但应用正确,将使一些看似复杂的问题的求解过程变得非常简单。应用定理分析电路问题必须做到理解其内容,注意使用的范围、条件,熟练掌握使用的方法和步骤。需要指出,在很多问题中定理和方程法往往又是结合使用的。

4-1 应用叠加定理求图示电路中电压ab u 。

解:首先画出两个电源单独作用式的分电路入题解4-1图(a )和(b )所示。

对(a )图应用结点电压法可得

1sin 5)121311(

1t u n =

+++ 解得 15sin 3sin 53n t u t V

== (1)

111113sin sin 2133n ab n u u u t t V

=?==?=+

对(b )图,应用电阻的分流公式有

1132111135t t e i e A

--+=?=++

所以 (2)

110.25t t ab u i e e V

--=?==

故由叠加定理得

(1)(2)sin 0.2t ab ab ab u u u t e V -=+=+

4-2 应用叠加定理求图示电路中电压u 。

解:画出电源分别作用的分电路如题解(a )和(b )所示。 对(a )图应用结点电压法有

1050

28136)101401281(

1++=+++n u

解得

(1)113.65

0.10.0250.1n u u +==

++ 18.624882.6670.2253V ===

对(b )图,应用电阻串并联化简方法,可求得 10402(8)

32161040331040183(8)2

1040si u V ??++=?

=?=?+++ (2)16182323si u u V

-==-?=-

所以,由叠加定理得原电路的u 为

(1)(2)2488

8033u u u V =+=

-=

4-3 应用叠加定理求图示电路中电压2u 。

解:根据叠加定理,作出2V 电压源和3A 电流源单独作用时的分电路如题解图(a )和(b )。受控源均保留在分电路中。 (a )图中

(1)12

0.54

i A

=

=

所以根据KVL 有

(1)(1)21322320.521u i V =-?+=-??+=- 由(b )图,得

0)2(1=i

(2)2339u V =?= 故原电路中的电压

(1)(2)2228u u u V =+=

4-4 应用叠加定理求图示电路中电压U 。

解:按叠加定理,作出5V 和10V 电压源单独作用时的分电路如题解4-4图(a )和(b )所示,受控电压源均保留在分电路中。 应用电源等效变换把图(a )等效为图(c ),图(b )等效为图(d )。由图(c ),得

11

)1(2)1()

1(5

212152-=?++-=U U U

从中解得 (1)

3U

V =-

由图(d )得

(2)(2)(2)

2020

2233121121

U U U ++=

?=++

从中解得

(2)

20

341113U V ==-

故原电路的电压 (1)(2)

341U U U V =+=-+=

注:叠加定理仅适用于线性电路求解电压和电流响应,而不能用来计算

功率。这是因为线性电路中的电压和电流都与激励(独立源)呈线性关系,而功率与激励不再是线性关系。题4-1至题4-4的求解过程告诉我们: 应用叠加定理求解电路的基本思想是“化整为零”,即将多个独立源作用的较复杂的电路分解为一个一个(或一组一组)独立源作用的较简单的电路,在分电路中分别计算所求量,最后代数和相加求出结果。需要特别注意: (1)当一个独立源作用时,其它独立源都应等于零,即独立电压源短路,独立电流源开路

(2)最后电压、电流是代数量的叠加,若分电路计算的响应与原电路这一响应的参考方向一致取正号,反之取负号。

(3)电路中的受控源不要单独作用,应保留在各分电路中,受控源的数值随每一分电路中控制量数值的变化而变化。

(4)叠加的方式是任意的,可以一次使一个独立源作用,也可以一次让多个独立源同时作用(如4-2解),方式的选择以有利于简化分析计算。 学习应用叠加定理,还应认识到,叠加定理的重要性不仅在于可用叠加法分析电路本身,而且在于它为线性电路的定性分析和一些具体计算方法提供了理论依据。

4-5 试求图示梯形电路中各支路电流,结点电压和s o

u u 。其中s u =10V 。

解:由齐性定理可知,当电路中只有一个独立源时,其任意支路的响应与该独立源成正比。用齐性定理分析本题的梯形电路特别有效。现

设支路电流如图所示,若给定

'

551i i A == 则可计算出各支路电压电流分别为

''

5''225''442'''3345'''1132'''1123'''

112012020(420)12424/1224/1222135352439134

4443955o o n n n n n n s s n u u i V u u i V i i u A

i i i i A

u u i u V i i i i A

u u i u V ==?=?===?+=?=======+=+===?+=?+===+=+===?+=?+=

即当激励'

s s u u =V 55=时,各电压、电流如以上计算数值,现给定

=s u 10 V ,相当于将以上激励'

s

u 缩小了5510

倍,即 1125510=

=K

故电路各支路的电流和结点电压应同时缩小112

倍,有

'11'

22'

33'

44'

55'

11

'

22

'

28

40.72711112211111263111124211112211111278391111248241111240201111n n n n o o i Ki A i Ki A

i Ki A

i Ki A

i Ki A

u Ku V u Ku V u Ku V

==

?====?===?===?===?===?===?===?=

输出电压和激励的比值为 404110.364

1011o s u u ===

注:本题的计算采用“倒退法”,即先从梯形电路最远离电源的一端开始,

对电压或电流设一便于计算的值,倒退算至激励处,最后再按齐性定理予以修正。

4-6 图示电路中,当电流源1s i 和电压源1s u 反向时(2s u 不变),电压ab u 是原来的0.5倍;当1s i 和2s u 反向时(1s u 不变),电压ab u 是原来的0.3倍。问:仅1s i 反向(1s u ,2s u 均不变),电压ab u 应为原来的几倍?

解:根据叠加定理,设响应 ①231211s s s ab u K u K i K u ++=

式中1K ,2K ,3K 为未知的比例常数,将已知条件代入上式,得

②1121320.5ab s s s u K i K u K u =--+

③2312113.0s s s ab u K u K i K u -+-= ④231211s s s ab u K u K i K xu ++-= 将式①,②,③相加,得

⑤2312118.1s s s ab u K u K i K u ++-=

显然⑤式等号右边的式子恰等于式④等号右边的式子。因此得所求倍

数。 1.8x =

注:本题实际给出了应用叠加定理研究一个线性电路激励与响应关系的实验

方法。

4-7 图示电路中110s U V =,215s U V =,当开关S 在位置1时,毫安

表的读数为'

40I mA =;当开关S 合向位置2时,毫安表的读数为

''60I mA =-。如果把开关S 合向位置3,毫安表的读数为多少?

解:设流过电流表的电流为I ,根据叠加定理

12s s I K I K U =+

当开关S 在位置1时,相当于0=s U ,当开关S 在位置2时,相当于

1s s U U =, 当开关S 在位置3时,相当于2s s U U =-,把上述条件代入以上方程式

中,可 得关系式

1040604021211?+=+=-=K U K I K I K s s s

从中解出 10

101002-=-=K

所以当S 在位置 3 时

,有

122()40(10)(15)190s s I K I K U mA =+=+-?-=

4-8 求图示电路的戴维宁和诺顿等效电路。

解:求开路电压oc u 。设oc u 参考方向如图所示,由KVL 列方程

0)1(23)42(=-+++I I

解得

A

I 81-= V

I u oc 5.0)81

(44-=-?=?=

求等效内阻eq R 。将原图中电压源短路,电流源开路,电路变为题解

4-8(a )图,应用电阻串并联等效,求得

eq R =(2+2)//4=2Ω

画出戴维宁等效电路如图(b )所示,应用电源等效变换得诺顿等效电路如图(c )所示。

其中

A R u I eq oc sc 25.025

.0-=-==

注意画等效电路时不要将开路电压oc u 的极性画错,本题设a 端为oc u 的“+”极性端,求得的oc u 为负值,故(b )图中的b 端为开路电压的实际“+”极性端。

