文档库 最新最全的文档下载
当前位置:文档库 › 矩形通道的流固耦合传热模拟

矩形通道的流固耦合传热模拟

矩形通道的流固耦合传热模拟
矩形通道的流固耦合传热模拟

基于MpCCI的Abaqus和Fluent流固耦合案例1

CAE联盟论坛精品讲座系列 基于MpCCI的Abaqus和Fluent流固耦合案例 主讲人:mafuyin CAE联盟论坛总监 摘要:通过MpCCI流固耦合接口程序,对某薄壁管道流动中的传热过程进行了Abaqus和Fluent相结合的流固耦合仿真分析。信息介绍了从建模、设置到求解计算和后处理的全过程,对相关研究人员具有参考意义。 1 分析模型 用三维建模软件solidworks建立了一个管径为1m的弯管,结构尺寸如图1a所示,管的结构如图1b所示,流体的模型如图1c所示。值得注意的是,由于拓扑特征的原因,这样的管壁模型无法通过对圆环扫略直接生成,而需先通过对大圆的扫略生成实心的模型(类似于流体模型),然后进行抽壳得到管壁的模型。用同样的方法对大圆半径减去管壁厚度的圆进行扫略得到流体模型。 a. 尺寸关系 b. 管壁结构 c. 流体模型 图1. 几何模型示意图 图2. 流固耦合传热分析模型示意图 内壁面(耦合面) 速度入口 v=6m/s; T in=600K 外壁面 压力出口 P=0Pa;T out=300K

由于管壁结构和流体的热学行为不同,传热系数等都不一样,所以属于典型的流固耦合传热问题,热学模型如图2所示。即管的一端为流体速度入口,一端为压力出口,给定流体外壁面一个初始温度600K,流体入口速度为6m/s,温度为600K,出口相对大气压力为0Pa,出口温度为300K。需要求解流体和管壁的温度场分布情况。 2 流体模型 将图1c的流体模型以Step格式导入Fluent软件通常使用的前处理器Gambit中,如图3a所示。设置求解器为,然后划分体网格,网格尺寸为100mm,类型为六面体单元,一共生成4895个体单元,网格如图3b所示。 a. 导入Gambit软件中的流体模型 b. 流场的网格模型 图3. 流体模型及网格示意图 进行网格划分后,需定义边界条件,在Gambit软件中先分别定义速度入口(VELOCITY_INLET)、压力出口(PRESSURE_OUTLET)和壁面(Wall)三组边界条件,具体参数设置在Fluent软件中进行。然后定义流体属性,名称定义为air,类型为Fluid。这些定义的目的是能够在Fluent软件中识别出这些特征,具体类型和参数都可以在Fluent软件中进行设置和修改。定义完后点击【Export】,选择【Mesh】,选择路径和文件名称并进行输出。 打开Fluent6.3.26或以上的版本,选择3D求解器,点击【File】→【Read】→【Case】,然后选择Gambit中输出的msh文件,即可将网格文件读入Fluent 软件中。读入模型后,进行求解参数和条件的设置。

4-5_对流传热系数关联式

知识点4-5 对流传热系数关联式 【学习指导】 1.学习目的 通过本知识点的学习,了解影响对流传热系数的因素,掌握因次分析法,并能根据情况选择相应的对流传热系数关联式。理解流体有无相变化的对流传热系数相差较大的原因。 2.本知识点的重点 对流传热系数的影响因素及因次分析法。 3.本知识点的难点 因次分析法。 4.应完成的习题 4-11 在一逆流套管换热器中,冷、热流体进行热交换。两流体进、出口温度分别为t1=20℃、t2=85℃;T1=100℃、T2=70℃。当冷流体流量增加一倍时,试求两流体的出口温度和传热量的变化情况。假设两种情况下总传热系数不变,换热器热损失可忽略。 4-12 试用因次分析法推导壁面和流体间自然对流传热系数α的准数方程式。已知α为下 列变量的函数: 4-13 一定流量的空气在蒸汽加热器中从20℃加热到80℃。空气在换热器的管内湍流流动。压强为180kPa的饱和蒸汽在管外冷凝。现因生产要求空气流量增加20%,而空气的进出口温度不变,试问应采取什么措施才能完成任务,并作出定量计算。假设管壁和污垢热阻可忽略。 4-14 常压下温度为120℃的甲烷以10m/s的平均速度在列管换热器的管间沿轴向流动,离开换热器时甲烷温度为30℃,换热器外壳内径为190mm,管束由37根ф19×2的钢管组成,试求甲烷对管壁的对流传热系数。

