文档库 最新最全的文档下载
当前位置:文档库 › 如何计算和设置变量归档的段参数(更新版)

如何计算和设置变量归档的段参数(更新版)

如何计算和设置变量归档的段参数(更新版)
如何计算和设置变量归档的段参数(更新版)

WinCC6.2 中归档变量数据片段的时间和尺寸大小设置 archive size and time configure in wincc6.2

摘要

WinCC V6.2 的后台数据库采用了MS SQL Server 2005,WinCC6.2 中归档数据存放在MS SQL Server 2005中,本文对快速归档和慢速归档,分别讲述了数据片段的划分,数据片段的时间和尺寸大小计算及设置方法。

关键词

归档变量,时间设置, 尺寸设置

Key Words

Archive tag ,Time setting , Size setting

A&D Service & Support Page 2-6

WinCC V6.2 的后台数据库采用了MS SQL Server 2005 ,所以归档方式与V5.1 有所不同,它的运行数据存放在数据片段(segment )当中,工程师可以根据尺寸需求组态最大容量或根据时间周期启动新的数据库归档片段。将归档数据连续的写入数据库,单个数据片段的尺寸到达或者时间界限到达时,系统会自动开启另一个数据片段进行归档。当数据片段的总体尺寸达到最大时,最早的数据片段就会被覆盖,重新开始新的归档。如图1 所示。备份

功能可以把将要被覆盖的数据保存起来。

图1

为了详细解释数据段的功能和用法,举例加以说明:

某用户希望进行两个月的数据归档,其中有5000 个变量的归档周期是2 分钟,

50 个变量的归档周期是2 秒钟,单个的数据片段时间设置为1 周,怎样设置相应

的数据段尺寸?

在计算数据段尺寸前需要先考虑以下三个问题:

首先,一条慢速变量归档记录与一条快速变量归档记录占用的硬盘空间是不同的,因此

要计算数据库尺寸就得分两种情况考虑。

第二,WinCC V6.2 版本中的快慢速归档的归档周期界限可以由用户自行设定,该参数在

快速归档属性的第三个标签项中设置(如图2)。本例采用系统默认的1 分钟进行计算。

A&D Service & Support Page 3-6

图2

第三,数据归档类型分为四类,只有周期连续归档的数据才能定量的计算其占用的数据库尺寸,因此当您对应设定的时间期限计算并设置数据库尺寸大小时,需要考虑其他数据归档类型的数据,留出相应的余量。

慢速归档数据库尺寸的计算

慢速归档时一条变量归档记录占用32 字节的空间,每个变量以2 分钟为归档周期,一周之内会产生5040 条记录,若有5000 个变量的归档,则单个数据片段的大小计算为: 32×5000×5040=806400000 byte ==> 约等于800MB 考虑到留出20%的余量,设定单个数据片段为1G 所有数据归档期限是两个月,因此所有段的尺寸为单个片段尺寸乘以单个片段的个数,即:1GB×9=9GB 该用户在慢速归档的组态设置如图3 所示:

A&D Service & Support Page 4-6

图3

数据归档两个月以后,该用户在SQL Server 2000 的企业管理器里可以

看到9 个标志起止时间的数据库,这些都属于数据片段。

快速归档数据库尺寸的计算

快速归档时一条变量归档记录占用10 字节的空间,每个变量以2 秒钟为归档周期,一周之内会产生302400 条记录,若有50 个变量的归档,则单个数据片段的大小计算为: 10×50×302400=151200000 byte ==> 约等于151MB

考虑到留出20%的余量,设定单个数据片段为180MB

所有数据归档期限是两个月,因此所有段的尺寸为单个片段尺寸乘以单个片段的个数,即:180MB×9=1620MB

该用户在快速归档的组态设置如图4 所示:

A&D Service & Support Page 5-6

图4

附录-推荐网址

HMI

西门子(中国)有限公司

自动化与驱动集团客户服务与支持中心

网站首页:https://www.wendangku.net/doc/a84036340.html,/Service/

专家推荐精品文档:https://www.wendangku.net/doc/a84036340.html,/Service/recommend.asp

HMI常问问题:https://www.wendangku.net/doc/a84036340.html,/CN/view/zh/10805548/133000

HMI更新信息:https://www.wendangku.net/doc/a84036340.html,/CN/view/zh/10805548/133400

“找答案”WinCC版区:

https://www.wendangku.net/doc/a84036340.html,/service/answer/category.asp?cid=1032

A&D Service & Support Page 6-6

VASP参数设置详解

VASP参数设置详解 计算材料2010-11-30 20:11:32 阅读197 评论0 字号:大中小订阅 转自小木虫,略有增减 软件主要功能: 采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体 l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型 l 计算材料的状态方程和力学性质(体弹性模量和弹性常数) l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF) l 计算材料的光学性质 l 计算材料的磁学性质 l 计算材料的晶格动力学性质(声子谱等) l 表面体系的模拟(重构、表面态和STM模拟) l 从头分子动力学模拟 l 计算材料的激发态(GW准粒子修正) 计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册 INCAR文件: 该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类: 对所计算的体系进行注释:SYSTEM

●定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWAV ●定义电子的优化 –平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG –电子部分优化的方法:ALGO,IALGO,LDIAG –电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX –自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF ●定义离子或原子的优化 –原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS –离子弛豫收敛标准:EDIFFG ●定义态密度积分的方法和参数 –smearing方法和参数:ISMEAR,SIGMA –计算态密度时能量范围和点数:EMIN,EMAX,NEDOS –计算分波态密度的参数:RWIGS,LORBIT ●其它 –计算精度控制:PREC –磁性计算:ISPIN,MAGMOM,NUPDOWN –交换关联函数:GGA,VOSKOWN –计算ELF和总的局域势:LELF,LVTOT –结构优化参数:ISIF –等等。 主要参数说明如下: ?SYSTEM:该输入文件所要执行的任务的名字。取值:字符串,缺省值:SYSTEM ?NWRITE:输出内容详细程度。取值:0~4,缺省值:2