4-9 求图示电路的戴维宁等效电路。

解:本题电路为梯形电路,根据齐性定理,应用“倒退法”求开

路电压oc u 。设'

10oc

oc u u V ==,各支路电流如图示,计算得

'55'

22'

'

244

''

'3345''

1132'122''

123''1110

110(210)11212

2.4552.41

3.477 3.41235.835.8

5.967665.967 3.49.367999.36735.8120.1n n n n n n n s s n i i A u u V

u i i A

i i i i A

u u i u V

u i i A i i i A

u u i u ==

===+?=======+=+===?+=?+===

===+=+===?+=?+=V 故当5s u V =时,开路电压oc u 为

'5

100.41612.1oc oc u Ku V ==

?=

将电路中的电压源短路,应用电阻串并联等效,求得等效内阻eq R 为

[(9//67)//52]//10 3.505eq R =++=Ω

画出戴维宁等效电路如题解4-9图所示。

4-10 求图中各电路在ab 端口的戴维宁等效电路或诺顿等效电路。

解(a ):先求开路电压oc u 。应用结点电压法,结点编号如图(a )所示。结点方程为

1212111

110()222221111

()0

2223n n n n u u u u ?++-=???-+++=? 把以上方程加以整理有

{

1212310

380

n n n n u u u u -=-+=

应用消去法,解得 2107n u V =

故开路电压

210

12121n oc u u V =

?=+

再把电压源短路应用电阻串并联等效求内阻eq R

16

[(2//22)//22]//121eq R =++=

Ω

画出戴维宁等效电路如题解图(a1)所示。

解(b ):应用电阻分压求得开路电压oc u 为 s

oc s u u R u R αα=

?=

把电压源短路,可求得等效内电阻为

11[()//](1)eq R R R R R R R αααα=-+=-+ 等效电路如题解图(b1)所示。

解(c ):这个问题用诺顿定理求解比较方便。把ab 端口短路,显然短路电流等于电流源的电流,即 1sc ab I I A ==

把电流源开路求等效内电阻eq R 。由于电路是一平衡电桥,可以把

cd

右侧电阻电路断去如题解图(c1)所示,则

(2060)//(2060)40eq R =++=Ω

画出诺顿等效电路如题解图(c2)所示。

解(d ):应用替代定理,图(d )可以等效变换为题解图(d1)所示的电路。则开路电压为 V u oc 51510=?-=

把图(d1)中的电压源短路,电流源开路,等效电阻 5510eq R =+=Ω 画出戴维宁等效电路如图(d2)所示。

4-11 图(a )所示含源一端口的外特性曲线画于图(b )中,求其等效电源。

解:根据戴维宁定理可知,图示含源一端口电路可以等效为题解4-11图所示的电源电路,其端口电压u 和电流i 满足关系式

i

R u u eq oc -=

图(b )所示的含源一端口的外特性曲线方程为

1

105u i

=- 比较以上两个方程式,可得等效电源电路的参数 10oc u V =,

1

0.25eq R =

4-12 求图示各电路的等效戴维宁电路或诺顿电路。

解(a ):先求开路电压oc u 。应用网孔电流法,设网孔电流1i ,2i ,其绕行方向如图(a )所示。列网孔电流方程为

{

1122

10(10105)0i i i =+++=

联立求解以上方程,可得

220

0.825i A -=

=-

故开路电压为 21015651150.815oc u i V =?-+-=+?=

将电压源短接,电流源开路,得题解图(a1)所示电路,应用电阻串、并联等效求得等效电阻 5//(1010)1014eq R =++=Ω 戴维宁等效电路如题解图(a2)所示

解(b ):根据KVL 求开路电压ab u 为

96236ab u V =-+?+=

把3V 电压源短路,2A 电流源断开,可以看出等效内阻为

10616eq R =+=Ω

戴维宁等效电路见题解图(b1)。

解(c ):

设开路电压参考方向如图(c )所示。显然oc u 等于受控源所在支路得电压,即

11220oc u i i =-=

由于电路中有受控源,求等效电阻时不能用电阻串、并联等效的方法,现采用求输入电阻的外加电源法。将(c )图中4V 独立电压源短路,在ab 端子间加电压源u 如题图(c1)所示。 根据KVL 列方程

{

1

1115882()20

u i i i i i i =-++-=

从第二个方程中解出

12184i i i

=-=- 把1i 代入第一个方程中,可得

1

58()74u i i i

=-?-=

故等效电阻为

7eq u

R i =

画出戴维宁等效电路如题解图(c2)所示。

解(d ):解法一:先求开路电压oc u 。把图(d )中受控电流源与

电阻的并接支路等效变换为受控电压源与电阻的串接支路如题解图(d1)所示。由KVL 得

111(25)40i u u ++-=

把11(4)8u i =-?代入上式中,解得196 5.64717i A

== 故开路电压 155 5.64728.235oc u i V =?=?= 求等效电阻eq R 可以采用如下两种方法

(1)开路、短路法

把图(d1)中的'

11-端子短接如题解图(d2)所示。由KVL 得 11240sc i u u +-=

1

32sc i u =- 把1(4)8sc u i =-?代入式中,有

3

2sc i =-

8??(4)sc i -

解得

48

4.36411sc i A =

=

则等效电阻

28.235 6.4714.364oc eq sc u R i =

==Ω

(2)外加电源法

把图(d1)中4A 电流源开端,在'

11-端子间加电压源u 如图(d3)所示,由KVL 得

)(23)(2411111i i u u i i u u -+-=+-+-=

把118()u i i =?-代入上式中,有11138()2()22()u i i i i i i =-??-+-=--

考虑到

15u i =

,则 22225u

u i =-+?

所以

22517u i

?= 故等效电阻为 225 6.47117eq u R i ?===Ω

戴维宁等效电路如题解图(d4)所示。

解法二:在图(d1)的端口'

11-处外加一个电压源u ,图题解图

(d5)所示。通过求出在端口'

11-的u

i 关系得出等效电路。应用KVL

列出中间网孔的电压方程,应用KCL 列出下部结点的电流方程有

1112()3(4)85

i i u u u u

i --=???

??+=+??

15u

i =

代入第一个方程中,并从两方程中消去1u ,可得

u

u i u i =+---524

9624522

整理得u i 关系为

i i u 471.6235.28175

2217596+=?+?=

这个关系式与图(d4)的等效电路的端口电压、电流的关系式是一致

的,即可得原图'

11-端口的28.235oc u V =, 6.471eq R =Ω

这一解法是一步同时求出oc u 和eq R ,但在电路比较复杂时,由于这一解法要求解方程组,不如解法一方便。

注:戴维宁定理、诺顿定理是分析线性电路最常用的两个定理。从4-8

题至4-12题的求解过程可以归纳出应用这两个定理求等效电路的步骤为:

(1)求一端口

电路端口处的开路电压或短路电流;(2)求等效内电阻;(3)画出等效电路。 开路电压

oc u 可这样求取:先设端口处oc u 的参考方向,然后视具体电路形

式,从已掌握的电阻串、并联等效,分压分流关系,电源等效互换,叠加定理,回路电流法,结点电压法等方法中,选取一个能简便地求得oc u 的方法计

oc u 。

求等效电阻

eq

R 的一般方法为:(1)开路、短路法。即在求得

oc u 后,将端

口的两端子短路,并设短路电流

sc i (sc i 的参考方向为从oc u 的“+”极性端指

向“-”极性端),应用所学的任何方法求出sc i ,则/eq oc sc R u i =。此法在求oc

u 和

sc i 时,一端口电路内所有的独立源均保留。

(2)外加电源法。即令一端口

电路内所有的独立源为零(独立电压源短路,独立电流源开路),在两端子间外加电源(电压源、电流源均可),求得端子间电压

u 和电流i 的比值,则

/eq R u i

=(

u 与i 对两端电路的参考方向关联)。(3)若两端电路是不含受控

源的纯电阻电路,则除上述方法外常用电阻串、并联等效和Y -?互换等效求

eq

R 。

4-13 求图示两个一端口的戴维宁或诺顿等效电路,并解释所得结果。

解(a ):因为端口开路,端口电流0i =,故受控电流源的电流为零,可将其断开,从而得开路电压

10

65426oc u V

=

?=++

把端口短路,电路变为题解4-13图(a1)所示电路。由KVL 可得 1032)24(=?-+sc sc i i 从中解出

10

4223sc i =

=∞

+-?