4-15 温度为90℃的甲苯以1500kg/h的流量流过直径为ф57×3.5mm、弯曲半径为0.6m的蛇管换热器而被冷却至30℃,试求甲苯对蛇管的对流传热系数。 4-16 流量为720kg/h的常压饱和蒸汽在直立的列管换热器的列管外冷凝。换热器的列管直径为ф25×2.5mm,长为2m。列管外壁面温度为94℃。试按冷凝要求估算列管的根数(假设列管内侧可满足要求)。换热器的热损失可以忽略。 4-17 实验测定列管换热器的总传热系数时,水在换热器的列管内作湍流流动,管外为饱和蒸汽冷凝。列管由直径为ф25×2.5mm的钢管组成。当水的流速为1m/s时,测得基于管外表面积的总传热系数为2115W/(m2.℃);若其它条件不变,而水的速度变为1.5m/s时,测得系数为2660 W/(m2.℃)。试求蒸汽冷凝的传热系数。假设污垢热阻可忽略。 对流传热速率方程虽然形式简单,实际是将对流传热的复杂性和计算上的困难转移到对流传热系数之中,因此对流传热系数的计算成为解决对流传热的关键。 求算对流传热系数的方法有两种:即理论方法和实验方法。前者是通过对各类对流传热现象进行理论分析,建立描述对流传热现象的方程组,然后用数学分析的方法求解。由于过程的复杂性,目前对一些较为简单的对流传热现象可以用数学方法求解。后者是结合实验建立关联式,对于工程上遇到的对流传热问题仍依赖于实验方法。 一、影响对流传热系数的因素 由对流传热的机理分析可知,对流传热系数决定于热边界层内的温度梯度。而温度梯度或热边界层的厚度与流体的物性、温度、流动状况以及壁面几何状况等诸多因素有关。 1.流体的种类和相变化的情况 液体、气体和蒸汽的对流传热系数都不相同,牛顿型流体和非牛顿型流体也有区别。本书只限于讨论牛顿型流体的对流传热系数。 流体有无相变化,对传热有不同的影响,后面将分别予以讨论。 2.流体的特性

ansys流固耦合模态分析

有问题可以发邮件给我一起讨论xw4996@https://www.wendangku.net/doc/a79016015.html, FSI流固耦合命令求解流固耦合问题 使用ANSYS计算结构在水中的模态时, FLUID29,FLUID30单元分别用来模拟二维和三维流体部分,相应的结构模型则利用PLANE42单元和SOL ID45等单元来构造,其中,PLANE42和SOL ID45分别是用来构造二维和三维结构模型的单元。FLUID30是流体声单元,主要用于模拟流体介质及流固耦合问题。该单元有8 个节点,每个节点上有4 个自由度,分别是XYZ上3个方向位移自由度和1个压力自由度,为各向同性材料。输入材料属性时,需要输入流体的材料密度(作为DENS 输入)及流体声速(作为SONC输入),流体粘性产生的损耗效应忽略不计。FLUID29是FLUID30单元在二维上的简化,少了一个Z向的位移。SOLID45单元用于构造三维实体结构。单元通过8 个节点来定义,每个节点有 3 个沿着XYZ方向平移的自由度。PLANE42是SOLID45单元在二维上的简化。 在利用ANSYS建模分析时,流场域单元属性分为2种,由KEYOPT(2)(指定流体和结构分界面处结构是否存在) 控制,在流固耦合交界面上的单元KEYOPT(2) = 0 ,表示分界面处有结构,其他流体单元KEYOPT(2)=1,表示分界面处无结构。流体-结构分界面通过面载荷标志出来,指定FSI label可以把分界面处的结构运动和流体压力耦合起来,分界面标志在分界面处的流体单元标出。 数值分析的步骤 1) 建立流体单元的实体模型。建立流体模型,需要确定流体域的范围,可以把无限边界流体简化成流体区域的半径为固体结构半径的10倍。 2) 标记流固耦合界面。选取流体单元中流固交界面上的节点,执行FSI 命令,流固耦合交界面的处理:流体与固体是两个独立的实体,在划分单元时在两者交界面上的单元网格要划分一致,这样在交界面上的同一位置一般就有两个重合的节点,一个节点属于流体单元,一个节点属于固体单元,这两个重合节点在交界面的位移强制保持一致。 3) 建立固体结构实体模型。建立固体结构模型,定义单元属性,采用映射方式进行网格的划分。 4) 施加约束条件。由于流体区域的尺寸远大于固体结构尺寸,故可以不考虑流体液面的重力的影响,将流体边界处的单元节点上施加压力(PRES) 为零的约束。因为选择的算例为悬臂结构,在固体结构底部加全约束。 5) 选择求解算法,进行求解。定义分析类型为模态分析,设定提取频率阶数和提取模态的方法。因为耦合问题的刚度矩阵,质量矩阵都不对称,需要采用非对称矩阵法(UNSYMMETRIC)求解。 6) 查看结果。进入后处理模块,查看结构模型的频率及振型。 以半浸没与水中的桥墩模态问题为背景,并假设: 1. 桥墩为实心等截面的实体,实际桥墩模型应该是空心壳体,截面尺寸也 非常复杂,因而需要分块划分单元。