OrCAD 中文入门教程——附件(三极管的Pspice模型参数和PSpice特征函数)

附件A、三极管的Pspice模型参数.Model NPN(PNP、LPNP) [model parameters] 第 1 页共9页

第 2 页共9页

附件B、PSpice Goal Function 第 3 页共9页

附件C Modeling voltage-controlled and temperature-dependent resistors Analog Behavioral Modeling (ABM) can be used to model a nonlinear resistor through use of Ohm抯 law and tables and expressions which describe resistance. Here are some examples. Voltage-controlled resistor If a Resistance vs. Voltage curve is available, a look-up table can be used in the ABM expression. This table contains (Voltage, Resistance) pairs picked from points on the curve. The voltage input is nonlinearly mapped from the voltage values in the table to the resistance values. Linear interpolation is used between table values. Let抯 say that points picked from a Resistance vs. Voltage curve are: Voltage Resistance The ABM expression for this is shown in Figure 1. 第 4 页共9页

浅析电力系统模型参数辨识

浅析电力系统模型参数辨识 (贵哥提供) 一、现状分析 随着我国电力事业的迅猛发展, 超高压输电线路和大容量机组的相继投入, 对电力系统稳定计算、以及其安全性、经济性和电能质量提出了更高的要求。现代控制理论、计算机技术、现代应用数学等新理论、新方法在电力系统的应用,正在促使电力工业这一传统产业迅速走向高科技化。 我国大区域电网的互联使网络结构更复杂,对电力系统安全稳定分析提出了更高的要求,在线、实时、精确的辨识电力系统模型参数变得更加紧迫。由于电力系统模型的基础性、重要性,国外早在上世纪三十年代就开始了这方面的分析研究,[1,2]国内外的电力工作者在模型参数辨识方面做了大量的研究工作。[3]随后IEEE相继公布了有关四大参数的数学模型。1990年全国电网会议上的调查确定了模型参数的地位,促进了模型参数辨识的进一步发展,并提出了研究发电机、励磁、调速系统、负荷等元件的动态特性和理论模型,以及元件在极端运行环境下的动态特性和参数辨识的要求。但传统的测量手段,限制了在线实时辨识方法的实现。 同步相量测量技术的出现和WAMS系统的研究与应用,使实现在线实时的电力系统模型参数辨识成为可能。同步相量是以标准时间信号GPS作为同步的基准,通过对采样数据计算而得的相量。相量测量装置是进行同步相量测量和输出以及动态记录的装置。PMU的核心特征包括基于标准时钟信号的同步相量测量、失去标准时钟信号的授时能力、PMU与主站之间能够实时通信并遵循有关通信协议。 自1988年Virginia Tech研制出首个PMU装置以来,[4]PMU技术取得了长足发展,并在国内外得到了广泛应用。截至2006年底,在我国范围内,已有300多台P MU装置投入运行,并且可预计,在不久的将来PMU装置会遍布电力系统的各个主要电厂和变电站。这为基于PMU的各种应用提供了良好的条件。 二、系统辨识的概念 系统模型是实际系统本质的简化描述。[5]模型可分为物理模型和数学模型两大类。物理模型是根据相似原理构成的一种物理模拟,通过模型试验来研究系统的

齿轮各参数计算公式

模数齿轮计算公式: 名称代号计算公式 模数m m=p/π=d/z=da/(z+2) (d为分度圆直径,z为齿数)齿距p p=πm=πd/z 齿数z z=d/m=πd/p 分度圆直径 d d=mz=da-2m 齿顶圆直径da da=m(z+2)=d+2m=p(z+2)/π 齿根圆直径df df=d-2.5m=m(z-2.5)=da-2h=da-4.5m 齿顶高ha ha=m=p/π 齿根高hf hf=1.25m 齿高h h=2.25m 齿厚s s=p/2=πm/2 中心距 a a=(z1+z2)m/2=(d1+d2)/2 跨测齿数k k=z/9+0.5 公法线长度w w=m[2.9521(k-0.5)+0.014z]