这说明该电路的等效电阻

0oc

eq sc

u R i =

=,故等效电路为题解图(a2)所

示的5V 理想电压源。显然其诺顿等效电路是不存在的。

解(b ):把端子'

11-短路。电路如题解图(b1)所示。由图可知

12Ω电

阻和8Ω电阻并联,则电压

2128

1281512820

61283u V ?+?=

?=++

电流sc i 为

222124992015

7.5848832sc u u u i i i A =+=

+==?==

把15V 电压源短路,应用外加电源法求等效电阻eq R ,由题解图(b2),可得

2222612461261284

386124330

46//1244443u u u u u u u u u u i u ?=

?=?=

?++++-=+=-=-?=

说明该电路的等效电阻

1

0eq u R i =

==∞

故等效电路为一电流为7.5A 的理想电流源,即该电路只有诺顿等效电路如题解图(b3)所示,而不存在戴维宁等效模型。

注:本题两个电路的计算结果说明,一个一端口电路不一定同时存在戴

维宁和诺顿等效电路。当端口的开路电压

0oc u ≠,而等效电阻0eq R =时,电

路的等效模型为一理想电压源,即只有戴维宁等效电路。当端口的短路电流

0sc i ≠,而等效电导0eq G =时,电路的等效模型为理想电流源,即只有诺顿

等效电路。只有当

eq

R 不等于0和∞时,

电路才同时存在戴维宁和诺顿等效电路。

4-14 在图示电路中,当L R 取0,2,4,6,10,18,24,42,90和186Ω时,求L

R 的电压L U 、电流L I 和L R 消耗的功率(可列表表示各结果)。

解:本题计算L R 所在支路的电量,且L R 的值是变化的,这种求解电路的局部量问题选用戴维宁等效电路的方法最适宜。把所求支路以外的电路用戴维宁等效电路替代,再求所求量。

先把L R 支路断开如题解4-14图(a )所示。应用电源等效互换得一端口电路的戴维宁等效电路的电压源和电阻为 48,6oc eq u V R ==Ω 接上L R 支路,如题解图(b )所示,则

2

48

6L L

L L L

L L L I R U R I P R I =

+==

把L R 的各个值代入,计算得L U ,L I ,L P 的值如下表所示。

4-15 在图示电路中,试问:

(1)R 为多大时,它吸收的功率最大?求此时最大功率。 (2)若80R =Ω欲使R 中电流为零,则a ,b 间应并接什么元件,其

参数为多少?画出电路图。

解:(1)自a ,b 断开R 所在支路,应用电阻串、并联及电源等效互换将原图变为题解图(a ),由题解图(a )易求得开路电压

5025

(1010)2537.5101020oc u V

-=

?++=++

将(a )图中电压源短路,求等效电阻

(1010)//2010eq R =+=Ω

最后得等效电路如题解图(b )所示,由最大功率传输定理可知,当

10eq R R ==Ω时,其上可获得最大功率。此时

22max

37.535.1564410oc eq u P W R ===?

(2)利用电源等效互换,图(b )电路可以变化为图(c ),由KCL 可知,

在a ,b 间并接一个理想电流源,其值 3.75s i A =,方向由a 指向b ,这样R 中的电流将为零。

注:求解负载L R 从有源一端口电路吸收最大功率这一类问题,选用戴

维宁定理或诺顿定理与最大功率传输定理结合的方法最为简便,因为最大功率传输定理告诉我们:最大功率匹配的条件是负载电阻等于有源一端口电路

的等效电阻,即

L eq

R R =,此时最大功率为

2

max

4oc eq u P R =

。这里需要注意:

(1)

电路原理各章习题

第一套基本题 1.1 求图1.1所示电路中的电压U1和电流I1, I2。设:(1)U S=2V;(2)U S=4V;(3)U S=6V。 图1.1 1.2 已知图1.2所示电路中电流I5=4A。 求电流I1,I2,I3,I4和电压源电压U S。 图1.2 1.3 求图1.3所示电路中从电压源两端 看进去的等效电阻R eq。 图1.3

1.4 求图1.4所示电路中各元件的功 率,并校验功率守恒。 图1.4 第二套提高题 1.1 已知图1.1所示电路中电压 U=3V。求由电源端看进去的电阻R eq和电阻R1的值。 图1.1 1.2 图1.2所示电路中,已知3A电流 源两端电压为40V。求负载吸收的功率。 图1.2

1.3 已知图1.3所示电路中,R1=40W,R e=27W,R b=150W,R L=1500W, =0.98。求电压增益u2/u1和功率增益p2/p1。其中p1是u1供出的功率,p2是R L吸收的功率。 图1.3 第一套基本题 2.1 求图2.1所示各电路的入端电阻R AB、R ab。 图 2.1 2.2 试求图2.2所示电路中的 电压U。 图2.2

2.3 试将图2.3所示电路化成最简单形 式。 图2.3 2.4 图2.4所示电路中,设输入电压为 U i,试求U o/ U i。 图2.4 第二套提高题 2.1 求图2.1所示各电路的入端电阻R AB,R ab。图中各电阻值均为1 。 图2.1

答案: 。设 2.2 求图2.2所示电路中的电压U I S,R,R L为已知。 图2.2 2.3 求图2.3所示电路中的电流i。 图2.3 2.4 图2.4所示电路由许多单元构成,每个单元包 含R1和R2两个电阻。设单元数极多,视作无穷大。 (1)设R1=2Ω,R2=1Ω。求A,B处的入端电阻。 图2.4

电路原理习题及答案

1-4. 电路如图所示,试求支路电流I . I Ω12 解:在上结点列KCL 方程: A I I I I I 6.30 12 42543-==+-+ +解之得: 1-8.求图示电路中电压源发出的功率及电压 x U 。 53U 解:由KVL 方程:V U U U 5.2,53111=-=-得 由欧姆定律,A I I U 5.0,5111-=-=得 所以是电源)(电压源的功率:,05.251123)52(151<-=-?-===?+=W I P V I U V X 1-10.并说明是发出还是消耗源功率试求图示电路两独立电,。 10A 解:列KVL 方程:A I I I I 5.0010)4(11101111==++?+?+-,得

电路两独立电源功率: ,发出)(,发出。 W I P W I P A V 38411051014110-=??+-= -=?-= 2-6如图电路:R1=1Ω ,R2=2Ω,R3=4Ω,求输入电阻Rab= 解:含受控源输入电阻的求法,有外施电压法。设端口电流I ,求端口电压U 。 Ω = ===+-=+=+=9945)(21131211211I U R I U I I I R I I R I I I R I IR U ab 所以,得, 2-7应用等效变换方法求电流I 。 解:其等效变化的过程为,

根据KVL 方程, A I I I I 31 ,08242-==+++ 3—8.用节点分析法求电路中的 x I 和 x U . Ω 6A 3x U 1 x I Ω4Ω 2Ω2Ω 2V Ω 1U V 32 3 4 解:结点法: A I V U U I U U U U U U U U U U U U U U U U U X X X n n n n X n n n n n n n n n 5.16.72432 242)212141(21411321)212111(214234121)4121(3121321321321==-?=--==+=+++--=-+++--=--+,解之得:,,补充方程: 网孔法:网孔电流和绕行方向如图所示:

电路原理试题答案

第一章电路基本概念和电路定律1.1 选择题 1——5CBBBA 6——10DACDC 11——15BCACA 16——20AAABA 21——25DBCCD 26——30DDDAC 1.2 填空题 1. 小 2.短开 3. 开短 4. KCL 电流KVL 电压 5. u=Ri 6. u=-Ri 7. 电流电压 8. 电压电流电流电压 9. 电源含有控制量 10. U=-I-25 11. u= us+R(i+is) 12. u= -us+R(-i+is) 13.0 Us/R 14. Us 0

15. [R/(R+Rs)]/Us Us/R+Rs 16.1V 17.7 Q 18.1 Q 19.4V 20.-0.5A 21.4A 22.-5A 23.8V 24.19V 25.4A 26.5V 27. -5V 28.4V -8V 29. x 0 TO 30. U+=U- I+=I-=0 第二章电阻电路的等效变换2.1 选择题 1 ——5BABCC 6——1 0BADCB 11——15CDACB 16——20DAACC 21——25DBBAD

26——30CBDBC 2.2 填空题 1.12 2.16 3.3 4 4.8 2 5.2.4 6. 越大 7. 越小 8.54 9.72 10.24 11.80 12.7 13.4 14.24 15.2 16.10 17. Us=10V 电压源

18. Is=5A 电流源 19. Us=8V 电压源 20. Is=4A 电流源 21.3 22.18 23.30 24. 变小 25.15 26.3 27. -6 28. 串并联Y- △等效 29. Us=10V 电压源 30. Is=5A 电流源 第三章电阻电路的分析方法3.1 选择题 1——5BCCBC 6——10DAABA 11——15BBDCA 16——20BBCDC 21——25CDADC 26——30CBBAD 3.2 填空题 1.KCL KVL 伏安

电路原理练习题二及答案

精选考试题类文档,希望能帮助到您! 一、选择题 1、设电路元件的电压和电流分别为u 和i ,则( ). (A )i 的参考方向应与u 的参考方向一致 (B )u 和i 的参考方向可独立地任意指定 (C )乘积“u i ”一定是指元件吸收的功率 (D )乘积“u i ”一定是指元件发出的功率 2、如图1.1所示,在指定的电压u 和电流i 的正方向下,电感电压u 和电流i 的约束方程为( ). (A )dt di 002 .0- (B )dt di 002.0 (C )dt di 02.0- (D )dt di 02.0 图1.1 题2图 3、电路分析中所讨论的电路一般均指( ). (A )由理想电路元件构成的抽象电路 (B )由实际电路元件构成的抽象电路 (C )由理想电路元件构成的实际电路 (D )由实际电路元件构成的实际电路 4、图1.2所示电路中100V 电压源提供的功率为100W ,则电压U 为( ). (A )40V (B )60V (C )20V (D )-60V

图1.2 题4 图 图1.3 题5图 5、图1.3所示电路中I 的表达式正确的是( ). (A )R U I I S - = (B )R U I I S += (C )R U I -= (D )R U I I S --= 6、下面说法正确的是( ). (A )叠加原理只适用于线性电路 (B )叠加原理只适用于非线性电路 (C )叠加原理适用于线性和非线性电路 (D )欧姆定律适用于非线性电路 7、图1.4所示电路中电流比B A I I 为( ). (A ) B A R R (B )A B R R ( C )B A R R - ( D )A B R R - 图1.4 题7图 8、与理想电流源串联的支路中电阻R ( ). (A )对该支路电流有影响 (B )对该支路电压没有影响 (C )对该支路电流没有影响 (D )对该支路电流及电压均有影响 9、图1.5所示电路中N 为有源线性电阻网络,其ab 端口开路电压为30V ,当把安培表接在ab 端口时,测得电流为3A ,则若把10Ω的电阻接在ab 端口时,ab 端电压为:( ). (A )–15V (B )30V (C )–30V (D )15V N I a b 图1.5 题9图 10、一阶电路的全响应等于( ). (A )稳态分量加零输入响应 (B )稳态分量加瞬态分量 (C )稳态分量加零状态响应 (D )瞬态分量加零输入响应 11、动态电路换路时,如果在换路前后电容电流和电感电压为有限值的条件下,换路前后瞬间有:( ). (A )()()+-=00C C i i (B )()()+-=00L L u u

电路原理习题答案第一章 电路模型和电路定理练习

第一章 电路模型和电路定律 电路理论主要研究电路中发生的电磁现象,用电流i 、电压u 和功率p 等物理量来描述其中的过程。因为电路是由电路元件构成的,因而整个电路的表现如何既要看元件的联接方式,又要看每个元件的特性,这就决定了电路中各支路电流、电压要受到两种基本规律的约束,即: (1)电路元件性质的约束。也称电路元件的伏安关系(VCR ),它仅与元件性质有关,与元件在电路中的联接方式无关。 (2)电路联接方式的约束(亦称拓扑约束)。这种约束关系则与构成电路的元件性质无关。基尔霍夫电流定律(KCL )和基尔霍夫电压定律(KVL )是概括这种约束关系的基本定律。 掌握电路的基本规律是分析电路的基础。 1-1 说明图(a ),(b )中,(1),u i 的参考方向是否关联(2)ui 乘积表示什么功率(3)如果在图(a )中0,0<>i u ;图(b )中0,0u i <>,元件实际发出还是吸收功率 解:(1)当流过元件的电流的参考方向是从标示电压正极性的一端指向负极性的一端,即电流的参考方向与元件两端电压降落的方向一致,称电压和电流的参考方向关联。所以(a )图中i u ,的参考方向是关联的;(b )图中i u ,的参考方向为非关联。 (2)当取元件的i u ,参考方向为关联参考方向时,定义ui p =为元件吸收的功率;当取元件的i u ,参考方向为非关联时,定义ui p =为元件发出的功率。所以(a )图中的ui 乘积表示元件吸收的功率;(b )图中的ui 乘积表示元件发出的功率。 (3)在电压、电流参考方向关联的条件下,带入i u ,数值,经计算,若0>=ui p ,表示元件确实吸收了功率;若0

电路原理习题及答案

电路原理习题 习题作业1 一、单项选择题:在下列各题中,有四个备选答案,请将其中唯一正确的答案填入题干的括号中。 (本大题共3小题,总计29分) 1、(本小题6分) 电路如图所示, 若R 、U S 、I S 均大于零,, 则电路的功率情况为 A. 电阻吸收功率, 电压源与电流源供出功率 B. 电阻与电压源吸收功率, 电流源供出功率 C. 电阻与电流源吸收功率, 电压源供出功率 D. 电阻吸收功率, 电流源供出功率,电压源无法确定 答( ) U I S 2、(本小题9分) 若电流表A 读数为零, 则R 与I 的值分别为 A. 6 Ω, 2.5 A B. 8 Ω, -2.5 A C. 6 Ω, 1 A D. 0.66 Ω, 15 A 答( ) a b

