文档库 最新最全的文档下载
当前位置:文档库 › 有限元法介绍

有限元法介绍

有限元法介绍
有限元法介绍

有限元法介绍

周宇 2012330300302 12机制(1)班理论研究、科学实验以及计算分析是人们进行科学研究和解决实际工程问题的重要手段,随着计算机技术及数值分析方法的发展,以有限元方法为代表的数值计算技术得到越来越广泛的应用。

有限元法是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。

一、基本思想

有限元方法是一种求解复杂对象方程的方法,基本思想来源于“化整为零”、“化弧为直”的直观思路,将实体的对象分割成不同大小、种类、小区域称为有限元。根据不同领域的需求推导出每一个元素的作用力方程,组合整个系统的元素并构成系统方程组,最后将方程组求解。由有限元的发展,该法具有下列的特色:

1、整个系统散为有限个元素;

2、利用能量最低原理与泛函数值定理(见附录)转换成一组线性联立方程;

3、处理过程简明;

4、整个区域左离散处理,需庞大的资料输出空间与计算机内存,解题耗时;

5、线性、非线性均适用;

6、无限区域的问题较难仿真。

二、基本概念

1、有限元法是把分析的连续体假想地分割成有限个单元所组合成的组合体;

2、这些单元仅在顶角处相互联接,这些联接点称为结点。

离散化的组合体和真实的弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠——单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的载荷称为结点载荷。当连续体受到外力作用发生变形时,组成它的

各个单元也将发生变形,因而各个结点要产生不同程度的位移,称为结点位移。

在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理(见附录)或其他方法,建立结点里与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数(见附录)。如果单元满足问题的收敛性要求,随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度不断改进,近似解最终将收敛于精确解。

三、有限元方法的特点

1、不受分析对象的几何形状限制,可以分析各种复杂结构体;

2、可适应不连续的边界条件和载荷条件;

3、便于实现规范化和在计算机上统一编程;

4、有限元法最后得到的大型联立方程组的系数是一个稀疏矩阵,这种方程计算工作量

小、稳定性好,便于求解。

四、基本步骤

1、问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。

2、求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网络越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。

3、确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。

4、单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。为保证问题求解的收敛性,单元推导有许多原则要遵循。对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。

5、总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域

的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。

6、联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、选代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。

简而言之,有限元分析可分成三个阶段,前处理、处理和后处理。前处理是建立有限元模型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。

五、可以解决的机械工程问题

1、包含杆、梁、板、壳、三维块体、二维平面、管道等各种单元的各种复杂结构的静

力分析;

2、各种复杂结构的动力分析,包括频率、振型和动力响应计算;

3、整机(如水压机、汽车、发电机、泵、机床)的静、动力分析;

4、工程结构和机械零部件的弹塑性应力分析及大变形分析;

5、工程结构和机械零部件的热弹性、粘弹性、粘塑性和蠕变分析;

6、大型工程机械轴承油膜计算等。

六、有限元法在生活中的应用

1、随着应用基于有限元方法的计算机辅助工程(CAE)的方法的普及,有限元法成为了飞机结构设计的主流工具,在40多年来,解决了诸多问题,在结构优化及减重方面发挥了不可替代的作用,提高了飞行器的可靠性,缩短了新机型研究的周期,如波音B777的设计,从原计划的8-9年缩短为4-5年,采用CAE技术可以减少成本25%,出错返工率减少75%,A380总体减重44%。

2、有限元方法逐渐成为数字化分析的主流方法之一。当前,有限元方法已成为结构设计与优化的一体化工具,如土木工程中大型桥梁的设计、高层建筑的设计、大型风电设备的设计和高速列车的设计等。

3、有限元方法也成为前沿领域研究的主要工具,特别对于一些目前还不能采用试验方法来进行研究的前沿领域,如数字化的原子结构模拟和基于数字化的分子结构设计与分析。

4、由此按原方法还能应用于虚拟试验,以找出对产品性能有重要影响的各种关键因素,为产品的改进提供重要的参考,也可节约大量的时间,降低产品的研发成本。目前,基于有限元方法的整机数字化试验可以将计算的误差控制在10%以内,能够满足工程上的需要。

七、有限元分析软件

近40年来,出现了大量基于有限元方法的商业软件,并在实际工程中发挥了越来越重要的作用。目前,专业的著名有限元分析软件公司有十几家。商业化有限元软件的产生最早得益于美国NASA提出的结构分析要求,在20世纪60年代中期,NASA选择了MacNealSchwendler公司(MSC)作为NASTRAN软件的开发商,随后出现了一大批有限元分析软件。目前,国际上著名的通用有限元分析软件有ANSYS、ABAQUS、MSC/NASTRAN、MSC/MARC、ADINA、ALGOR、PRO/MECHANICA、IDEAS,还有一些专门的有限元分析软件,如LS-DYNA、DEFORM、PAM-STAMP、AUTOFORM、SUPER-FORCE等。

附录:

1、能量最低原理:自然界一个普遍的规律是——能量越低越稳定,因此自然变化进行的

方向都是使能量降低;

2、泛函分析:现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成

的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究;

3、变分原理:把一个力学问题(或其他学科的问题)用变分法化为求泛函极值(或驻值)

的问题,就称为该物理问题(或其他学科的问物理题)的变分原理;

4、场函数:表征场的特征的函数称场函数。场在物理上有两种含义:①在粒子相互作用中

起媒介物作用的客体,它分布于整个或部分空间,其性质是空间坐标和时间坐标的函数(静止场不是时间的函数)。②上述客体在量子力学中的类似物,其中空间和时间的函数用时-空中各点的算符来代替。

有限元基础知识归纳

有限元知识点归纳 1.、有限元解的特点、原因? 答:有限元解一般偏小,即位移解下限性 原因:单元原是连续体的一部分,具有无限多个自由度。在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。 2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49 (1)在节点i处N i=1,其它节点N i=0; (2)在单元之间,必须使由其定义的未知量连续; (3)应包含完全一次多项式; (4)应满足∑Ni=1 以上条件是使单元满足收敛条件所必须得。可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。 4、等参元的概念、特点、用时注意什么?(王勖成P131) 答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。即: 为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即: 其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。称前者为母单元,后者为子单元。 还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。 5、单元离散?P42 答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。每个部分称为一个单元,连接点称为结点。对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。这种单元称为常应变三角形单元。常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。 6、数值积分,阶次选择的基本要求? 答:通常是选用高斯积分 积分阶次的选择—采用数值积分代替精确积分时,积分阶数的选取应适当,因为它直接影响计算精度,计算工作量。选择时主要从两方面考虑。一是要保证积分的精度,不损失收敛性;二是要避免引起结构总刚度矩阵的奇异性,导致计算的失败。

有限元知识点汇总

有限元知识点汇总 第一章 1、何为有限元法?其基本思想是什么? 》有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法。 》基本思想:化整为零,化零为整 2、为什么说有限元法是近似的方法,体现在哪里? 》有限元法的基本思想是几何离散和分片插值; 》用离散单元的组合来逼近原始结构,体现了几何上的近似;用近似函数逼近未知量在单元内的真实解,体现了数学上的近似;利用与问题的等效的变分原理建立有限元基本方程,又体现了明确的物理背景。 3、单元、节点的概念? 》单元:把参数单元划分成网格,这些网格就称为单元。 》节点:网格间相互连接的点称为节点。 4、有限元法分析过程可归纳为几个步骤? 》3大步骤;——结构离散化;——单元分析;——整体分析。 5、有限元方法分几种?本课程讲授的是哪一种? 》有限元方法分3种;——位移法、力法、混合法。 》本课程讲授的:位移法 6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点?》弹性力学的基本变量是——{外力、应力、应变、位移} 》几何方程——{描述弹性体应变分量与位移分量之间关系的方程} 》物理方程——{描述应力分量与应变分量之间的关系} 》虚功方程——{描述内力和外力的关系的方程} 》弹性矩阵特点——{ } 7、何为平面应力问题和平面应变问题? 》平面应力问题——{满足(1)几何条件——所研究的是一根很薄的等厚度薄板,即一个方向上的几何尺寸远远小于其余两个面上的几何尺寸;(2)载荷条件——作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面上无外力作用} 》平面应变问题——{满足(1)几何条件——所研究的是长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变;(2)载荷条件——作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力} 第二章 7、形函数的特点? 》1形函数Ni再节点i处等于1,在其他节点上的值等于0,对于Nj、Nm也有同样的性质。》2在单元内任一点的各形函数之和等于1,即Ni+Nj+Nm=1 8、单元刚度矩阵的性质? 》1 K^e中每个元素都有明确的物理意义,每个元素都是一个刚度系数,他是单位节点位移分量所引起的节点力分量 》2 k^e是对称矩阵,具有对称性。 》3 K^e的每一行或每一列元素之和为零,是奇异矩阵

有限元概述

有限元 百科名片 有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后 再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 目录 简介 1)物体离散化 2)单元特性分析 3)单元组集 4)求解未知节点位移 5)有限元的未来是多物理场耦合 编辑本段简介 英文:Finite Element 有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元法分析计算的思路和做法可归纳如下: 编辑本段1)物体离散化 将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 编辑本段2)单元特性分析 A、选择位移模式