13-1 什么是分度圆?标准齿轮的分度圆在什么位置上? 13-2 一渐开线,其基圆半径r b=40 mm,试求此渐开线压力角=20°处的半径r和曲率半径ρ的大小。 13-3 有一个标准渐开线直齿圆柱齿轮,测量其齿顶圆直径d a=106.40 mm,齿数z=25,问是哪一种齿制的齿轮,基本参数是多少? 13-4 两个标准直齿圆柱齿轮,已测得齿数z l=22、z2=98,小齿轮齿顶圆直径d al=240 mm,大齿轮全齿高h=22.5 mm,试判断这两个齿轮能否正确啮合传动? 13-5 有一对正常齿制渐开线标准直齿圆柱齿轮,它们的齿数为z1=19、z2=81,模数m=5 mm,压力角 =20°。若将其安装成a′=250 mm的齿轮传动,问能否实现无侧隙啮合?为什么?此时的顶隙(径向间隙)C 是多少? 13-6 已知C6150车床主轴箱内一对外啮合标准直齿圆柱齿轮,其齿数z1=21、z2=66,模数m=3.5 mm,压力角=20°,正常齿。试确定这对齿轮的传动比、分度圆直径、齿顶圆直径、全齿高、中心距、分度圆齿厚和分度圆齿槽宽。 13-7 已知一标准渐开线直齿圆柱齿轮,其齿顶圆直径d al=77.5 mm,齿数z1=29。现要求设计一个大齿轮与其相啮合,传动的安装中心距a=145 mm,试计算这对齿轮的主要参数及大齿轮的主要尺寸。 13-8 某标准直齿圆柱齿轮,已知齿距p=12.566 mm,齿数z=25,正常齿制。求该齿轮的分度圆直径、齿顶圆直径、齿根圆直径、基圆直径、齿高以及齿厚。 13-9 当用滚刀或齿条插刀加工标准齿轮时,其不产生根切的最少齿数怎样确定?当被加工标准齿轮的压力角 =20°、齿顶高因数h a*=0.8时,不产生根切的最少齿数为多少? 13-10 变位齿轮的模数、压力角、分度圆直径、齿数、基圆直径与标准齿轮是否一样? 13-11 设计用于螺旋输送机的减速器中的一对直齿圆柱齿轮。已知传递的功率P=10 kW,小齿轮由电动机驱动,其转速n l=960 r/min,n2=240 r/min。单向传动,载荷比较平稳。 13-12 单级直齿圆柱齿轮减速器中,两齿轮的齿数z1=35、z2=97,模数m=3 mm,压力=20°,齿宽b l=110 mm、b2=105 mm,转速n1=720 r/min,单向传动,载荷中等冲击。减速器由电动机驱动。两齿轮均用45钢,小齿轮调质处理,齿面硬度为220-250HBS,大齿轮正火处理,齿面硬度180~200 HBS。试确定这对齿轮允许传递的功率。 13-13 已知一对正常齿标准斜齿圆柱齿轮的模数m=3 mm,齿数z1=23、z2=76,分度圆螺旋角β=8°6′34″。试求其中心距、端面压力角、当量齿数、分度圆直径、齿顶圆直径和齿根圆直径。 13-14 图示为斜齿圆柱齿轮减速器 1)已知主动轮1的螺旋角旋向及转向,为了使轮2和轮3的中间轴的轴向力最小,试确定轮2、3、4的螺旋角旋向和各轮产生的轴向力方向。 2)已知m n2=3 mm,z2=57,β2=18°,m n3=4mm,z3=20,β3应为多少时,才能使中间轴上两齿轮产生的轴向

pspice参数扫描分析与统计分析教程文件

实验四参数扫描分析和统计分析 实验目的: 1、学习一些特定参数分析的方法,使之能够在今后的场合适用; 2、学会做蒙托卡诺这种随机抽样、统计分析的分析方法; 3、学会观测输出文件中的数据以及如何用图形表示出相应数据。 实验步骤: 1、首先确定好研究对象,即下面的差分电路: 2、进行参数扫描分析: 1)首先在原图的基础上选定一个参数扫描分析的对象,如选定R1。要先加入参数符号,可从元器件图开符号库中调出名称为PAPAM的符号,如下图:

2)加入元件后,双击它则需要给它加入一个属性,点击new: 3)在上面Property中填入R1,然后,在R1中输入1K的阻值,然后,右击该值,选择Display,在出现的Display Properties中选择“Name And Value” 4)设定好之后,把图中R1的值改为{R1},则完成的图形如下:

5)现在设置仿真参数,在时域分析的同时做参数分析,参数设置如下: 一般设置: 参数设置:“Sweep variable”中选择“Global parameter”,注意parameter中的R1不用加{} 6)点击运行之后在probe中出现:

点击OK以后出现的图形如下:(图中out1、out2都加了电压针) Time 0s0.2us0.4us0.6us0.8us 1.0us V(OUT2)V(OUT1) 2.0V 4.0V 6.0V 8.0V 该波形是呈对称的波形,随着电阻从1K至10K的变化,电压变化的越来越平缓且电压平均在逐渐减小。 3、蒙托卡诺分析 1)在上图的基础上,首先把全局参数设置的删除,把R1改成Rbreak中电阻元件: 2)对刚替换的R1符号后要设置电阻的模型参数变化,则,首先选中该元件,再执行Capture中的Edit/PSpice Model子命令,则出现下图,并设置相应的DEV、LOT参数变化模式:

模型计算步骤

计算步骤步骤目标 建模或计算条件控制条件及处理1.符合原结构传力模式2.符合原结构边界条件3.符合采用程序的假定条件1.振型组合数→有效质量参与系数>0.9吗?→否,则增加2.最大地震力作用方向角→θ0-θm >150?→是,输入θ0=θm ,附加方向角θ0=03.结构自振周期,输入值与计算值相差>10%?→是,按计算值改输入值4.查看三维振型图,确定裙房参与计算范围→修正计算简图5.短肢剪力墙承担的抗倾覆力矩<40%?→是,改为一般剪力墙结构;短肢剪力墙承担的抗倾 覆力矩>50%?→是,规范不许,修改设计 6.框剪结构框架承担的抗倾覆力矩>50%?→是,框架抗震等级按框架结构确定;若为多层结构,可定义为框架结构,抗震墙可作为次要抗侧力构件,其抗震等级可降低一级。 1.周期比控制:T 扭/T 1≤0.9(0.85)?→否,修改结构布置,强化外围削弱中间 2.层位移比控制:最大/平均≤1.2?→否,按双向地震重算 3.侧向刚度比控制:要求见规范;不满足时程序自动定义为薄弱层 4.层受剪承载力控制:Q i /Q i+1<[0.65(0.75)]?→否,修改结构布置;0.65(0.75)≤Q i /Q i+1<0.8?→否,强制指定为薄弱层(注:括号中数据为B级高层),(《高规》4.4.3条) 5.整体稳定控制:刚重比≥[10(框架),1.4(其它)] 6.最小地震剪力控制:剪重比≥0.2αmax?→否,增加振型数或增大地震剪力系数 7.层位移角控制:弹性Δu ei /h i ≤[1/550(框架),1/800(框剪),1/1000(其它)];弹塑性Δ u pi /h i ≤[1/50(框架),1/100(框剪),1/120(其它)]1.构件构造最小断面控制和截面抗剪承载力验算 2.构件斜截面承载力验算(剪压比控制) 3.构件正截面承载力验算 4.构件最大配筋率控制 5.纯弯和偏心构件受压区高度限制 6.竖向构件轴压比控制 7.剪力墙的局部稳定控制 8.梁柱节点核心区抗剪承载力验算 1.钢筋最大最小直径限制 2.钢筋最大最小间距要求 3.最小配筋配箍要求 4.重要部位的加强和明显不合理部分局部调整2.计算一(一次或多次)整体参数 的正确确 定 1.地震方向角θ0=0;2.单向地震+平扭耦联;3.不考虑偶然偏心;4.不强制全楼刚性楼板;5.按总刚分析;6.短肢墙多时定义为短肢剪力墙结构;1.按计算一、二确定的模型和参数;2.取消全楼强制刚性板;3.按总刚分析;4.对特殊构件人工指定。构件优化设计(构件超筋超限控制)4.计算三(一次或多次)5.绘制施工图结构构造抗震构造措施几何及荷 载模型 1.建模整体建模判定整体结构的合理性(平面和竖向规则性控制) 1.地震方向角θ0=0,θ m ; 2.单(双)向地震+平扭耦 联; 3.(不)考虑偶然偏心; 4.强制全楼刚性楼板; 5.按侧刚分析; 6.按计算一的结果确定结 构类型和抗震等级3.计算二(一次或多次)

VASP控制参数文件INCAR的简单介绍

限于能力,只对部分最基本的一些参数(>,没有这个标志的参数都是可以不出现的) 详细说明,在这里只是简单介绍这些参数的设置,详细的问题在后文具体示例中展开。 部分可能会干扰VASP运行的参数在这里被刻意隐去了,需要的同学还是请查看VASP自带的帮助文档原文。 参数列表如下: >SYSTEM name of System 任务的名字*** >NWRITE verbosity write-flag (how much is written) 输出内容详细程度0-3 缺省2 如果是做长时间动力学计算的话最好选0或1(首末步/每步核运动输出) 据说也可以结合shell的tail或grep命令手动输出 >ISTART startjob: restart选项0-3 缺省0/1 for 无/有前次计算的WAVECAR(波函数) 1 'restart with constant energy cut-off' 2 'restart with constant basis set' 3 'full restart including wave function and charge prediction' ICHARG charge: 1-file 2-atom 10-const Default:if ISTART=0 2 else 0 ISPIN spin polarized calculation (2-yes 1-no) default 2 MAGMOM initial mag moment / atom Default NIONS*1 INIWAV initial electr wf. : 0-lowe 1-rand Default 1 only used for start jobs (ISTART=0) IDIPOL calculate monopole/dipole and quadrupole corrections 1-3 只计算第一/二/三晶矢方向适于slab的计算 4 全部计算尤其适于就算孤立分子 >PREC precession: medium, high or low(VASP.4.5+ also: normal, accurate) Default: Medium VASP4.5+采用了优化的accurate来替代high,所以一般不推荐使用 high。不过high可以确保'绝对收敛',作为参考值有时也是必要的。 同样受推荐的是normal,作为日常计算选项,可惜的是说明文档提供的信息不足。 受PREC影响的参数有四类:ENCUT; NGX,NGY,NGZ; NGXF, NGYF, NGZF; ROPT 如果设置了PREC,这些参数就都不需要出现了 当然直接设置相应的参数也是同样效果的,这里不展开了,随后详释

VASP-INCAR参数设置

V A S P-I N C A R参数设置-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1. 结构优化 (Opt) SYSTEM = opt ISTART = 0 INIWAV = 1 ICHARG = 2 ISPIN = 2 LREAL = Auto ENCUT = 400 PREC = high NSW= 600 NELM = 60 IBRION = 2 ISIF = 2 POTIM = 0.1 ALGO= Fast LVDW = .TRUE. EDIFF = 1E-5 EDIFFG = 1E-4 or -0.05 # 体系需计算TS时,全部结构优化EDIFFG均设置为-0.05 ISMEAR = 0 SIGMA = 0.2 LCHARG = .FALSE. LWAVE = .FALSE.