蒸汽管道温度损失计算及分析

蒸汽管道温度损失计算 及分析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

bw k p g f C G t t k l t ?-=?)(热水供热管道的温降 1.计算基本公式 温损计算公式为: 式中: g k —管道单位长度传热系数C m w ο?/ p t —管内热媒的平均温度 C ? k t —环境温度C ? G —热媒质量流量s Kg / C —热水质量比热容 C Kg J ??/ l ——管道长度 m 由于计算结果为每米温降,所以L 取1m .管道传热系数为 式中: n a ,w a —分别为管道内外表面的换了系数C m w ο?2/ n d ,w d —分别为管道(含保温层)内外径m i λ—管道各层材料的导热系数 C m w ο?/(金属的导热系数很高,自身热阻很小,可以忽略不计)。 i d —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算: Pr 为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: t λ—管道埋设处的导热系数。

t h —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢(%5.1≈w ) B. 查表得:碳钢在75和90摄氏度时的导热系数λ都趋近于 C m w ο?/ C.土壤的导热系数t λ= C m w ο?/ D. 由于本文涉及到的最大管径为,所以取t h = E.保温材料为:聚氨酯,取λ= C m w ο?/ F. 保温层外包皮材料是:PVC ,取λ= C m w ο?/ G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为: 管径为300mm 时,保温层厚度为:50mm ,保温外包皮厚度为:7mm ; 管径为400mm 时,保温层厚度为:51mm ,保温外包皮厚度为:; 管径为500mm 时,保温层厚度为:52mm ,保温外包皮厚度为:9mm ; 管径为600mm 时,保温层厚度为:54mm ,保温外包皮厚度为:12mm ; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量q 1是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析 总传热系数k 式中:h 1—蒸汽对工作钢管内壁的换热系数 λ1—蒸汽管道各层材料的导热系数 1 1 1 1 1 1 ln 2 1 1 1 ? ? ? ? ? ? ? n i i n i i d d d d h k ?? ?? ?

基于MpCCI的Abaqus和Fluent流固耦合案例

基于MpCCI 的Abaqus 和Fluent 流固耦合案例 mafuyin 摘要:通过MpCCI 流固耦合接口程序,对某薄壁管道流动中的传热过程进行了Abaqus 和Fluent 相结合的流固耦合仿真分析。信息介绍了从建模、设置到求解计算和后处理的全过程,对相关研究人员具有参考意义。 1 分析模型 用三维建模软件solidworks 建立了一个管径为1m 的弯管,结构尺寸如图1a 所示,管的结构如图1b 所示,流体的模型如图1c 所示。值得注意的是,由于拓扑特征的原因,这样的管壁模型无法通过对圆环扫略直接生成,而需先通过对大圆的扫略生成实心的模型(类似于流体模型),然后进行抽壳得到管壁的模型。用同样的方法对大圆半径减去管壁厚度的圆进行扫略得到流体模型。 a. 尺寸关系 b. 管壁结构 c. 流体模型 图1. 几何模型示意图 图2. 流固耦合传热分析模型示意图 内壁面(耦合面) 速度入口 v=6m/s; T in =600K 外壁面 压力出口 P=0Pa ;T out =300K

由于管壁结构和流体的热学行为不同,传热系数等都不一样,所以属于典型的流固耦合传热问题,热学模型如图2所示。即管的一端为流体速度入口,一端为压力出口,给定流体外壁面一个初始温度600K,流体入口速度为6m/s,温度为600K,出口相对大气压力为0Pa,出口温度为300K。需要求解流体和管壁的温度场分布情况。 2 流体模型 将图1c的流体模型以Step格式导入Fluent软件通常使用的前处理器Gambit 中,如图3a所示。设置求解器为,然后划分体网格,网格尺寸为100mm,类型为六面体单元,一共生成4895个体单元,网格如图3b所示。 a. 导入Gambit软件中的流体模型 b. 流场的网格模型 图3. 流体模型及网格示意图 进行网格划分后,需定义边界条件,在Gambit软件中先分别定义速度入口(VELOCITY_INLET)、压力出口(PRESSURE_OUTLET)和壁面(Wall)三组边界条件,具体参数设置在Fluent软件中进行。然后定义流体属性,名称定义为air,类型为Fluid。这些定义的目的是能够在Fluent软件中识别出这些特征,具体类型和参数都可以在Fluent软件中进行设置和修改。定义完后点击【Export】,选择【Mesh】,选择路径和文件名称并进行输出。 打开Fluent6.3.26或以上的版本,选择3D求解器,点击【File】→【Read】→【Case】,然后选择Gambit中输出的msh文件,即可将网格文件读入Fluent 软件中。读入模型后,进行求解参数和条件的设置。 (1)模型缩放:为了便于分析结果数据特征,统一采用国际单位制进行仿真,

流固热固耦合分析软件

MpCCI 1.3.2 for MPICHNT 1.2.5 1CD 流固热固耦合分析软件MpCCI v3.0.6 WinALL 1CD 流固热固耦合分析软件MpCCI v3.03 Linux64 1CD 流固热固耦合分析软件MpCCI v3.0.6 Documentation 1CD MPI Fusion Meshing Details 1CD Moldflow 系列教程 Moldflow MPI 3.0 培训教程 MoldFlow 4.0 最新培训教材 Moldflow公司出的塑件设计原理 B14 模流分析中文教程(即B14仪表板上本体流动分析) 模流分析基础入门(中文版) HydroAnalysis Inc产品: EnviroInsite.v5.5.0.2 1CD(对地下水进行可视化建模的工具) SCHOUENBERG产品: Calcmaster.v6.1 1CD(最复杂的注塑模型计算工具,可以快速计算出模型造价,建造工时,注模数据) SIMCON产品: Simcon CADMould 3D-F v2.0 1CD(塑料注塑成型模拟软件)