3、(本小题14分) 用叠加定理可求得图示电路中ab 端的开路电压U ab 为 A. 8.5 V B. 7.5 V C. 6 V D. 6.5 V 答( ) ab - 二、填充题:在下列各题中,请将题止所要求的解答填入题干中的各横线上方内。 (本大题共2小题,总计31分) 1、(本小题12分) 图示电路中的电流=I A ,电压=U V . 105 A o 2、(本小题19分) 图示正弦交流电路,已知t u 3 10cos 2100=V ,电源向电路提供功率P =200W ,L u 的有效值为50V ,求R 和L 。 L u + 三、非客观题 ( 本 大 题40分 ) 电路及外施电压波形如图所示,求电感贮能的最大值,并表明t >2s 时电阻所消耗的能量等于该值。

t s 习题作业2 一、单项选择题:在下列各题中,有四个备选答案,请将其中唯一正确的答案填入题干的括号中。 (本大题共3小题,总计34分) 1、(本小题9分) 电路如图所示, 若R 、U S 、I S 均大于零,, 则电路的功率情况为 A. 电阻吸收功率, 电压源与电流源供出功率 B. 电阻与电流源吸收功率, 电压源供出功率 C. 电阻与电压源吸收功率, 电流源供出功率 D. 电阻吸收功率,供出功率无法确定 答( ) U I S 2、(本小题8分) 用叠加定理可求得图示电路中电压u 为 A. ()1+cos t V B. ()5-cos t V C. ()53-cos t V D. 513-?? ?? ?cos t V 答( )

电路原理 模拟试题.pdf

电路原理——模拟试题 一、单项选择题(每题2分,共50分) 1、在进行电路分析时,关于电压和电流的参考方向,以下说法中正确的是(B)。 (A)电压和电流的参考方向均必须根据规定进行设定 (B)电压和电流的参考方向均可以任意设定 (C)电压的参考方向可以任意设定,但电流的参考方向必须根据规定进行设定 (D)电流的参考方向可以任意设定,但电压的参考方向必须根据规定进行设定 2、在图1-1所示电感元件中,电压与电流的正确关系式为(D)。 (A)(B)(C)(D) 3、对图1-2所示电流源元件,以下描述中正确的是( A ) (A)i恒为10mA、u不能确定(B)i恒为10mA、u为0 (C)i不能确定、u为∞(D)u、i均不能确定 4、在图1-3所示电路中,已知电流,,则电流I2为(D)。 (A)-3A (B)3A (C)-1A (D)1A 图1-1 图1-2 图1-3 5、关于理想变压器的作用,以下说法中正确的是(D)。 (A)只能对电压进行变换(B)只能对电流进行变换 (C)只能对阻抗进行变换(D)可同时对电压、电流、阻抗进行变换

6、理想运算放大器的输入电阻R i是(A)。 (A)无穷大(B)零(C)约几百千欧(D)约几十千欧 7、在图1-4所示电路中,各电阻值和U S值均已知。欲用支路电流法求解流过电阻R G的电流I G,需列出独立的电流方程数和电压方程数分别为( B )。 (A)4和3 (B)3和3 (C)3和4 (D)4和4 8、在图1-5所示电路中,当L S1单独作用时,电阻R L中的电流I L=1A,那么当L S1和L S2共同作用时, I L应是( C )。 (A)3A (B)2A (C)1.5A (D)1A 图1-4 图1-5 9、图1-6所示电路中,当R1减少时,电压I2将(C)。 (A)减少(B)增加(C)不变(D)无法确定 10、图1-7所示电路中,电压U AB=20V,当电流源I S单独作用时,电压U AB将( C )。 (A)变大(B)变小(C)不变(D)为零 图1-6 图1-7 11、电路如图1-8所示。在开关S闭合接通后,当电阻取值为、、、时得到4条曲线如图所示,则电阻所对应的是( A )。 (A)曲线1 (B)曲线2 (C)曲线3 (D)曲线4

电路原理课后习题答案

第五版《电路原理》课后作业 第一章“电路模型和电路定律”练习题 1-1说明题1-1图(a)、(b)中:(1)u、i的参考方向是否关联?(2)ui乘积表示什么功率? (3)如果在图(a)中u>0、i<0;图(b)中u>0、i>0,元件实际发出还是吸收功率? (a)(b) 题1-1图 解 (1)u、i的参考方向是否关联? 答:(a) 关联——同一元件上的电压、电流的参考方向一致,称为关联参考方向; (b) 非关联——同一元件上的电压、电流的参考方向相反,称为非关联参考方向。(2)ui乘积表示什么功率? 答:(a) 吸收功率——关联方向下,乘积p = ui > 0表示吸收功率; (b) 发出功率——非关联方向,调换电流i的参考方向之后,乘积p = ui < 0,表示 元件发出功率。 (3)如果在图(a) 中u>0,i<0,元件实际发出还是吸收功率? 答:(a) 发出功率——关联方向下,u > 0,i < 0,功率p为负值下,元件实际发出功率; (b) 吸收功率——非关联方向下,调换电流i的参考方向之后,u > 0,i > 0,功率p为正值下,元件实际吸收功率; 1-4 在指定的电压u和电流i的参考方向下,写出题1-4图所示各元件的u和i的约束方程(即VCR)。 (a)(b)(c) (d)(e)(f) 题1-4图 解(a)电阻元件,u、i为关联参考方向。 由欧姆定律u = R i = 104 i (b)电阻元件,u、i为非关联参考方向 由欧姆定律u = - R i = -10 i (c)理想电压源与外部电路无关,故u = 10V (d)理想电压源与外部电路无关,故u = -5V

电路原理试卷及答案详解A(超强试题)

一、填空题(本题5个空,每空2分,共10分) 1、若RC串联电路对基波的阻抗为,则对二次谐波的阻抗 为。 2、电路如图1所示,各点的电位在图上已标出,则电压 。 图1图2 3、如图2所示的电路,电压源发出的功率为。 4、电路的零状态响应是指完全依靠而产生的响应。 5、交流铁心线圈电路中的电阻R表示的是线圈电阻,当R增大时,铁心线圈 中损耗增加。

二、单项选择题(请在每小题的四个备选答案中,选出一个最佳答案;共5小题,每小题2分,共10分) 1、如图3所示的二端网络(R为正电阻),其功率 为。 A. 吸收 B. 发出 C. 不吸收也不发出 D. 无法确定 图3图 4图5 2、如图4所示的电路消耗的平均功率为。(下式中U、I为有效值,G为电导) A. B. C. D. 3、下列那类电路有可能发生谐振? A.纯电阻电路 B.RL电路 C.RC电 路 D.RLC电路

4、对称三相电路(正相序)中线电压与之间的相位关系 为。 A. 超前 B. 滞后 C.超前 D. 滞后 5、如图5所示的电路,,,则。 A. B. C. D. 三、作图题(本题2小题,每小题5分,共10分) 1、将图6所示的电路化简为最简的电压源形式。(要有适当的化简过程) 图6 2、画出图7所示电路换路后的运算电路模型。(设电路原已稳定,在时换路)

四、简单计算题(本题4小题,每小题5分,共20分) 1、用节点电压法求图7所示电路的电压U。(只列方程,不需求解) 图7 2、某二端网络端口处的电压和电流的表达式分别为, ,则电路中电压、电流的有效值和电路所消耗的平均功率。 3、已知某二端口网络的Z参数矩阵为,求该网络的传输参数矩阵,并回答该网络是否有受控源。 4、对于图8所示含有耦合电感元件的电路,设 ,试求副边开路时的开路电压。