2. 过渡态搜索 (TS): 计算时先进行低精度计算,再进行高精度计算 SYSTEM= TS ISTART = 0 INIWAV = 1 ICHARG = 2 ISPIN = 2 LREAL = Auto ENCUT = 400 PREC = high NSW = 600 NELMIN = 6 IBRION = 3 or 1 # 过渡态计算低精度为3,高精度为1 ISIF = 2 POTIM = 0.01 ALGO = Fast LVDW = .TRUE. EDIFF = 1E-5 EDIFFG = -1 or -0.05 # 过渡态计算低精度为-1,高精度为-0.05 ISMEAR = 0 SIGMA = 0.05 LCHARG= .FALSE. LWAVE= .FALSE. IMAGES=8 # TS专属设置 SPRING=-5 # TS专属设置 LCLIMB=.TRUE. # TS专属设置

标准齿轮参数通用计算汇总

标准齿轮模数尺数通用计算公式 齿轮的直径计算方法: 齿顶圆直径=(齿数+2)×模数 分度圆直径=齿数×模数 齿根圆直径=齿顶圆直径-(4.5×模数) 比如:M4 32齿34×3.5 齿顶圆直径=(32+2)×4=136mm 分度圆直径=32×4=128mm 齿根圆直径=136-4.5×4=118mm 7M 12齿 中心距D=(分度圆直径1+分度圆直径2)/2 就是 (12+2)×7=98mm 这种计算方法针对所有的模数齿轮(不包括变位齿轮)。 模数表示齿轮牙的大小。 齿轮模数=分度圆直径÷齿数 =齿轮外径÷(齿数-2) 齿轮模数是有国家标准的(GB1357-78) 模数标准系列(优先选用)1、1.25、1.5、2、2.5、3、4、5、6、8、10、12、14、16、20、25、32、40、50 模数标准系列(可以选用)1.75,2.25,2.75,3.5,4.5,5.5,7,9,14,18,22,28,36,45 模数标准系列(尽可能不用)3.25,3.75,6.5,11,30 上面数值以外为非标准齿轮,不要采用! 塑胶齿轮注塑后要不要入水除应力 精确测定斜齿轮螺旋角的新方法

Circular Pitch (CP)周节 齿轮分度圆直径d的大小可以用模数(m)、径节(DP)或周节(CP)与齿数(z)表示 径节P(DP)是指按齿轮分度圆直径(以英寸计算)每英寸上所占有的齿数而言 径节与模数有这样的关系: m=25.4/DP CP1/8模=25.4/DP8=3.175 3.175/3.1416(π)=1.0106模 1) 什么是「模数」? 模数表示轮齿的大小。 R模数是分度圆齿距与圆周率(π)之比,单位为毫米(mm)。 除模数外,表示轮齿大小的还有CP(周节:Circular pitch)与DP(径节:Diametral pitch)。 【参考】齿距是相邻两齿上相当点间的分度圆弧长。 2) 什么是「分度圆直径」? 分度圆直径是齿轮的基准直径。 决定齿轮大小的两大要素是模数和齿数、 分度圆直径等于齿数与模数(端面)的乘积。 过去,分度圆直径被称为基准节径。最近,按ISO标准,统一称为分度圆直径。 3) 什么是「压力角」? 齿形与分度圆交点的径向线与该点的齿形切线所夹的锐角被称为分度圆压力角。一般所说的压力角,都是指分度圆压力角。 最为普遍地使用的压力角为20°,但是,也有使用14.5°、15°、17.5°、22.5°压力角的齿轮。 4) 单头与双头蜗杆的不同是什么? 蜗杆的螺旋齿数被称为「头数」,相当于齿轮的轮齿数。 头数越多,导程角越大。 5) 如何区分R(右旋)?L(左旋)? 齿轮轴垂直地面平放 轮齿向右上倾斜的是右旋齿轮、向左上倾斜的是左旋齿轮。 6) M(模数)与CP(周节)的不同是什么? CP(周节:Circular pitch)是在分度圆上的圆周齿距。单位与模数相同为毫米。 CP除以圆周率(π)得M(模数)。 M(模数)与CP得关系式如下所示。 M(模数)=CP/π(圆周率) 两者都是表示轮齿大小的单位。 (分度圆周长=πd=zp d=z p/π p/π称为模数) 7)什么是「齿隙」? 一对齿轮啮合时,齿面间的间隙。 齿隙是齿轮啮合圆滑运转所必须的参数。 8) 弯曲强度与齿面强度的不同是什么? 齿轮的强度一般应从弯曲和齿面强度的两方面考虑。 弯曲强度是传递动力的轮齿抵抗由于弯曲力的作用,轮齿在齿根部折断的强度。齿面强度是啮合的轮齿在反复接触中,齿面的抗摩擦强度。 9) 弯曲强度和齿面强度中,以什么强度为基准选定齿轮为好? 一般情况下,需要同时讨论弯曲和齿面的强度。 但是,在选定使用频度少的齿轮、手摇齿轮、低速啮合齿轮时,有仅以弯曲强度选定的情况。最终,应该由设计者自己决定。 10) 什么是螺旋方向与推力方向? 轮齿平行于轴心的正齿轮以外的齿轮均发生推力。 各类型齿轮变化如下所示。

vasp计算参数设置

软件主要功能: 采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体 l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型 l 计算材料的状态方程和力学性质(体弹性模量和弹性常数) l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF) l 计算材料的光学性质 l 计算材料的磁学性质 l 计算材料的晶格动力学性质(声子谱等) l 表面体系的模拟(重构、表面态和STM模拟) l 从头分子动力学模拟 l 计算材料的激发态(GW准粒子修正) 计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册 INCAR文件: 该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类: l 对所计算的体系进行注释:SYSTEM l 定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWA V l 定义电子的优化 –平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG –电子部分优化的方法:ALGO,IALGO,LDIAG –电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX –自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF l 定义离子或原子的优化 –原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS –离子弛豫收敛标准:EDIFFG l 定义态密度积分的方法和参数 –smearing方法和参数:ISMEAR,SIGMA –计算态密度时能量范围和点数:EMIN,EMAX,NEDOS –计算分波态密度的参数:RWIGS,LORBIT l 其它 –计算精度控制:PREC –磁性计算:ISPIN,MAGMOM,NUPDOWN –交换关联函数:GGA,VOSKOWN –计算ELF和总的局域势:LELF,LVTOT –结构优化参数:ISIF –等等。 主要参数说明如下: ? SYSTEM:该输入文件所要执行的任务的名字。取值:字符串,缺省值:SYSTEM