华塑CAE: 华塑注塑成形流动分析系统HsCAE3DRF5.5 smart 1CD(企业版) 华塑塑料注射成型过程仿真集成系统HsCAE3D 6.1 中文帮助 塑料模具设计手册(软件版V1.0) 1CD Accuform产品: Accuform.B-SIM v2.32.WinNT2K 1CD(模拟吹塑成型加工的软件包) Accuform.T-SIM v4.32.WinNT2k 1CD(模拟塑料热成型加工的软件包) ▲★○●。。。▲★○●。。。。▲★○●。。。。▲★○●。。。▲★○● 做软件行业多年,用诚信节约企业成本,本站所有软件亲测,完整无限制 可以联系王小姐 电话早九点到晚六点有人接听 QQ早九点到晚六点在线:394623568 ▲★○●。。。▲★○●。。。。▲★○●。。。。▲★○●。。。▲★○● PACSYS INC.产品: PAFEC-FE.v8.8-ISO 1CD(提供完美的有限元分析设计技术,面向初级、高级技术人员,可用于静态、 动态、非线性、热力学、空气动力学的模型创建) INFRAGISTICS产品: Ultra Grid V2.0 1CD GetSolar产品: GetSolar Billing v9.0 Multilingual 1CD(太阳能热能系统的仿真软件)

总传热系数的测定 附最全思考题

聊城大学实验报告 课题名称:化工原理实验 实验名称:总传热系数的测定 姓名:元险成绩: 学号:1989 班级: 实验日期:2011-9-18 实验内容:测定套管换热器中水—水物系在常用流速范围内的总传热系数K,分析强化传热效果的途径。

总传热系数的测定 一、实验目的 1.了解换热器的结构,掌握换热器的操作方法。 2.掌握换热器总传热系数K 的测定方法。 3.了解流体的流量和流向不同对总传热系数的影响 二、基本原理 在工业生产中,要完成加热或冷却任务,一般是通过换热器来实现的,即换热器必须在单位时间内完成传送一定的热量以满足工艺要求。换热器性能指标之一是传热系数K 。通过对这一指标的实际测定,可对换热器操作、选用、及改进提供依据。 传热系数K 值的测定可根据热量恒算式及传热速率方程式联立求解。 传热速率方程式: Q =kS ?t m (1) 通过换热器所传递的热量可由热量恒算式计算,即 Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1)+Q 损 (2) 若实验设备保温良好,Q 损可忽略不计,所以 Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1) (3) 式中,Q 为单位时间的传热量,W ;K 为总传热系数,W/(m 2·℃);?t m 为传热对数平均温度差,℃;S 为传热面积(这里基于外表面积),m 2;W h ,W c 为热、冷流体的质量流量,kg/s ;C ph ,C pc 为热、冷流体的平均定压比热,J/(kg ·℃);T 1,T 2为热流体的进出口温度,℃;t 1,t 2为冷流体的进出口温度,℃。 ?tm 为换热器两端温度差的对数平均值,即 12 1 2ln t t t t t m ???-?=? (4) 当212≤??t t 时,可以用算术平均温度差(2 12t t ?+?)代替对数平均温度差。由上式所计算出口的传热系数K 为测量值K 测。 传热系数的计算值K 计可用下式进行计算: ∑+++=S i R K λδαα11 10计 (5) 式中,α0为换热器管外侧流体对流传热系数,W/(m 2·℃);αi 为换热器管内侧流体对流传热系数,W/(m 2·℃);δ为管壁厚度,m ;λ——管壁的导热系数,W/(m 2·℃);R S 为污垢热阻,m 2·℃/W 。 当管壁和垢层的热阻可以忽略不计时,上式可简化成:

血管流固耦合分析实例

Ansys14 workbench血管流固耦合实例 根据收集的一些资料,进行学习后,试着做了这个ansys14workbench的血管流固耦合模拟,感觉能够耦合上,仅是熟悉流固耦合分析过程,不一定正确,仅供参考,希望大家多讨论。谢谢! 1、先在proe5中建立血管与血液流体区的模型(两者装配起来),或者直接在workbench中建模。 图1 模型图 2、新建工程。在workbench中toolbox中选custom system,双击FSI: FluidFlow(fluent)->static structure. 图2 计算工程 3、修改engineering data,因为系统缺省材料是钢,需要构建血管材料,如图3所示。先复制steel,而后修改密度1150kg/m3,杨氏模量4.5e8Pa,泊松比0.3,重新命名,最后在主菜单中点击“update project”保存.