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

有限元--命令流与部分基础知识

一、命令流 举例: 有一长为 100mm 的矩形截面梁,截面为 10X1mm ,与一规格为 20mmX7mmX10mm 的实体连接, 约束实体的端面, 在梁端施加大小为 3N 的 y 方向的压力, 梁与实体都为一材 料,弹性模量为 30Gpa ,泊松比为 0.3 。本例主要讲解梁与实体连接处如何利用耦合及约束 方程进行处理。 命令流如下: FINI /CLE LSEL,S,LOC,X,21,130 ! 选择梁线 LATT,1,2,2 ! 指定梁的单元属性 LESIZE,ALL,,,10 !指定梁上的单元份数 LMESH,ALL !划分梁单元 VSEL,ALL !选择所有实体 VATT,1,1,1 ! 设置实体的单元属性 ESIZE,1 !指定实体单元尺寸 MSHAPE,0,2D ! 设置实体单元为 2D MSHKEY,1 !设置为映射网格划分方法 VMESH,ALL ! 划分实体单元 ALLS !全选 FINI !退出前处理 /FILNAME,BEAM_AND_SOLID_ELEMENTS_CONNECTION ! 定义工作文件名 /TITLE,COUPLE_AND_CONSTRAINT_EQUATION ! 定义工作名 /PREP7 ET,1,SOLID95 ET,2,BEAM4 MP,EX,1,3E4 MP,PRXY,1,0.3 R,1 R,2,10.0,10/12.0,1000/12.0,10.0,1.0 BLC4,,,20,7,10 WPOFFS,0,3.5 WPROTA,0,90 VSBW,ALL WPOFFS,0,5 WPROTA,0,90 VSBW,ALL WPCSYS,-1 K,100,20,3.5,5 K,101,120,3.5,5 L,100,101 !进入前处理 !定义实体单元类型为 SOLID95 ! 定义梁单元类型为 BEAM4 !定义材料的弹性模量 !定义泊松比 !定义实体单元实常数 !定义梁单元实常数 !创建矩形块为实体模型 !将工作平面向 Y 方向移动 3.5 !将工作平面绕 X 轴旋转 !将实体沿工作平面剖开 !将工作平面向 Y 方向移动 !将工作平面绕 X 轴旋转 !将实体沿工作平面剖开 90 度 5 90 度 !将工作平面设为与总体笛卡儿坐标一致 !创建关键点 !创建关键点 !连接关键点生成梁的线实体

有限元分析基本理论问答 基础理论知识

1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. ?梁单元和平面钢架结构单元的自由度由什么确定 答:每个节点上有几个节点位移分量,就称每个节点有几个自由度 6. ?简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。 7. 有限元法基本方程中的每一项的意义是什么 答:整个结构的节点载荷列阵(外载荷、约束力),整个结构的节点位移列阵,结构的整体刚度矩阵,又称总刚度矩阵。 8. 位移边界条件和载荷边界条件的意义是什么 答:由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。 9. ?简述整体刚度矩阵的性质和特点 答:对称性;奇异性;稀疏性;对角线上的元素恒为正。 11. 简述整体坐标的概念 答:单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’Y’Z’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。 13. 简述平面钢架问题有限元法的基本过程 答:力学模型的确定,结构的离散化,计算载荷的等效节点力,计算各单元的刚度矩阵,组集整体刚度矩阵,施加边界约束条件,求解降价的有限元基本方程,求解单元应力,计算结果的输出。 14. 弹性力学的基本假设是什么。 答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。 15.弹性力学和材料力学相比,其研究方法和对象有什么不同。 答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。因此,弹性力学的研究对象要广泛得多。研究方法:弹性力学和材料力学

有限元网格剖分方法概述

有限元网格剖分方法概述 在采用有限元法进行结构分析时,首先必须对结构进行离散,形成有限元网格,并给出与此网格相应的各种信息,如单元信息、节点坐标、材料信息、约束信息和荷载信息等等,是一项十分复杂、艰巨的工作。如果采用人工方法离散对象和处理计算结果,势必费力、费时且极易出错,尤其当分析模型复杂时,采用人工方法甚至很难进行,这将严重影响高级有限元分析程序的推广和使用。因此,开展自动离散对象及结果的计算机可视化显示的研究是一项重要而紧迫的任务。 有限元网格生成技术发展到现在, 已经出现了大量的不同实现方法,列举如下: 映射法 映射法是一种半自动网格生成方法,根据映射函数的不同,主要可分为超限映射和等参映射。因前一种映射在几何逼近精度上比后一种高,故被广泛采用。映射法的基本思想是:在简单区域内采用某种映射函数构造简单区域的边界点和内点,并按某种规则连接结点构成网格单元。也就是根据形体边界的参数方程,利用映射函数,把参数空间内单元正方形或单元三角形(对于三维问题是单元立方体或单元四面体)的网格映射到欧氏空间,从而生成实际的网格。这种方法的主要步骤是,首先人为地把分析域分成一个个简单可映射的子域,每个子域为三角形或四边形,然后根据网格密度的需要,定义每个子域边界上的节点数,再根据这些信息,利用映射函数划分网格。 这种网格控制机理有以下几个缺点: (1)它不是完全面向几何特征的,很难完成自动化,尤其是对于3D区域。 (2)它是通过低维点来生成高维单元。例如,在2D问题中,先定义映射边界上的点数,然后形成平面单元。这对于单元的定位,尤其是对于远离映射边界的单元的定位,是十分困难的,使得对局部的控制能力下降。 (3)各映射块之间的网格密度相互影响程度很大。也就是说,改变某一映射块的网格密度,其它各映射块的网格都要做相应的调整。 其优点是:由于概念明确,方法简单,单元性能较好,对规则均一的区域,适用性很强,因此得到了较大的发展,并在一些商用软件如ANSYS等得到应用。 2 。拓扑分解法 拓扑分解法较其它方法发展较晚, 它首先是由Wordenwaber提出来的。该方法假设最后网格顶点全部由目标边界顶点组成, 那么可以用一种三角化算法将目标用尽量少的三角形完全分割覆盖。这些三角形主要是由目标的拓扑结构决定, 这样目标的复杂拓扑结构被分解成简单的三角形拓扑结构。该方法生成的网格一般相当粗糙, 必须与其它方法相结合, 通过网格加密等过程, 才能生成合适的网格。该方法后来被发展为普遍使用的目标初始三角化算法, 用来实现从实体表述到初始三角化表述的自动化转换。 单一的拓扑分解法因只依赖于几何体的拓扑结构使网格剖分不理想,有时甚至很差。 3.连接节点法 这类方法一般包括二步:区域内布点及其三角化。早期的方法通常是先在区域内布点, 然后再将它们联成三角形或四面体, 在三角化过程中, 对所生成的单元形状难于控制。随着Delaunay三角化(简称为DT ) 方法的出现, 该类方法已成为目前三大最流行的全自动网格生成方法之一。 DT法的基本原理:任意给定N个平面点Pi(i=1,2,…,N)构成的点集为S,称满足下列条件的点集Vi为Voronoi多边形。其中,Vi满足下列条件: Vi ={ X:|X- Pi|(|X- Pj|,X(R2,i(j,j=1,2,…,N }Vi为凸多边形,称{ Vi}mi=1为Dirichlet Tesselation