pspice信号源全参数大全

Pspice仿真——常用信号源及一些波形产生方法首先说说可以应用与时域扫描的信号源。在Orcad Capture的原理图中可以放下这些模型,然后双击模型,就可以打开模型进行参数设置。参数被设置了以后,不一定会在原理图上显示出来的。如果想显示出来,可以在某项参数上,点击鼠标右键,然后选择di splay,就可以选择让此项以哪种方式显示出来了。 1.Vsin 这个一个正弦波信号源。 相关参数有: VOFF:直流偏置电压。这个正弦波信号,是可以带直流分量的。 VAMPL:交流幅值。是正弦电压的峰值。 FREQ:正弦波的频率。 PHASE:正弦波的起始相位。 TD:延迟时间。从时间0开始,过了TD的时间后,才有正弦波发生。 DF:阻尼系数。数值越大,正弦波幅值随时间衰减的越厉害。 2.Vexp 指数波信号源。 相关参数有: V1:起始电压。 V2:峰值电压。 TC1:电压从V1向V2变化的时间常数。 TD1:从时间0点开始到TC1阶段的时间段。 TC2:电压从V2向V1变化的时间常数。 TD2:从时间0点开始到TC2阶段的时间段。 3.Vpwl 这是折线波信号源。 这个信号源的参数很多,T1~T8,V1~V8其实就是各个时间点的电压值。一种可以设置8个点的坐标,用直线把这些坐标连起来,就是这个波形的输出了。 4.Vpwl_enh 周期性折线波信号源。

它的参数是这样的: FIRST_NPAIRS:第一转折点坐标,格式为(时间,电压)。 SECOND_NPAIRS:第二转折点坐标。 THIRD_NPAIRS:第三转折点坐标。 REPEAT_VALUE:重复次数。 5.Vsffm 单频调频波信号源 参数如下: VOFF:直流偏置电压。 VAMPL:交流幅值。正弦电压峰值。 FC:载波信号频率 MOD:调制系数 FM:被调制信号频率。 函数关系:Vo=VOFF+VAMPL×sin×(2πFC×t+MOD×sin(2πFM×t)) 6.Vpulse 脉波信号源。 这大概是我最常用到的信号源了。用它可以实现很多种周期性的信号:方波、矩形波、三角波、锯齿波等。可以用来模拟和实现上电软启动、可以用来产生PWM驱动信号或功率信号等等。 参数如下: V1:起始电压 TD:从时间零开始到V1开始跳变到V2的延迟时间。 TR:从V1跳变到V2过程所需时间。 TF:从V2跳回到V1过程所需时间。 PW:脉冲宽度,就是电压为V2的阶段的时间长度。 PER:信号周期

初学VASP中电子态密度计算设置参考

初学VASP中电子态密度计算基本设置参考主要分成三步:一、结构优化;二、静态自洽计算;三、非自洽计算以Al-FCC为例子 第一步结构优化 输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2 GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 IBRION=2 NSW=50 ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 1.0 4 Direct 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 KPOINT 文件 Automatic generation Mohkorst Pack 15 15 15 0.0 0.0 0.0 第二步静态自洽计算 INCAR:PREC = Medium,ISTART = 0,ICHARG = 2,ISMEAR = -5输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2

GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 #IBRION=2 #NSW=50 #ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 4 Selective Dynamic Direct 0.0 0.0 0.0 T T T 0.5 0.5 0.0 T T T 0.5 0.0 0.5 T T T 0.0 0.5 0.5 T T T KPOINT 文件 Automatic generation

PSpiceAA高级分析

PSpice A/A电路高级分析功能 孙海峰这里将以RC单管放大电路为实例,进行全面的PSpice A/A电路高级仿真分析。目的是,将五个高级分析工具的具体使用方法贯穿全过程的综合应用, 一、电路原理图设计及模拟仿真分析(PSpice A/D) 1、调用PSpice-AA元件模型库 OrCAD自带的PSpice A/用于高级电路分析的元件模型库,在安装目录的Tools/Capture/Library/pspice/advanls如下图所示。 可以将上述高级分析的模型库文件全部进行加载以便调用。 2、电路原理图绘制 电路原理图的绘制方法和Capture中类似,只是调用的模型库不同而已,在上述的模型中找到设计所需的元件,加以调用,进行连线等操作即可;此外,这里还需要多设置元件的高级仿真参数,例如容差、极限等。具体步骤如下:(1)添加电路设计元器件 (2)设置高级分析元器件参数 在特殊符号“SPECTAL”库中找到“VABIABLES”,然后将之添加到原理图中,这就是高级分析的参数变量表,其中可以设置各元件的高级分析参数,具体

设置如下图所示。

(3)电路原理图设计 原理图绘制完成后,模型标称值设置与标准PSpiceA/D模型相同,所有电路参数设置完,如下图所示。 3、电路的PSpice A/D模拟仿真 创建RC单管放大器电路的PSpice A/D仿真设置,对其进行交流分析,并检查结果,交流分析仿真参数设置如下图。

交流分析结果及电路输出波形如下图所示,从图中可以看出增益、带宽均为适宜,对标称值设计业已理想。 二、灵敏度(Sensitivity)分析 1、确定电路特性参数 为进行灵敏度分析将电路特性参数(带宽、增益)细化,在交流分析结果输出时,可在显示模拟分析结果的Probe窗口中,选择菜单Trace/Evaluate Measurement子命令,在出现的Evaluate Measurement对话框中,选择电路特性函数3DB的带宽,具体设置如下图。