电路原理练习题一及答案

、选择题 已知ab 两点之间电压为10V ,电路如下图所示,则电阻 R 为( A 、愈慢 B 、愈快 C 、先快后慢 D 、先慢后快 有一电感元件,X L =5i 」,其上电压u=10si n( ? ■ t+600 )V,则通过的电流i 的相 量 ( ) C 、I = 2 -300 A D 、1= 2 300A F 面关于阻抗模的表达式正确的是( ) 1、 2、 3、 4、 5、 6、 7、 就 8、 为 9、 A 、0 门 B 、— 5 门 C 、5 门 D 、10 门 A 、丄 I R 1 R 2 B 、亠 I R R 2 在上图2示电路中,发出功率的是( A 、电阻 B 、电压源和电流源 叠加定理用于计算( ) A 、 线性电路中的电压、电流和功率; B 、 线性电路中的电压和电流; C 、 非线性电路中的电压、电流和功率; D 、 非线性电路中的电压和电流。 将下图所示电路化为电流源模型,其电流 ) C 、电压源 电流源 A 、 B 、 C 、 D I S 和电阻R 为 1A ,1 'J 1A ,21'.1 2A ,1'J 2A ,2'? 在直流稳态时,电感元件上 A 、有电流,有电压 C 、有电流,无电压 在电路的暂态过程中,电路的时间 常数 ( ) B 、 ) 无电流,有电压 无电流,无电压 ?愈大,贝U 电流和电压的增长或衰减 A 、I =50^150° A B 、 I =2 .2 150° A R 2 ) C I R 2 + 2V

u U U U A 、 Z = — B 、 Z= — C 、 Z = — D 、Z =— i I I I 10、u=10-、2sinC.t-3O 0 )V 的相量表示式为( ) A 、U =10/-30°V B 、U =10 .. 2/ -300 V C 、U =10. 300 V D 、U =10.,2. 300 V 11、已知电路如下图所示,贝皿压电流的关系式为( ) 13、在图示电路中,电压源发出功率的为( A 、 6W B 、 12W C 、 30W D 、 35W 14、下列关于戴维宁定理描述不正确的是( ) A 、 戴维宁定理通常用于含独立电源、线性电阻和受控源的一端口网络; B 、 戴维宁等效电阻R eq 是指有源一端口内全部独立电源置零后的输入电阻; C 、在数值上,开路电压 U OC 、戴维宁等效电阻 R eq 和短路电流I sC 于满足 U OC = R eq I SC ; D 、求解戴维宁等效电阻R eq 时,电流源置零时相当于短路,电压源置零时相 当于开路 12、 B 、U= — E —RI :U 的值等于( C 、U= E+RI ) D 、U= E —RI A 、 B 、 11V 12V 13V 14V U + A 、U= — E+RI I 在下图示电路中,电压 1「

电路原理第七章复习题(考点)

第七章 练习题 1、在图示对称三相电路中,已知负载阻抗Z=(8+j6)Ω,电源线电压为380V ,求线电流的大小。 答案:22A 2、在图示对称三相电路中,电源相电压为220 V ,Ω 3066∠===C B A Z Z Z , 求线电流。 答案:9.97A (或10A ) 3、在图示对称三相电路中,已知负载端的线电压为380V ,负载阻抗Ω+=)927(j Z ,线路阻抗Ω=1l Z ,求电源端线电压的值。 答案:419V · + + + - - - Z A Z B Z C · · · · A U B U C U

4、在图示对称三相电路中,已知线电流有效值A 3=l I ,负载阻抗Ω+=)4030(j Z ,求三相负载吸收的有功功率和无功功率。 答案:270W ,360var 5、在图示对称三相电路中,电流表读数均为1A (有效值),若因故发生A 相短路(即开关闭合)则电流表A 1的读数为 ,A 2的读数为 。 答案:)A 3(1A )A 3(2A 6. 图示电路中A 、B 、C 、O 点接在对称三相电源上,电流表A 1、A 2、A 3的读数均为20A ,则电流表A 0的读数为 A 。 答案:14.64A C O

7. 图示对称三相电路中,对称三相负载吸收的有功功率为300W ,在B 相发生断相(即开关断开)后,求三相负载各相吸收的有功功率。 答案:75W ,0,75W 8. 在图示对称三相电路中,已知线电压有效值为220V ,负载一相阻抗Z=(40+j30)Ω,当开关闭合时电流表A 1的读数为 A ,三相负载吸收的总功率为 W 。若因故发生一相断路(即开关断开)后,电流表A 2的读数为 A ,A 3的读数为 A 。这时三相负载吸收的总功率为 W 。 答案:7.62A ,2323.2W ;7.62A ,4.4A ,1548.8W 。

《电路原理》课后习题答案

第五版《电路原理》课后作业答案 第一章“电路模型和电路定律”练习题 1-1说明题1-1图(a)、(b)中:(1)u、i的参考方向是否关联(2)ui乘积表示什么功率(3)如果在图(a)中u>0、i<0;图(b)中u>0、i>0,元件实际发出还是吸收功率 (a)(b) 题1-1图 解 (1)u、i的参考方向是否关联 答:(a) 关联——同一元件上的电压、电流的参考方向一致,称为关联参考方向; (b) 非关联——同一元件上的电压、电流的参考方向相反,称为非关联参考方向。" (2)ui乘积表示什么功率 答:(a) 吸收功率——关联方向下,乘积p = ui > 0表示吸收功率; (b) 发出功率——非关联方向,调换电流i的参考方向之后,乘积p = ui < 0,表示 元件发出功率。 (3)如果在图(a) 中u>0,i<0,元件实际发出还是吸收功率 答:(a) 发出功率——关联方向下,u > 0,i < 0,功率p为负值下,元件实际发出功率; (b) 吸收功率——非关联方向下,调换电流i的参考方向之后,u > 0,i > 0,功率p为正值下,元件实际吸收功率; 1-4 在指定的电压u和电流i的参考方向下,写出题1-4图所示各元件的u和i的约束方程(即VCR)。 — (a)(b)(c) (d)(e)(f) 题1-4图 解(a)电阻元件,u、i为关联参考方向。 由欧姆定律u = R i = 104 i (b)电阻元件,u、i为非关联参考方向 由欧姆定律u = - R i = -10 i

(c )理想电压源与外部电路无关,故 u = 10V (d )理想电压源与外部电路无关,故 u = -5V $ (e) 理想电流源与外部电路无关,故 i=10×10-3A=10-2A (f )理想电流源与外部电路无关,故 i=-10×10-3A=-10-2A 1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 15V + - 5Ω 2A 15V +-5Ω 2A 15V + - 5Ω2A (a ) (b ) (c ) 题1-5图 " 、 解 (a )由欧姆定律和基尔霍夫电压定律可知各元件的电压、电流如解1-5图(a ) 故 电阻功率 10220W R P ui ==?=吸(吸收20W ) 电流源功率 I 5210W P ui ==?=吸(吸收10W ) 电压源功率 U 15230W P ui ==?=发(发出30W ) (b )由基尔霍夫电压定律和电流定律可得各元件的电压电流如解1-5图(b ) 故 电阻功率 12345W R P =?=吸(吸收45W ) 电流源功率 I 15230W P =?=发(发出30W ) 电压源功率 U 15115W P =?=发(发出15W ) (c )由基尔霍夫电压定律和电流定律可得各元件的电压电流如解1-5图(c ) 故 电阻功率 15345W R P =?=吸(吸收45W ) ~ 解1-5图 解1-5图 解1-5图

电路原理练习题二及答案

一、选择题 1、设电路元件的电压和电流分别为u 和i ,则( ). (A )i 的参考方向应与u 的参考方向一致 (B )u 和i 的参考方向可独立地任意指定 (C )乘积“u i ”一定是指元件吸收的功率 (D )乘积“u i ”一定是指元件发出的功率 2、如图1.1所示,在指定的电压u 和电流i 的正方向下,电感电压u 和电流i 的约束方程为( ). (A )dt di 002 .0- (B )dt di 002.0 (C )dt di 02.0- (D )dt di 02.0 图1.1 题2图 3、电路分析中所讨论的电路一般均指( ). (A )由理想电路元件构成的抽象电路 (B )由实际电路元件构成的抽象电路 (C )由理想电路元件构成的实际电路 (D )由实际电路元件构成的实际电路 4、图1.2所示电路中100V 电压源提供的功率为100W ,则电压U 为( ). (A )40V (B )60V (C )20V (D )-60V 图1.2 题4图 图1.3 题5图 5、图1.3所示电路中I 的表达式正确的是( ). (A )R U I I S - = (B )R U I I S += (C )R U I -= (D )R U I I S --= 6、下面说法正确的是( ). (A )叠加原理只适用于线性电路 (B )叠加原理只适用于非线性电路 (C )叠加原理适用于线性和非线性电路 (D )欧姆定律适用于非线性电路 7、图1.4所示电路中电流比B A I I 为( ). (A ) B A R R (B )A B R R ( C )B A R R - ( D )A B R R -