结构分析及有限元分析基础知识

第一章结构分析及有限元分析基础知识 注:摘自《NX知识工程应用技术——CAD/CAE篇》 洪如瑾编译 清华大学出版社 [目标] 本章将简述结构分析及有限元分析的基础知识,为学习与应用结构分析做好准备,包括: ※ 结构与结构分析定义 ※ 结构的线性静态分析 ※ 材料行为与故障 ※ 有限元分析的基本概念 ※ 有限元模型 1.1结构分析基础知识 1.1.1结构基本概念 1.结构定义 结构可以定义为一个正承受作用的载荷处于平衡中的系统。平衡条件意味着结构是不移动的。一个自由的支架不是一个结构,它未被连接到任一物体上并无载荷作用与它。仅当它附着到外部世界,并且有作用力、压力或力矩时,支架成为一个结构。 例如横跨江面的大桥就是一个普通的结构,一个支架通过它的支撑连接到地面上,桥的重量是在结构上的一种载荷(力)。当汽车通过桥时,附加的力作用于桥的不同位置。 一个好的结构必须满足以下标准: (1) 当预期的载荷作用时,结构必须不出现故障。这个似乎是显而易见的,并意味着结构必须是“强度足够的”。故障意味着结构破裂、分离、弯曲,以及支撑作用载荷失败。 注意:考虑到意外的载荷,通常在设计中提供安全余量。余量常常利用安全因素来描述。例如,如果在结构上期待载荷是10 000磅,规定安全因素是2.0,则结构将设计成能经受住20 000磅载荷。 (2) 当载荷作用时,结构必须不产生过分变形。这意味着结构必须“刚度足够”。 变形可接受的极限(弯曲度、挠度、拉伸等)取决于特定情况。例如,在通常住宅中的地板由足够的吊带支撑,以防止当人在地板岸上行走时有“柔软”的感觉。 (3) 在它的服务生命周期,结构的行为应不会恶化。这意味着结构必须“足够耐用”,必须考虑环境影响和“磨损与破裂”。如果一座桥假定维持50年,则桥的设计必须提供整个50年寿命的结构完整性与充分的安全余量。2.结构分析 结构分析是用于决定一个结构是否将正确完成任务的工程分析过程。结构将在某些方式中进行模拟和求解描述它的行为的数学方程。分析可以人工方法或用计算机方法来完成。 结构分析的结果(答案)用于评估性能,摘要如下: (1)“强度足够吗?”:应力必须是在一可接受的范围内。 (2)“刚度足够吗?”:位移必须是在一可接受的范围内。 (3)“耐用度足够?”:对一个长的疲劳周期应力必须足够低。

1有限元法简介

1有限元法简介 1.1有限单法的形成 在工程技术领域内,经常会遇到两类典型的问题。其中的第一类问题,可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、建筑结构框架和桁架结构。我们把这类问题,称为离散系统。如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。 图1-1 平面桁架系统