图3 修改工程材料 4、模型导入,进入gemetry模块,import外部模型文件。 图4 模型导入图 5、进入FLUENT网格划分。 在workbench工程视图中的Mesh上点击右键,选择Edit…,如图5所示,进入网格划分meshing界面,如图6所示。我们这里需要去掉血管部分,只保留血液几何。

图5 进入网格划分

图6 禁用血管模型 6、设置网格方法。 默认是采用ICEM CFD进行网格划分,设置方式如图7所示,截面圆弧边分为12份,纵截面的边均分为10份,网格结果如图8所示。另外在这个界面中要设置边界的几何面,如inlet、outlet、symmetry 图7 设置网格划分方式 图8 最终出网格

传热学计算例题

、室内一根水平放置的无限长的蒸汽管道,其保温层外径d=583 mm,外表面 实测平均温度及空气温度分别为,此时空气与管道外 表面间的自然对流换热的表面传热系数h=3.42 W /(m2 K),墙壁的温度近似取为 室内空气的温度,保温层外表面的发射率 问:(1)此管道外壁的换热必须考虑哪些热量传递方式; (2)计算每米长度管道外壁的总散热量。(12分) 解: (1)此管道外壁的换热有辐射换热和自然对流换热两种方式。 (2)把管道每米长度上的散热量记为qi 当仅考虑自然对流时,单位长度上的自然对流散热 q i,c =二d h t =二dh (j - t f ) = 3.14 0.583 3.42 (48 - 23 ) 二156 .5(W / m) 近似地取墙壁的温度为室内空气温度,于是每米长度管道外表面与室内物体及墙壁 之间的辐射为: q i厂d (T; -T;) = 3.14 0.583 5.67 10》0.9 [(48 273)4-(23 273)4] = 274.7(W /m) 总的散热量为q i = q i,c +q i,r = 156.5 +274.7 = 431.2(W/m) 2、如图所示的墙壁,其导热系数为50W/(m- K),厚度为50mm在稳态情况下的 墙壁内的一维温度分布为:t=200-2000x 2,式中t的单位为°C, x单位为m 试 求: t (1) 墙壁两侧表面的热流密度; (2) 墙壁内单位体积的内热源生成的热量 2 t =200 —2000x

解:(1)由傅立叶定律: ① dt W q ' (―4000x) = 4000二x A dx 所以墙壁两侧的热流密度: q x _. =4000 50 0.05 =10000 (1)由导热微分方程 茫?生=0得: dx 扎 3、一根直径为1mm 勺铜导线,每米的电阻为2.22 10 。导线外包有厚度为 0.5mm 导热系数为0.15W/(m ? K)的绝缘层。限定绝缘层的最高温度为 65°C,绝 缘层的外表面温度受环境影响,假设为40°C 。试确定该导线的最大允许电流为多 少? 解:(1)以长度为L 的导线为例,导线通电后生成的热量为I 2RL ,其中的一部分 热量用于导线的升温,其热量为心务中:一部分热量通过绝热层的 导热传到大气中,其热量为:门二 1 , d In 2 L d 1 根据能量守恒定律知:l 2RL -门 述二厶E = I 2RL -门 即 E = — L dT m = I 2RL - t w1 _tw2 4 di 1 , d 2 In 2 L d 1 q v 、d 2t ——' 2 dx =-(7000)= 4000 50 二 200000 W/m 3 t w1 - t w2 。 2 q x 卫=4000.: 0 = 0

基于LSDYNA及FLUENT的板壳结构流固耦合分析

基于 LS-DYNA 及 FLUENT 的板壳结构流-固耦合分析
汪丽军 北京航空航天大学,交通科学与工程学院 100191
[摘 要]: 本文采用 ANSYS 显示动力分析模块 LS-DYNA 及流场分析模块 FLUENT,对水下的板壳 结构运动及其界面的流-固耦合现象进行了仿真分析。流场计算得到的界面压强数据以外载荷 的形式施加于结构表面,使其产生位移及变形;同时,结构的变化又进一步影响了流场的分 布。通过往复的双向耦合迭代,得到了板壳结构的动力学响应以及流场的分布情况。仿真结 果与试验结果的对比表明,此方法适用于解决兼有大位移及较大变形特征的流-固耦合问题。 [关键词]: 板壳结构 流-固耦合 有限元方法 ANSYS
Analysis of Fluid-Structure Interaction for Plate/Shell Structure Based on LS-DYNA and FLUENT
Wang Lijun School of Transportation Science & Engineering, Beihang University 100191
Abstract: In this paper,the movement of plate under water and the fluid-structure interaction(FSI) is simulated numerically by combining explicit dynamic solver LS-DYNA and computational fluid dynamics solver FLUENT in ANSYS. The pressure obtained from the calculation of flow field are applied as external loads on the surface of the plate, then the structural deformation and displacement can be calculated as well, which will affect the shape and pressure distribution of the flow field reversely. After sequential coupling iterations the dynamic response of the structure and flow field distribution are obtained consequently. By comparing numerical and experimental results it is proved that this proposed coupling method is suitable for solving such a kind of FSI problems considering both large displacement and comparatively large deformation. Keyword: Plate/shell structure, Fluid-Structure Interaction, Finite element method,ANSYS
1
前言
在自然界中,流-固耦合现象广泛存在于航空、航天、汽车、水利、石油、化工、海洋 以及生物等领域。很多实际问题中流体载荷对于结构的影响不可忽略;同时,结构的位移 和变形也会对流场的分布产生重要影响。例如各种水下运动机构都需要考虑这种现象。