燕山大学电路原理课后习题答案第三章

第三章 习 题(作业:1(a),3,5,6,8,11,13) 各位老师请注意: 更正:3-1题(b )答案有误,应由1A 改为-1A 。 3-14题:图3-14图(b)中的1I 改为:1I ? 3-1 利用叠加定理求3-1图中的U x 和I x 。 -- + +Ω 2Ω 2 Ω3 1 Ω 2I (a ) (b ) 题 3-1图 解:(a )叠加定理是指多个独立电源共同作用的结果,等于各独立源单独作用结果之和,当8V 电压源单独作用时的等效电路如题解3-1图(a1)所示。 -- + +8V Ω 2Ω 2? ? x U '。。 - -+ +3V Ω 2Ω 2? ? 。 。x U ' 'Ω 2Ω 2 (a1) (a2) (a3) 题解3-1(a)图 由此电路,得: V 482 22U =?+= 'x 当3V 电压源单独作用时等效电路如图(a2)所示,由此电路得: .5V 132 22U =?+=''x 当1A 电流源单独作用时等效电路如图(a3)所示,由此电路得: V 112 222U -=?+?-='''x 三个电源共同作用时,V 5.415.14U U U U =-+='''+''+'=x x x x

解:(b) 根据叠加定理,让每个电源单独作用,题3-1(b )图中1A 电流源单独作用时的等效电路如图(b1)所示,变形为图(b2)。由于电桥平衡,所以0I ='x 。 Ω3 1 Ω 2I (b1) (b2) 题解3-1(b)图 当3V 电压源单独作用时电路如图(b3)所示,变形为图(b4),则所求: Ω3 1 Ω 2I Ω3 1I (b3) (b4) 题解3-1(b)图 A 13 83138 484313I -=+-= +?+-=''x 因此,当两个电源共同作用时: A 110I I I -=-= ''+'=x x x 3-2 试用叠加定理求题3-2图中I 1 。 - + + - I 1 题 3-2图 解:根据叠加定理,让每个电源单独作用,让10V 电压源单独作用时电路如题解 3-2 图(a)所示,

电路原理复习题(含答案)

1.如图所示,若已知元件A 吸收功率6 W ,则电压U 为____3__V 。 2. 理想电压源电压由 本身 决定,电流的大小由 电压源以及外电路 决定。 3.电感两端的电压跟 成正比。 4. 电路如图所示,则R P 吸 = 10w 。 5.电流与电压为关联参考方向是指 电压与电流同向 。 实验室中的交流电压表和电流表,其读值是交流电的 有效值 6. 参考方向不同时,其表达式符号也不同,但实际方向 相同 。 7. 当选择不同的电位参考点时,电路中各点电位将 改变 ,但任意两点间 电压 不变 。 8. 下图中,u 和i 是 关联 参考方向,当P= - ui < 0时,其实际上是 发出 功率。 9.电动势是指外力(非静电力)克服电场力把 正电荷 从负极经电源内部移到 正极所作的功称为电源的电动势。 10.在电路中,元件或支路的u ,i 通常采用相同的参考方向,称之为 关联参考 方向 . 11.电压数值上等于电路中 电动势 的差值。 12. 电位具有相对性,其大小正负相对于 参考点 而言。 13.电阻均为9Ω的Δ形电阻网络,若等效为Y 形网络,各电阻的阻值应为 3 Ω。 14、实际电压源模型“20V 、1Ω”等效为电流源模型时,其电流源=S I 20 A , 内阻=i R 1 Ω。 15.根据不同控制量与被控制量共有以下4种受控源:电压控制电压源、 电压控 电流源 、 电流控电压源 、 电流控电流源 。 16. 实际电路的几何 近似于其工作信号波长,这种电路称集总 参数电路。 17、对于一个具有n 个结点、b 条支路的电路,若运用支路电流法分析,则需列 出 b-n+1 个独立的KVL 方程。 18、电压源两端的电压与流过它的电流及外电路 无关 。 (填写有关/无关)。 19、流过电压源的电流与外电路 有关 。(填写有关/无关) 20、电压源中的电流的大小由 电压源本身和 外电路 共同 决定 21、在叠加的各分电路中,不作用的电压源用 短路 代替。 22、在叠加的各分电路中,不作用的电流源用 开路 代替。 23、已知电路如图所示,则结点a 的结点电压方程为(1/R1+1/R2+1/R3)

《电路原理》作业及答案

第一章“电路模型和电路定律”练习题 1-1说明题1-1图(a )、(b )中:(1)u 、i 的参考方向是否关联?(2)ui 乘积表示什么功率?(3)如果在图(a )中u >0、i <0;图(b )中u >0、i >0,元件实际发出还是吸收功率? (a )(b ) 题1-1图 1-4在指定的电压u 和电流i 的参考方向下,写出题1-4图所示各元件的u 和i 的约束方程(即VCR )。 (a )(b )(c ) (d )(e )(f ) 题1-4图 1-5试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 (a )(b )(c ) 题1-5图 1-16电路如题1-16 (a )(b ) 题1-16图 1-20试求题1-20图所示电路中控制量u 1及电压u 。 题1-20图 第二章“电阻电路的等效变换”练习题 2-1电路如题2-1图所示,已知u S =100V ,R 1=2k ?,R 2=8k ?。试求以下3种情况下的电压u 2和电流i 2、 i 3:(1)R 3=8k ?;(2)R 3=?(R 3处开路);(3)R 3=0(R 3处短路)。 题2-1图 2-5用△—Y 等效变换法求题2-5图中a 、b 端的等效电阻:(1)将结点①、②、③之间的三个9?电阻构成的△形变换为Y 形;(2)将结点①、③、④与作为内部公共结点的②之间的三个9?电阻构成的Y 形变换为△形。 题2-5 2-11利用电源的等效变换,求题2-11图所示电路的电流i 。 题2-11图 2-13题2-13图所示电路中431R R R ==,122R R =,CCVS 的电压11c 4i R u =,利用电源的等效 变换求电压10u 。 题2-13图 2-14试求题2-14图(a )、(b )的输入电阻ab R 。 (a )(b ) 题2-14图 第三章“电阻电路的一般分析”练习题 3-1在以下两种情况下,画出题3-1图所示电路的图,并说明其结点数和支路数:(1)每个元件作

电路原理习题答案第二章电阻电路的等效变换练习

第二章电阻电路的等效变换 等效变换”在电路理论中是很重要的概念,电路等效 变换的方法是电路问题分析中经常使用的方法。 所谓两个电路是互为等效的,是指(1)两个结构参数 不同的电路再端子上有相同的电压、电流关系,因而可以互代换的部分)中的电压、电流和功率。 相代换;(2)代换的效果是不改变外电路(或电路中未由此得出电路等效变换的条件是相互代换的两部分电 路具有相同的伏安特性。等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。等效变换的目的是简化电路,方便地求出需要求的结果。 深刻地理解“等效变换” 的思想,熟练掌握“等效变换” 的方法在电路分析中是重要的。 2-1 电路如图所示,已知。若:(1);(2);(3)。试求以上3 种情况下电压和电流。 解:(1)和为并联,其等效电阻, 则总电流分流有 2)当,有