图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授) 第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。例如弹性力学问题,热传导问题,电磁场问题等。由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。 图1-3 V6引擎的局部 下面是热传导问题的控制方程与换热边界条件: t T c Q z T z y T y x T x ??=+??? ??????+??? ? ??????+??? ??????ρλλλ (1- 1) 初始温度场也可以是不均匀的,但各点温度值是已知的: () 00 x,y,z T T t == (1- 2) 通常的热边界有三种,第三类边界条件如下形式: ()f T-T h n T λ=??- (1- 3) 尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。这为解决这个困难,工程师们和数学家们提出了许多近似方法。 在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。 1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介

有限元分析基础

有限元分析基础 第一章有限元法概述 在机械设计中,人们常常运用材料力学、结构力学等理论知识分析机械零构件的强度、刚度和稳定性问题。但对一些复杂的零构件,这种分析常常就必须对其受力状态和边界条件进行简化。否则力学分析将无法进行。但这种简化的处理常常导致计算结果与实际相差甚远,有时甚至失去了分析的意义。所以过去设计经验和类比占有较大比重。因为这个原因,人们也常常在设计中选择较大的安全系数。如此也就造成所设计的机械结构整体尺寸和重量偏大,而局部薄弱环节强度和刚度又不足的设计缺陷。 近年来,数值计算机在工程分析上的成功运用,产生了一门全新、高效的工程计算分析学科——有限元分析方法。该方法彻底改变了传统工程分析中的做法。使计算精度和计算领域大大改善。 §1.1 有限元方法的发展历史、现状和将来 一,历史 有限元法的起源应追溯到上世纪40年代(20世纪40年代)。1943年R.Courant从数学的角度提出了有限元法的基本观点。50年代中期在对飞机结构的分析中,诞生了结构分析的矩阵方法。1960年R.W.Clough在分析弹性力学平面问题时引入了“Finite Element Method”这一术语,从而标志着有限元法的思想在力学分析中的广泛推广。 60、70年代计算机技术的发展,极大地促进了有限元法的发展。具体表现在: 1)由弹性力学的平面问题扩展到空间、板壳问题。 2)由静力平衡问题——稳定性和动力学分析问题。 3)由弹性问题——弹塑性、粘弹性等问题。 二,现状 现在有限元分析法的应用领域已经由开始时的固体力学,扩展到流体力学、传热学和电磁力学等多个传统的领域。已经形成了一种非常成熟的数值分析计算方法。大型的商业化有限元分析软件也是层出不穷,如: SAP系列的代表SAP2000(Structure Analysis Program) 美国安世软件公司的ANSYS大型综合有限元分析软件 美国航天航空局的NASTRAN系列软件 除此以外,还有MASTER、ALGO、ABIQUES、ADINA、COSMOS等。 三,将来 有限元的发展方向最终将和CAD的发展相结合。运用“四个化”可以概括其今后的发展趋势。那就是:可视化、集成化、自动化和网络化。 §1.2 有限元法的特点 机械零构件的受力分析方法总体说来分为解析法和数值法两大类。如大家学过的材料力学、结构力学等就是经典的解析力学分析方法。在这些解析力学方法中,弹性力学的分析方法在数学理论上是最为严谨的一种分析方法。 其解题思路是:从静力、几何和物理三个方面综合考虑,建立描述弹性体的平衡、应力、应变和位移三者之间的微分方程,然后考虑边界条件,从而求出微分方程的解析解。其最大的有点就是,严密精确。缺点就是微分方程的求解困难,很多情况下,无法求解。 数值方法是一种近似的计算方法。具体又分为“有限差分法”和“有限元法”。 “有限差分法”是将得到的微分方程离散成近似的差分方程。通过对一系列离散的差分

有限元法的基本思想及计算步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列阵(δ)e表示: {δ}e=[u i v i u j v j u m v m]T 同样,可把作用于结点处的六个结点力用列阵{F}e表示: {F}e=[F ix F iy F jx F jy F mx F my]T 应用弹性力学理论和虚功原理可得出结点位移与结点力之间的关系

有限元知识点总结

有限元分析及其应用-2010;思考题: 1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什么?是如何将无限自由度问题转化为有限自由度问题的? 答:基本思想:几何离散和分片插值。 基本步骤:结构离散、单元分析和整体分析。 离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。 2、有限元法与经典的差分法、里兹法有何区别? 区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低;里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解;有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。 3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试 1)建立其受拉伸的微分方程及边界条件; 2)构造其泛函形式; 3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩阵)。 5、什么是节点力和节点载荷?两者有何区别? 答:节点力:单元与单元之间通过节点相互作用 节点载荷:作用于节点上的外载

6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自由度和节点解释)? 答:单元刚度矩阵:对称性、奇异性、主对角线恒为正 整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。 Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。 7、单元的形函数具有什么特点?有哪些性质? 答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。形函数Ni在i节点的值为1,而在其他节点上的值为0; 单元内任一点的形函数之和恒等于1; 形函数的值在0~1间变化。 8、描述弹性体的基本变量是什么?基本方程有哪些组成? 答:基本变量:外力、应力、应变、位移 基本方程:平衡方程、几何方程、物理方程、几何条件 9、何谓应力、应变、位移的概念?应力与强度是什么关系? 答:应力:lim△Q/△A=S △A→0 应变:物体形状的改变 位移:弹性体内质点位置的变化 10、问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?答:强弱的区分在于是否完全满足物理模型的条件。所谓强形式,是指由于物理模型的复杂性,各种边界条件的限制,使得对于所提出的微分方程,对所需要求得的解的要求太强。也