VASP遇到小总结问题

VASP 计算的过程遇到的问题 01、第一原理计算的一些心得 (1)第一性原理其实是包括基于密度泛函的从头算和基于Hartree-Fock自洽计算的从头算,前者以电子密度作为基本变量(霍亨伯格-科洪定理),通过求解Kohn-Sham方程,迭代自洽得到体系的基态电子密度,然后求体系的基态性质;后者则通过自洽求解Hartree-Fock方程,获得体系的波函数,求基态性质; 评述:K-S方程的计算水平达到了H-F水平,同时还考虑了电子间的交换关联作用。 (2)关于DFT中密度泛函的Functional,其实是交换关联泛函 包括LDA,GGA,杂化泛函等等 一般LDA为局域密度近似,在空间某点用均匀电子气密度作为交换关联泛函的唯一变量,多数为参数化的CA-PZ方案; GGA为广义梯度近似,不仅将电子密度作为交换关联泛函的变量,也考虑了密度的梯度为变量,包括PBE,PW,RPBE等方案,BL YP泛函也属于GGA; 此外还有一些杂化泛函,B3L YP等。 (3)关于赝势 在处理计算体系中原子的电子态时,有两种方法,一种是考虑所有电子,叫做全电子法,比如WIEN2K中的FLAPW方法(线性缀加平面波);此外还有一种方法是只考虑价电子,而把芯电子和原子核构成离子实放在一起考虑,即赝势法,一般赝势法是选取一个截断半径,截断半径以内,波函数变化较平滑,和真实的不同,截断半径以外则和真实情况相同,而且赝势法得到的能量本征值和全电子法应该相同。 赝势包括模守恒和超软,模守恒较硬,一般需要较大的截断能,超软势则可以用较小的截断能即可。另外,模守恒势的散射特性和全电子相同,因此一般红外,拉曼等光谱的计算需要用模守恒势。 赝势的测试标准应是赝势与全电子法计算结果的匹配度,而不是赝势与实验结果的匹配度,因为和实验结果的匹配可能是偶然的。 (4)关于收敛测试 (a)Ecut,也就是截断能,一般情况下,总能相对于不同Ecut做计算,当Ecut增大时总能变化不明显了即可;然而,在需要考虑体系应力时,还需对应力进行收敛测试,而且应力相对于Ecut的收敛要比总能更为苛刻,也就是某个截断能下总能已经收敛了,但应力未必收敛。 (b)K-point,即K网格,一般金属需要较大的K网格,采用超晶胞时可以选用相对较小的K网格,但实际上还是要经过测试。 (5)关于磁性 一般何时考虑自旋呢?举例子,例如BaTiO3中,Ba、Ti和O分别为+2,+4和-2价,离子全部为各个轨道满壳层的结构,就不必考虑自旋了;对于BaMnO3中,由于Mn+3价时d 轨道还有电子,但未满,因此需考虑Mn的自旋,至于Ba和O则不必考虑。其实设定自旋就是给定一个原子磁矩的初始值,只在刚开始计算时作为初始值使用,具体的可参照磁性物理。 (6)关于几何优化 包括很多种了,比如晶格常数和原子位置同时优化,只优化原子位置,只优化晶格常数,还有晶格常数和原子位置分开优化等等。

齿轮各参数计算方法

齿轮各参数计算方法 1、齿数Z 闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好,小一些为好,小齿轮的齿数可取为z1=20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿数,一般可取z1=17~20。为使齿轮免于根切,对于α=20度的标准支持圆柱齿轮,应取z1≥17 2、模数m 齿距与齿数的乘积等于分度圆的周长,即pz=πd。为使d为有理数的条件是 p/π为有理数,称之为模数。即:m=p/π 模数m是决定齿轮尺寸的一个基本参数。齿数相同的齿轮模数大,则其尺寸也大。

3、分度圆直径d 齿轮的轮齿尺寸均以此圆为基准而加以确定,d=mz 4、齿顶圆直径da和齿根圆直径df 由齿顶高、齿根高计算公式可以推出齿顶圆直径和齿根圆直径的计算公式: da=d+2ha df=d-2hf =mz+2m=mz-2×1.25m =m(z+2)=m(z-2.5) 5、分度圆直径d 在齿轮计算中必须规定一个圆作为尺寸计算的基准圆,定义:直径为模数乘以齿数的乘积的圆。实际在齿轮中并不存在,只是一个定义上的圆。其直径和半径分别用d和r表示,值只和模数和齿数的乘积有关,模数为端面模数。与变位系数无关。标准齿轮中为槽宽和齿厚相等的那个圆(不考虑齿侧间隙)就为分度圆。标准齿轮传动中和节圆重合。但若是变位齿轮中,分度圆上齿槽和齿厚将不再相等。若为变位齿轮传动中高变位齿轮传动分度圆仍和节圆重合。但角变位的齿轮传动将分度圆和节圆分离。 6、压力角αrb=rcosα=1/2mzcosα 在两齿轮节圆相切点P处,两齿廓曲线的公法线(即齿廓的受力方向)与两节圆的公切线(即P点处的瞬时运动方向)所夹的锐角称为压力角,也称啮合角。对单个齿轮即为齿形角。标准齿轮的压力角一般为20”。在某些场合也有采用α=14.5°、15°、22.50°及25°等情况。