3),有 2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。求:(1)电压和电流;(2)若电阻增大,对哪些元件的电压、电流有影响?影响如何? 解:(1)对于和来说,其余部分的电路可以用电流源 等效代换,如题解图(a)所示。因此有 2)由于和电流源串接支路对其余电路来说可以等效为 个电流源,如题解图(b)所示。因此当增大,对及的电 流和端电压都没有影响。 但增大,上的电压增大,将影响电流源两端的电压, 因为 显然随的增大而增大。 注:任意电路元件与理想电流源串联,均可将其等效 为理想电压源,如本题中题解图(a)和(b)o但应该注意等效是对外部电路的等效。图(a)和图b) 中电流源两端 的电压就不等于原电路中电流源两端的电压。同时,任意电

电路原理第二章课后习题答案

答案2.1 解:本题练习分流、分压公式。设电压、电流参考方向如图所示。 (a) 由分流公式得: 23A 2A 23 I R Ω?==Ω+ 解得 75R =Ω (b) 由分压公式得: 3V 2V 23 R U R ?==Ω+ 解得 47 R =Ω 答案2.2 解:电路等效如图(b)所示。 20k Ω 1U + - 20k Ω (b) + _ U 图中等效电阻 (13)520 (13)k //5k k k 1359 R +?=+ΩΩ= Ω=Ω++ 由分流公式得: 220mA 2mA 20k R I R =? =+Ω 电压 220k 40V U I =Ω?= 再对图(a)使用分压公式得: 13==30V 1+3 U U ? 答案2.3 解:设2R 与5k Ω的并联等效电阻为 2325k 5k R R R ?Ω=+Ω (1) 由已知条件得如下联立方程:

32 113 130.05(2) 40k (3) eq R U U R R R R R ?==?+??=+=Ω ? 由方程(2)、(3)解得 138k R =Ω 32k R =Ω 再将3R 代入(1)式得 210k 3 R =Ω 答案2.4 解:由并联电路分流公式,得 1820mA 8mA (128)I Ω =?=+Ω 2620mA 12mA (46)I Ω =?=+Ω 由节点①的KCL 得 128mA 12mA 4mA I I I =-=-=- 答案2.5 解:首先将电路化简成图(b)。 图 题2.5 120Ω (a) (b) 图中 1(140100)240R =+Ω=Ω 2(200160)120270360(200160)120R ??+?=+Ω=Ω??++? ? 由并联电路分流公式得 2 112 10A 6A R I R R =?=+ 及 21104A I I =-= 再由图(a)得 32120 1A 360120 I I =? =+ 由KVL 得,

电路原理复习题含答案

电路原理复习题含答案 Document number:PBGCG-0857-BTDO-0089-PTT1998

1.如图所示,若已知元件A 吸收功率6 W ,则电压U 为____3__V 。 2. 理想电压源电压由 本身 决定,电流的大小由 电压源以及外电路 决 定。 3.电感两端的电压跟 成正比。 4. 电路如图所示,则R P 吸= 10w 。 5.电流与电压为关联参考方向是指 电压与电流同向 。 实验室中的交流电压表和电流表,其读值是交流电的 有效值 6. 参考方向不同时,其表达式符号也不同,但实际方向 相同 。 7. 当选择不同的电位参考点时,电路中各点电位将 改变 ,但任意两点 间电压 不变 。 8. 下图中,u 和i 是 关联 参考方向,当P= - ui < 0时,其实际上 是 发出 功率。 9.电动势是指外力(非静电力)克服电场力把 正电荷 从负极经电源内部移 到正极所作的功称为电源的电动势。 10.在电路中,元件或支路的u ,i 通常采用相同的参考方向,称之为 关联参考方向 . 11.电压数值上等于电路中 电动势 的差值。 12. 电位具有相对性,其大小正负相对于 参考点 而言。 13.电阻均为9Ω的Δ形电阻网络,若等效为Y 形网络,各电阻的阻值应为 3 Ω。 14、实际电压源模型“20V 、1Ω”等效为电流源模型时,其电流源=S I 20 A ,内阻=i R 1 Ω。 15.根据不同控制量与被控制量共有以下4种受控源:电压控制电压源、 电压 控电流源 、 电流控电压源 、 电流控电流源 。 16. 实际电路的几何 近似于其工作信号波长,这种电路称集 总参数电路。 17、对于一个具有n 个结点、b 条支路的电路,若运用支路电流法分析,则需 列出 b-n+1 个独立的KVL 方程。 18、电压源两端的电压与流过它的电流及外电路 无关 。 (填写有关/无 关)。 19、流过电压源的电流与外电路 有关 。(填写有关/无关)

电路原理习题答案相量法

第八章相量法 求解电路的正弦稳态响应,在数学上是求非齐次微分方程的特解。引用相量法使求解微分方程特解的运算变为复数的代数运运算,从儿大大简化了正弦稳态响应的数学运算。 所谓相量法,就是电压、电流用相量表示,RLC元件用阻抗或导纳表示,画出电路的相量模型,利用KCL,KVL 和欧姆定律的相量形式列写出未知电压、电流相量的代数方程加以求解,因此,应用相量法应熟练掌握:(1)正弦信号的 相量表示;(2)KCL,KVL的相量表示;(3)RLC元件伏安关系式的相量形式;(4)复数的运算。这就是用相量分析电路的理论根据。 8-1 将下列复数化为极坐标形式: (1)F1 5 j5;(2)F2 4 j3;(3)F3 20 j40; (4)F4 j10;(5)F5 3;(6)F6 2.78 j9.20。 解:(1)F1 5 j5 a a ( 5)2( 5)2 5 2 5 arctan 135 5 (因F1在第三象限) (2)F2 4 j3 ( 4)2 32 arctan(3 4) 5 143.13 (F2 在第二 象限) (3 )F3 20 j 40 202 402arctan(40 20) 44.72 63.43 (4 )F4 10j 10 90 (5)F5 3 3 180 (6)F6 2.78 j 9.20 2.78 29.20 2 arctan(9.20 2.78) 9.61 73.19 注:一个复数可以用代数型表示,也可以用极坐标型或指数 型表示,即 F a1 ja2 a a e j , 它们相互转换的关系为: 故F1 的极坐标形式 为F1 5 2 135

2 arctan 2 a 1 a 1 acos a 2 a sin 及实部 a 1和虚部 a 2的正负 8-2 将下列复数化为代数形式: (1) F 1 10 73 ;(2) F 2 15 112.6 ;(3) F 3 1.2 152 ; (4) F 4 10 90 ;(5) F 1 5 180 ;(6) F 1 10 135 。 解: ( 1) F 1 10 73 10 cos( 73 ) j10 sin( 73 ) 2.92 j 9.56 (2 ) F 2 15 112.6 15 cos112.6 15sin112.6 5.76 j13.85 (3) F 3 1.2 152 1.2cos152 1.2 sin 152 1.06 j 0.56 (4) F 4 10 90 j10 (5 ) F 1 5 180 5 (6) F 1 10 135 10 cos( 135 ) 10 sin( 135 ) 7.07 j 7.07 8-3 若 100 0 A 60 175 。求 A 和 。 解: 原式 =100 A cos 60 ja sin 60 175cos j175sin 根据复数相等 的 定义,应有实部和实部相等,即 Acos 60 100 175 cos A 2 100 A 20625 0 100 1002 4 2062 5 102.07 202.069 5 求i 1的周期 T 和频率 f 。 需要指出的,在转换过程中要注意 F 在复平面上所在的象限,它关系到 的取值 虚部和虚部相等 把以上两式相加,得 A sin 60 175 sin 解得 2 a 2

相关文档
相关文档 最新文档