有限元法的概述

有限元法的概述 有限元方法(Finite Element Method)是力学,数学物理学,计算方法,计算机技术等多种学科综合发展和结合的产物。在人类研究自然界的三大科学研究方法(理论分析,科学试验,科学计算)中,对于大多数新型领域,由于科学理论和科学实践的局限性,科学计算成为一种最重要的研究手段。在大多数工程研究领域,有限元方法是进行科学计算的重要方法之一;利用有限元方法几乎可以对任意复杂的工程结构进行分析,获取结构的各种机械性能信息,对工程结构进行评判,对工程事故进行分析。有限元法在设计过程中有极为关键的作用。 人们对各种力学问题进行分析求解,其方法归结起来可以分为解析法(Analytical Method)和数值法(Numeric Method).如果给定一个问题,通过一定的推导可以用具体的表达式来获得问题的解答,这样的求解方法就称为解析法。但是由于实际结构物的复杂性,除了少数极其简单的问题外,绝大多数科学研究和工程计算问题用解析法求解式极其困难的。因此,数值法求解便成为了一种不可替代的广泛应用的方法,并取得了不断的发展,如有限元法,有限差分法,边界元方法等都是属于数值求解方法。其中有限元法式 20 世纪中期伴随着计算机技术的发展而迅速发展起来的一种数值分析方法,它的数学逻辑严谨,物理概念清晰,应用非常广泛,能活灵活现处理和求解各种复杂的问题。有限元方法采用矩阵式来表达基本公式,便于计算机编程,这些优点赋予了它强大的生命力。 有限元方法的实质是将复杂的连续体划分成为有限多个简单的单元体,化无限自由度问题为优先自由度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。用有限元方法分析工程结构的问题时,将一个理想体离散化后,如何保证其数值的收敛性和稳定性是有限元理论讨论的主要内容之一,而

有限元综述

有限元综述 蔡璟、吕丹丹、李川 摘要:有限元法(Finite Element Method)是一种高效能、常用的数值计算方法。1965年“有限元”这个名词第一次出现,经历了三十多年的发展历史,理论和算法都已经日趋完善。如今,有限元在工程上得到广泛应用。本文首先介绍了有限元的研究背景和意义,其次从它的诞生、主要特点以及解题步骤三方面阐述相关概念,再讨论传统有限元算法及优化算法、有限元与其他算法结合得到的混合算法两个方面来分类阐述各自的研究现状与特点,最后总结有限元算法的应用以及发展趋势。 关键词:有限元法,FEM,经典算法,优化算法,网格优化,Herrmann算法,时域有限元,混合算法,矩量法,时域有限差分,应用研究,边界元法,光滑粒子法,发展趋势

前言 有限元法(Finite Element Method)是一种高效能、常用的数值计算方法,其基本思想是由解给定的泊松方程化为求解泛函的极值问题。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,解决了物理场应用中的限制。经历几十年的发展,有限元法已经被广泛用于各个领域。 1.研究背景和意义 有限元法的思想首先由 R. Courant 在 1943 年提出,十九世纪六十年代数值分析科学家认识了有限元基本思想,建立了有限元方法的数学基础。其中,我国数学家冯康独立地提出了有限元方法,将其命名为“基于变分原理的差分格式”,对有限元方法的创始及奠基工作做出了重要贡献。 以变分原理为基础建立起来的有限元法,因其理论依据的普遍性,不仅广泛地被应用于各种结构工程,而且作为一种声誉很高的数值分析方法已被普遍推广并成功地用来解决其他工程领域中的问题,例如热传导!渗流!流体力学、空气动力学、土壤力学、机械零件强度分析、电磁场工程问题等等。 有限元法由于可以模拟任意几何模型和各种特性的复杂材料而且具有的适应性强、程序较为通用等优势而得到了长足的发展。同时,结合其他方法和理论呈现出广阔的应用前景,如自适应网格剖分、三维场建模求解、耦合问题、开放域问题等领域取得较多成果。现阶段,为了进一步拓宽求解问题的广泛性以及适应求解问题对高精度,高复杂程度的要求,有限元还需要进行突破性的工作。2.有限元研究概况 2.1有限元的诞生 1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数,最早提出有限元法基本思想。20世纪50年代,飞机设计师们发现无法用传统的力学方法分析飞机的应力、应变等问题。波音公司的一个技术小组,首先将连续体的机翼离散为三角形板块的集合来进行应力分析,经过一番波折后获得前述的两个离散的成功。20世纪50年代,大型电子计算机投入了解算大型代数方程组的工作,这为实现有限元技术准备好了物质条件。1960年前后,美国的R.W.Clough教授及我国的冯康教授分别独立地在论文中提出了“有限单元”这样的名词。此后,这样的叫法被大家接受,有限元技术从此正式