PSpiceAD基本仿真讲解

PSpice A/D数模混合仿真 孙海峰Cadence的PSpice A/D可以对电路进行各种数模混合仿真,以验证电路的各个性能指标是否符合设计要求。PSpice A/D主要功能是将Capture CIS产生的电路或文本文件(*.cir)进行处理和仿真,同时附属波形观察程序Probe对仿真结果进行观察和分析。 PSpice A/D数模仿真技术主要包括以下几类仿真: 1、直流扫描分析(DC Sweep):电路的某一个参数在一定范围内变化时,电路直流输出特性的分析和计算。 2、交流扫描分析(AC Sweep):计算电路的交流小信号线性频率响应特性,包括幅频特性和相频特性,以及输入输出阻抗。 3、噪声分析(Noise):在设定频率上,计算电路指定输出端的等效输出噪声和指定输入端的等效输入噪声电平。 4、直流偏置点分析(Bias Point):当电路中电感短路,电容断路时,电路静态工作点的计算。进行交流小信号和瞬态分析之前,系统会自动计算直流偏置点,以确定瞬态分析的初始条件和交流小信号条件下的非线性器件的线性化模型参数。 5、时域/瞬态分析(Transient):在给定激励下,电路输出的瞬态时域响应的计算,其初始状态可由用户自定义,也可是直流偏置点。 6、蒙特卡洛分析(Monte-Carlo):根据实际情况确定元件参数分布规律,然后多次重复进行指定电路特性的分析,每次分析时的元件参数都采用随机抽样方式,完成多次分析后进行统计分析,就可以得到电路特性的分散变化规律。 7、最坏情况分析(Worst):电路中元件处于极限情况时,电路输入输出特性分析,是蒙特卡洛的极限情况。

8、参数扫描分析(Parametric Sweep )电路中指定元件参数暗规律变化时,电路特性的分析计算。 9、温度分析(Temperature ):在指定温度条件下,分析电路特性。 10灵敏度分析(Sensitivity ):计算电路中元件参数变化对电路性能的影响。 以上就是PSpice A/D 所能进行的电路数模混合仿真的内容,下面就介绍具体如何使用PSpice A/D 来对电路进行数模仿真。 运用PSpice 仿真的基本流程如下图: 一、绘制仿真原理图 调用软件自带的仿真模型库(Tools/Capture/Library/PSpice )中的元件,这里的元件模型都是具有电气特征的,可以直接进行PSpice A/D 仿真。原理图绘制方法和Capture 中一样,不再赘述,绘制以下RC 单通道放大器原理图如下: 绘制仿真原理图 仿真 观察分析仿真结果 调整电路 调整仿真参数 设置仿真参数

Pspice仿真类型及不同电源参数

PSpice A/D将直流工作点分析、直流扫描分析、交流扫描分析和瞬态TRAN分析作为4种基本分析类型,每一种电路的模拟分析只能包括上述4种基本分析类型中的一种,但可以同时包括参数分析、蒙特卡罗分析、及温度特性分析等其他类型的分析,现对4种基本分析类型简介如下。 1. 直流扫描分析(DC Sweep) 直流扫描分析的适用范围:当电路中某一参数(可定义为自变量)在一定范围内变化时,对应自变量的每一个取值,计算出电路中的各直流偏压值(可定义为输出变量),并可以应用Probe功能观察输出变量的特性曲线。 例对图1-1所示电路作直流扫描分析 图1-1 直流扫描分析实例 (1)绘图 应用OrCAD/Capture软件绘制好的电路图如图1-2所示。 图1-1 直流扫描分析实例 (2)确定分析类型及设置分析参数 a) Simulation Setting(分析类型及参数设置对话框)的进入 ·执行菜单命令PSpice/New Simulation Profile,或点击工具按钮,屏幕上弹出New Simulation (新的仿真项目设置对话框)。如图1-3所示。 图1-2 New Simulation对话框 ·在Name文本框中键入该仿真项目的名字,点击Create按钮,即可进入Simulation Settings (分析类型及参数设置对话框),如图1-4所示。 图1-3 Simulation Settings b)仿真分析类型分析参数的设置

图1-2所示直流分压电路的仿真类型及参数设置如下(见图1-4): ·Analysis type下拉菜单选中“DC Sweep”; ·Options下拉菜单选中“Primary Sweep”; ·Sweep variable项选中“V oltage source”,并在Name栏键入“V1”; ·Sweep type项选中“Linear”,并在Start栏键入“0”、End栏键入“10”及Increment栏键入“1”。 以上各项填完之后,按确定按钮,即可完成仿真分析类型及分析参数的设置。 另外,如果要修改电路的分析类型或分析参数,可执行菜单命令PSpice/Edit Simulation Profile,或点击工具按钮,在弹出的对话框中作相应修改。 (3)电路的模拟仿真 a)PSpice A/D视窗的启动 执行菜单命令PSpice/Run,或点击工具按钮,即可启动PSpice A/D视窗执行电路的仿真模拟,并且系统可自动调用Probe模块,对模拟结果进行后处理,屏幕显示如图1-5所示。 图1-4 Probe窗口界面 b)波形的显示 ·执行Probe窗口中的菜单命令Trace/Add Trace,或点击工具按钮,屏幕上弹出Add Trace 对话框,如图1-6所示。 图1-5 Add Trace对话框 ·在Add Trace对话框的左半部列表中移动光标,点选需要显示波形的变量名,则被选中的变量名依次出现在该对话框底部的Trace Expression栏。本例选中V(A)和V(B)两个变量(见图1-26)。选择完毕,按OK按钮,Probe窗口显示图1-22所示的直流分压电路中A、B两点的电压变化波形,如图1-7所示。 图1-6 Probe窗口的波形显示

相关文档