adina热-流-固耦合建模过程

基于adina热-流-固耦合建模过程 热-流-固耦合作用是存在高度非线性的复杂耦合作用。有关这三场的耦合作用研究在地石油工程、热资源开发、地下核废料存储安全、采矿工程等很多领域有着非常重要的应用价值。由于研究对象的不同,热流固耦合模型的形式存在差异,建立符合实际问题的三场耦合模型十分困难,文中在国内外学者对三场耦合模型理论研究的进展状况的基础上,通过一个例子,介绍了用adina建立模型的过程。 1三场耦合理论模式介绍 在三场耦合尤其是三场耦合机制的研究过程中,人们根据各自对三场耦合的认识提出了不同的三场耦合作用模式。1995年前有关三场耦合作用模式的研究在场与场之间的联系关系上主要是以速度等变量为桥梁,如HART、Jing提出的作用模式,其中Jing主要描述的核储存库三场耦合模式,后来作用模式发展为主体为物理现象,它们之间的相互联系是以场作用或物理作用为桥梁的,如Guvanasen、柴军瑞的作用模式,前者同样以核废料储库库围岩三场耦合作用研究为主,后者为一般模式。 Jing等描述了核废料贮库围岩裂隙岩体中的热-液-力耦合过程,如图1所示。H art等提出了如图2所示的三场耦合作用模式。柴军瑞从岩体渗流-应力-温度三者两两之间的相互关系出发,建立了如图3的作用模式。图中:口渗透水流对岩体固相的力学作用,一般应用有效应力原理来反映;a’为应力引起裂隙岩体空隙率和渗透特性变化,目前有经验关系式(如Lours负指数关系式)和理论关系式(包括各种概化情况下和各种概化模型下的理论关系式)两大类表示方法;b为温度引起热应变(力)及与温度有关的岩体固相力学特性变化;b’为岩体固相力学变形引起热力学特性变化及 岩体固相内部热耗散;c为水流的热对流及与岩体固相的热交换;c’为温度势梯度引起水份运动及与温度有关的水特性变化。 图1裂隙岩体中的热液力耦合过程(据Jing等。1995年)

管道总传热系数计算18

1管道总传热系数 管道总传热系数是热油管道设计和运行管理中的重要参数。在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。当考虑结蜡 层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式: (1-1)1112ln 111ln 22i i n e n w i L L D D D KD D D D ααλλ-+???? ?????=+++????????∑式中:——总传热系数,W /(m 2·℃);K ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于e D 无保温埋地管路可取沥青层外径);——管道内直径,m ;n D ——管道最外层直径,m ;w D ——油流与管内壁放热系数,W/(m 2·℃);1α ——管外壁与周围介质的放热系数,W/(m 2·℃);2α ——第层相应的导热系数,W/(m·℃);i λi ,——管道第层的内外直径,m ,其中;i D 1i D +i 1,2,3...i n =——结蜡后的管内径,m 。L D 为计算总传热系数,需分别计算内部放热系数、自管壁至管道最外径K 1α的导热热阻、管道外壁或最大外围至周围环境的放热系数。 2α(1)内部放热系数的确定1α放热强度决定于原油的物理性质及流动状态,可用与放热准数、自然1αu N 对流准数和流体物理性质准数间的数学关系式来表示[47]。r G r P 在层流状态(Re<2000),当时:500Pr

用ANSYS和FLUENT进行管壳式换热器整体分析

用ANSYS和FLUENT进行管壳式换热器整体分析 作者:郭崇志林长青 利用数值模拟计算软件进行管壳式换热器的流体力学和传热性能计算及评估已经成为开发和研究管壳式换热器的重要手段之一,由于结构和流道复杂,导致准确地进行换热器的流体力学性能和传热性能计算和评估有一定的困难。而对换热器的结构性能进行准确分析一般都需要进行流固耦合模拟,如果要同时进行换热器的流体流动与传热和结构性能分析就更加困难。 有关管壳式换热器的温度场研究,目前大多数文献集中于研究管板的温度场及所产生温差应力、以及由此导致的结构强度等问题,通常利用ANSYS 大型商用软件行管壳式换热器管板结构的温度场研究,采用简化的三维实体模型较多,一般利用已知的平均温度或利用已知的换热(膜)系数对几何结构模型加载,而这些已知条件通常来源于手册提供的数据或者经验数据,并非来源于严格的换热器流体力学与传热工艺的数值计算,因此是产生结果计算偏差的主要原因之一。 目前文献对于给定工艺条件下管壳式换热器的整体温度场研究的并不多,由于准确的温度场是研究温差应力及其危害的前提,因此本文利用FLUENT 和ANSYS 软件对一台固定管板换热器的约束构件之间的整体结构在正常运行工况下的数值模拟问题进行了研究,首先从计算流体力学与传热的角度出发,利用FLUENT软件进行换热器流体流动与传热的工艺状况数值模拟。然后把FLUENT 软件的数值模拟结果导入ANSYS中作节点插值,完成温度场的重建,作为进行换热器的热分析以及结构分析的边界条件。从而实现了管壳式换热器的FLUENT 和ANSYS 联合仿真模拟,综合整个过程可以很好地完成同一条件下换热器的流体力学与传热和结构性能分析,使得换热器的工艺性能计算与结构分析计算完整地结合在一起,计算精度更高。 1 CFD数值模拟 本文研究的换热器结构示意如图1所示,在对实际结构进行合理简化的基础上,以影响流动和传热的主要结构建立了某固定管板式换热器温度场数值计算模型,采用分段模拟、整体综合的方法,利用FLUENT软件对该换热器在正常操作工况下的流动与传热情况进行数值模拟[8] ,得到计算流道上有关各个构件的壁温场分布。