有限元 命令流与部分基础知识

一、命令流 举例: 有一长为100mm的矩形截面梁,截面为10X1mm,与一规格为20mmX7mmX10mm的实体连接,约束实体的端面,在梁端施加大小为3N的y方向的压力,梁与实体都为一材料,弹性模量为30Gpa,泊松比为0.3。本例主要讲解梁与实体连接处如何利用耦合及约束方程进行处理。 命令流如下: FINI /CLE /FILNAME,BEAM_AND_SOLID_ELEMENTS_CONNECTION !定义工作文件名 /TITLE,COUPLE_AND_CONSTRAINT_EQUATION !定义工作名 /PREP7 !进入前处理 ET,1,SOLID95 !定义实体单元类型为SOLID95 ET,2,BEAM4 !定义梁单元类型为BEAM4 MP,EX,1,3E4 !定义材料的弹性模量 MP,PRXY,1,0.3 !定义泊松比 R,1 !定义实体单元实常数 R,2,10.0,10/12.0,1000/12.0,10.0,1.0 !定义梁单元实常数 BLC4,,,20,7,10 !创建矩形块为实体模型 WPOFFS,0,3.5 !将工作平面向Y方向移动3.5 WPROTA,0,90 !将工作平面绕X轴旋转90度 VSBW,ALL !将实体沿工作平面剖开 WPOFFS,0,5 !将工作平面向Y方向移动5 WPROTA,0,90 !将工作平面绕X轴旋转90度 VSBW,ALL !将实体沿工作平面剖开 WPCSYS,-1 !将工作平面设为与总体笛卡儿坐标一致 K,100,20,3.5,5 !创建关键点 K,101,120,3.5,5 !创建关键点 L,100,101 !连接关键点生成梁的线实体 LSEL,S,LOC,X,21,130 !选择梁线 LATT,1,2,2 !指定梁的单元属性 LESIZE,ALL,,,10 !指定梁上的单元份数 LMESH,ALL !划分梁单元 VSEL,ALL !选择所有实体 V ATT,1,1,1 !设置实体的单元属性 ESIZE,1 !指定实体单元尺寸 MSHAPE,0,2D !设置实体单元为2D MSHKEY,1 !设置为映射网格划分方法 VMESH,ALL !划分实体单元 ALLS !全选 FINI !退出前处理 !------------------------

1有限元法简介

1有限元法簡介 1.1有限單法的形成 在工程技術領域內,經常會遇到兩類典型的問題。其中的第一類問題,可以歸結為有限個已知單元體的組合。例如,材料力學中的連續梁、建築結構框架和桁架結構。我們把這類問題,稱為離散系統。如圖1-1所示平面桁架結構,是由6個承受軸向力的“杆單元”組成。儘管離散系統是可解的,但是求解圖1-2所示這類複雜的離散系統,要依靠電腦技術。 圖1-1 平面桁架系統

圖1-2 大型編鐘“中華和鐘”的振動分析及優化設計(曾攀教授) 第二類問題,通常可以建立它們應遵循的基本方程,即微分方程和相應的邊界條件。例如彈性力學問題,熱傳導問題,電磁場問題等。由於建立基本方程所研究的物件通常是無限小的單元,這類問題稱為連續系統。 圖1-3 V6引擎的局部 下面是熱傳導問題的控制方程與換熱邊界條件: t T c Q z T z y T y x T x? ? = + ? ? ? ? ? ? ? ? ? + ?? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? ρ λ λ λ(1- 1)初始溫度場也可以是不均勻的,但各點溫度值是已知的: () x,y,z T T t = = (1- 2)通常的熱邊界有三種,第三類邊界條件如下形式: () f T-T h n T λ= ? ? -(1- 3) 儘管我們已經建立了連續系統的基本方程,由於邊界條件的限制,通常只能得到少數簡單問題的精確解答。對於許多實際的工程問題,還無法給出精確的解答,例如,圖1-3所示V6引擎在工作中的溫度分佈。這為解決這個困難,工程師們和數學家們提出了許多近似方法。 在尋找連續系統求解方法的過程中,工程師和數學家從兩個不同的路線得到了相同的結果,即有限元法。有限元法的形成可以回顧到二十世紀50年代,來源於固體力學中矩陣結構法的發展和工程師對結構相似性的直覺判斷。從固體力學的角度來看,桁架結構等標準離散系統與人為地分割成有限個分區後的連續系統在結構上存在相似性。

有限元法

有限元分析课程期末论文----浅谈对有限元法的认识 现代工业、生产技术要求高质量、高水平的大型、复杂和精密的机械及工程结构。为此目的,人们必须预先通过有效的计算手段,确切的预测即将诞生的机械和工程结构,在未来工作时所发生的应力。应变和位移。但是传统的一些方法往往难以完成对工程实际文艺的有效分析。弹性力学的经典理论,由于求解偏微分方程边值问题的困难,只能解决结构形状和承受载荷较简单的问题对于几何形状复杂、不规则边界、有裂缝或厚度突变,以及几何非线性,材料非线性等问题往往遇到很多麻烦,试图按经典的弹性力学方法获得解析解是十分困难的,甚至是不可能的。因此,需要寻求一种简单而又精确的数值分析方法。有限单元法正是适应这种要求而产生和发展起来的一种十分有效的数值计算方法。 一、有限元法概述 有限单元法早在40年代初期就有人提出,但当时由于没有计算工具而搁置,一直到50年代中期,高速数字电子计算机的出现和发展为有限元法的应用提供了重要的物质条件,才使有限单元法得以迅速发展。 有限单元法在西方起源于飞机和导弹的结构设计,发表这方面文章最早而且最有影响的是西德的J.H.Argyris教授,于1954--1955年间,他在《Aircraft engineerring》上发表了许多有关这方面的论文,并在此基础上写成了《能量原理与结构分析》,此书成为有限单元法的理论基础。美国的M.T.Turner,R.W.Clough,H.C.Martin和L.J.Topp等人与1956年发表了一篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的方法,说明了如何利用计算机进行分析。美国R.W.Clough于1960年在Zienlliewice教授及其合作者解决了将有限元应用与所有场的问题,是有限单元法的应用范围更加广泛。 有限单元法的优点很多,其中最突出的优点是应用范围广。发展至今,不仅能解决静态的、平面的、最简单的杆系结构,而且还可以解决空间问题、板壳问题、结构的稳定性问题、动力学问题、弹塑性问题和粘弹性问题、疲劳和脆性断裂问题以及结构的优化设计问题。而且不论物体的结构形式和边界条件如何复杂,也不论材料的性质和外载荷的情况如何,原则上都能应用。 二、有限单元法的基本思想 有限单元法的基本思想,是在力学模型上将一个原来连续的物体离散成为有限个具有一定大小的单元,这些单元仅在有限个节点上相连接,并在节点上引进等效力以代替实际作用于单元上的外力,对于每个单元,根据分块近似的思想,选择一种简单的函数来表示单元内位移的分布规律,并按弹性理论中的能量原理(或用变分原理)建立单元节点力和节点位移之间的关系。最后,把所有的单元的这种关系式集合起来,就得到一组以节点位移为未知量的代数方程组,解这些方程组就可以求出物体上有限个离散节点上的位移。 有限单元分析计算的基本步骤可归纳为以下五点: 1、结构的离散化 结构的离散化是有限单元法分析的第一步,它是有限元法的基础。将某个机械结构划分为由各种单元组成的计算模型,这一步称作单元划分。离散后单元与单元之间利用单元节点相互连接起来,将求解区域变成为用点、线或面划分的有限组数目的单元组合成的集合体。单元的形状原则上是任意的。例如,在平面问题中通常采用三角形单元,有时也采用矩形或任意四边形单元。在空间问题中,可以采用四面体,长方体或任意六面体单元。可见,不管

有限元原理基础知识

有限元原理基础知识 学习思路: 有限元原理是目前工程上应用最为广泛的结构数值分析方法,它的理论基础仍然是弹性力学的变分原理。在有限元方法中,试函数的选取不是整体的,而是在弹性体内分区(单元)完成的,因此试函数形式简单统一。 有限元原理将单元内部位移用节点位移表示,这可以使用插值函数构造单元位移函数。并且通过单元位移描述单元的应力和应变分量。通过最小势能原理建立单元位移与单元节点力的关系,构造单元平衡方程。对于由单元集合得到的弹性体整体,应用最小势能原理构造整体平衡方程。这个方程是一个线性方程组,求解可以得到弹性体的位移,以及单元的应力和应变分量。 近年来,随着计算机技术的迅速发展和广泛应用,使得以有限元原理为代表的计算力学的迅速发展,改变了弹性力学理论在工程应用领域的处境。特别是以计算机的强大计算能力为后盾开发的大型通用有限元程序,目前已经成为工程技术人员手中强大的结构分析工具。 如果你需要进一步学习有限元方法的理论和应用,请查阅参考资料。 学习要点: 1. 有限元原理与变分原理的关系; 2. 有限元原理的基本概念; 3. 单元与单元位移确定; 4. 有限元单元分析; 5. 有限元整体分析。 弹性力学问题的本质是求解偏微分方程的边值问题。由于偏微分方程边值问题的复杂性,只能采取各种近似方法或者渐近方法求解。变分原理就是将弹性力学的基本方程-偏微分方程的边值问题转换为代数方程求解的一种方法。 有限元原理是目前工程上应用最为广泛的结构数值分析方法,它的理论基础仍然是弹性力学的变分原理。那么,为什么变分原理在工程上的应用有限,而有限元原理却应用广泛。有限元原理与一般的变分原理求解方法有什么不同呢。问题在于变分原理用于弹性体分析时,不论是瑞利-里茨法还是伽辽金法,

相关文档