fluent流固耦合传热设置问题

f l u e n t流固耦合传热设置 问题 Prepared on 21 November 2021

FLUENT流固耦合传热设置问题 看到很多网友对于fluent里模拟流固耦合传热(同时有对流和导热)有很多疑问,下面说说我的解决方法。 1,首先要分清你的问题是否是流固耦合传热。 (1)如果你的传热问题只是流体与固体壁面的传热,不涉及到固体壁面内部的导热,那么这就是一个对流传热问题,不是流固耦合传热问 题,这时候你只需要设置壁面的对流换热系数即可。如下图 注意右边这几个参数的含义:从上往下依次为:壁面外部的对流传热系数;外部流体温度;壁面厚度;壁面单位体积发热率。 这里没有内部流体的对流传热设置,因为fluent会根据流体温度以及壁面温度,利用能量守恒,自动计算内壁流体与壁面的对流换热情况。 (2)流固耦合传热问题。在建模的时候你应该定义两个区域,流体区域和固体区域,并且在切割区域的时候,你应该选中connect,如下图 所示 边界条件设置:交界面为wall。在导入fluent以后,fluent就会自动生成wall-shadow。这样在流固交界面上就生成了一对耦合的面,如下图所示, 。 2,耦合传热设置问题 (1)首先就是求解器的设置问题,应该选择耦合求解器,虽然计算速度会慢一些,但是这更符合实际情况,更容易收敛,误差更小。如果 是非稳态过程还应选择unsteady。如下图所示 (2)交界面设置问题,这个是关键。不用过多的设置只需要选择coupled。这样fluent就会自动计算耦合面的传热问题。如下图所 示 (3)当然还要选择能量方程。其他诸如湍流模型、材料设置、进出口条件等等,需要你根据实际情况设定,这里不再雷述。

abaqus与fluent流固耦合

基于MPCCI的流固耦合成功案例 基于MPCCI的流固耦合成功案例 (一)机翼气动弹性分析 1 问题陈述 机翼绕流问题是流固耦合中的经典问题。以前由于缺乏考虑流固耦合的软件,传统的分析方法是将机翼视为刚体,不考虑其弹性变形,通过CFD软件来计算机翼附近的流场。这个强硬的假设很难准确的描述流场的实际情况。更无法预测机翼的振动。MPCCI是基于代码耦合的并行计算接口,它可以同时调用结构和流体的软件来实现流固耦合。我们通过MPCCI,能很好的预测真实情况下的机翼绕流问题。采用ABAQUS结构分析软件来求解结构在流畅作用下的变形和应力分布,通过Fluent软件来计算由于固体运动和变形对整个流场的影响。 2 模拟过程分析顺序 MpCCI的图形用户界面可以方便的读入结构和流体的输入文件。后台调用ABAQUS和FLUENT。在MPCCI耦合面板中选择耦合面,然后选择在相应耦合面上流体和固体需要交换的量。启动MpCCI进行耦合。 3 边界条件设置

图1 无人机模型和流体计算模型 结构部分单个机翼跨度在1.5m左右,厚度为0.1m左右。边界条件为机翼端部的固定,三个方向的位移完全固定,另一端完全自由。在固体中除了固定端的面外,其他三个面为耦合面。流体部分采用四面体网格,采用理想气体作为密度模型。流体的入口和出口以及对称性边界条件如下图所示。 图2 固体有限元模型 4 计算方法的选择 通过结合ABAQUS和FLUENT,使用MPCCI计算流固耦合。在本例中,固体在流场作用下产生很大的变形和运动。在耦合区域,固体结构部分计算耦合面上的节点位移,通过MPCCI传输给FLUENT的耦合界面,FLUENT 计算出耦合区域上的节点力载荷,然后通过MPCCI传给结构软件ABAQUS。在MPCCI的耦合面板中选择的耦合面如图所示,交换量为:节点位移、相对受力。采用ABAQUS中的STANDARD算法,时间增量步长为0.1毫秒。 5 计算结论 通过MPCCI结合ABAQUS和FLUENT,成功地计算在几何非线性条件下的气动弹性问题,得到了整个流体区域的流场分布以及结构的动态响应历程。

最新fluent流固耦合传热设置问题

FLUENT流固耦合传热设置问题 看到很多网友对于fluent里模拟流固耦合传热(同时有对流和导热)有很多疑问,下面说说我的解决方法。 1,首先要分清你的问题是否是流固耦合传热。 (1)如果你的传热问题只是流体与固体壁面的传热,不涉及到固体壁面内部的导热,那么这就是一个对流传热问题,不是流固耦合传热问题, 这时候你只需要设置壁面的对流换热系数即可。如下图 注意右边这几个参数的含义:从上往下依次为:壁面外部的对流传热系数;外部流体温度;壁面厚度;壁面单位体积发热率。 这里没有内部流体的对流传热设置,因为fluent会根据流体温度以及壁面温度,利用能量守恒,自动计算内壁流体与壁面的对流换热情况。 (2)流固耦合传热问题。在建模的时候你应该定义两个区域,流体区域和固体区域,并且在切割区域的时候,你应该选中connect,如下图所 示 边界条件设置:交界面为wall。在导入fluent以后,fluent就会自动生成wall-shadow。这样在流固交界面上就生成了一对耦合的面,如下图所示,

。 2,耦合传热设置问题 (1)首先就是求解器的设置问题,应该选择耦合求解器,虽然计算速度会慢一些,但是这更符合实际情况,更容易收敛,误差更小。如果是非 稳态过程还应选择unsteady。如下图所示 (2)交界面设置问题,这个是关键。不用过多的设置只需要选择coupled。 这样fluent就会自动计算耦合面的传热问题。如下图所示

(3)当然还要选择能量方程。其他诸如湍流模型、材料设置、进出口条件等等,需要你根据实际情况设定,这里不再雷述。1.在国际单位制中,电荷的单位是 A. 伏特 B. 安培 C. 库仑 D.瓦特 2.小明家装修房屋需要购买导线,关于导线种类的选择,最恰当的是: A.强度大的铁丝B.细小价格较便宜的铝丝 C.粗一点的铜丝D.性能稳定的镍铬合金丝 3.小明在研究通过导体的电流时,根据测量数据绘制出如图 所示的I-U图像。对此作出的判断中,错误 ..的是: A.通过R1的电流与它两端所加电压成正比 B.通过R2的电流与它两端所加电压不成正比 C.将它们串联接入到同一电路中时,通过R1的电流较小 D.将它们并联连接到两端电压为1.5V的电路中时,通过 干路的电流大约是0.46A 4.小灯泡L上标有“2.5V”字样,它的电阻随它两端电压变化的图像如图甲所示。将小灯泡L和电阻R0接入图乙所示的电路中,电源电压为6V,且保持不变。当开 关S闭合时,小灯泡L恰好能正常发光。 下列说法正确的是: A.开关S断开时,小灯泡L的电阻为0Ω B.开关S闭合时,小灯泡L的电阻为8Ω C.小灯泡L的额定功率为0.5W D.电阻R0的阻值为14Ω 5.假设导体没有电阻,当用电器通电时,下列说法正确的是() A.白炽灯仍然能发光B.电动机仍然能转动 C.电饭锅仍然能煮饭D.电熨斗仍然能熨衣服 6.在图8所示电路中,闭合开关S后,在滑片P 向右滑动过程中,各电表示数变化正确的 是() A.A1、A3示数不变,A2、V示数变小 B.A1、V 示数不变,A2、A 3示数变大R1 R2

基于adina热-流-固耦合建模过程

基于adina热-流-固耦合建模过程 2010-10-17 00:32:09 作者:党旭光,朱庆杰,刘峰,程雨来源:互联网 分享到 https://www.wendangku.net/doc/a79016015.html,/CAE/Article81109_1.htm https://www.wendangku.net/doc/a79016015.html,/article/2010/1017/article_63695.html 热-流-固耦合作用是存在高度非线性的复杂耦合作用。有关这三场的耦合作用研究在地石油工程、热资源开发、地下核废料存储安全、采矿工程等很多领域有着非常重要的应用价值。 由于研究对象的不同,热流固耦合模型的形式存在差异,建立符合实际问题的三场耦合模型十分困难,文中在国内外学者对三场耦合模型理论研究的进展状况的基础上,通过一个例子,介绍了用adina 建立模型的过程。 1三场耦合理论模式介绍 在三场耦合尤其是三场耦合机制的研究过程中,人们根据各自对三场耦合的认识提出了不同的三场耦合作用模式。1995年前有关三场耦合作用模式的研究在场与场之间的联系关系上主要是以速度等变量为桥梁,如HART、Jing提出的作用模式,其中Jing主要描述的核储存库三场耦合模式,后来作用模式发展为主体为物理现象,它们之间的相互联系是以场作用或物理作用为桥梁的,如Guvanas en、柴军瑞的作用模式,前者同样以核废料储库库围岩三场耦合作用研究为主,后者为一般模式。 Jing等描述了核废料贮库围岩裂隙岩体中的热-液-力耦合过程,如图1所示。Hart等提出了如图2所示的三场耦合作用模式。柴军瑞从岩体渗流-应力-温度三者两两之间的相互关系出发,建立了如图3的作用模式。图中:口渗透水流对岩体固相的力学作用,一般应用有效应力原理来反映;a’为应力引起裂隙岩体空隙率和渗透特性变化,目前有经验关系式(如Lours负指数关系式)和理论关系式(包括各种概化情况下和各种概化模型下的理论关系式)两大类表示方法;b为温度引起热应变(力)及与温度有关的岩体固相力学特性变化;b’为岩体固相力学变形引起热力学特性变化及岩体固相内部热耗散;c 为水流的热对流及与岩体固相的热交换;c’为温度势梯度引起水份运动及与温度有关的水特性变化。 图1裂隙岩体中的热液力耦合过程(据Jing等。1995年) 图2三场耦合模式(Hart)

相关文档
相关文档 最新文档