文档库 最新最全的文档下载
当前位置:文档库 › 离散数学考试试题(A、B卷及答案)

离散数学考试试题(A、B卷及答案)

离散数学考试试题(A、B卷及答案)
离散数学考试试题(A、B卷及答案)

离散数学考试试题(A 卷及答案)

一、证明题(10分) 1) (P ∧Q ∧A

C )∧(A P ∨Q ∨C ) (A ∧(P Q ))C 。P<->Q=(p->Q)合取(Q->p)证明: (P ∧Q ∧A C )∧(A P ∨Q ∨C )

(

P ∨Q ∨A ∨C )∧(A ∨P ∨Q ∨C )

((P ∨Q ∨A )∧(A ∨P ∨Q ))∨C 反用分配律 ((P ∧Q ∧A )∨(A ∧P ∧Q ))∨C

( A ∧((P ∧Q )∨(P ∧Q )))∨C 再反用分配律

( A ∧(P

Q ))∨C

(A ∧(P Q ))C

2) (P Q)

P

Q 。 证明:(P Q)

((P ∧Q))

(P ∨Q))

P

Q 。

分别用真值表法与公式法求(P (Q ∨R ))∧(

P ∨(Q R ))得主析取范式与主合取范

式,并写出其相应得成真赋值与成假赋值(15分)。主析取范式与析取范式得区别:主析取范式里每个括号里都必须有全部得变元。 主析取范式可由 析取范式经等值演算法算得。 证明:

公式法:因为(P (Q ∨R ))∧(

P ∨(Q R ))

(P ∨Q ∨R )∧(P ∨(Q ∧R )∨(Q ∧R ))

(P ∨Q ∨R )∧(((P ∨Q )∧(P ∨R ))∨(Q ∧R ))分配律

(

P ∨Q ∨R )∧(P ∨Q ∨Q )∧(P ∨Q ∨R )∧(P ∨R ∨Q )∧(P

∨R ∨R )

(

P ∨Q ∨R )∧(P ∨Q ∨R )∧(P ∨Q ∨R )

4M ∧5M ∧6M 使(非P 析取Q 析取R)为0所赋真值,即100,二进制为4 0m ∨1m ∨2m ∨3m ∨7m

所以,公式(P (Q ∨R ))∧(P ∨(Q R ))为可满足式,其相应得成真赋值为000、001、

010、011、111:成假赋值为:100、101、110。真值表法:

P Q R

Q ?R P →(Q ∨R )

?P ∨(Q ?R )

(P →(Q ∨R ))∧(?P ∨(Q ?R ))

0 0 0 1

1

1

1

0 0 1 0 1 0

0 1 1

1 0 0 1 0 1 1 1 0 1 1 1 0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

000、001、010、011、111:成假赋值为:100、101、110。

三、推理证明题(10分)

1)P∨Q ,Q∨R,R S P S 。

证明:

(1)P附加前提

(2)P∨Q P

(3)Q T(1)(2),I(析取三段论)

(4)Q∨R P

(5)R T(3)(4),I(析取三段论)

(6)R S P

(7)S T(5)(6),I(假言推理)

(8)P S CP

2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x))

证明(1)xP(x)

(2)P(a)

(3)x(P(x)Q(y)∧R(x))

(4)P(a)Q(y)∧R(a)

(5)Q(y)∧R(a)

(6)Q(y)

(7)R(a)

(8)P(a)

(9)P(a)∧R(a)

(10)x(P(x)∧R(x))

(11)Q(y)∧x(P(x)∧R(x))

五、已知A、B、C就是三个集合,证明(A∪B)-C=(A-C)∪(B-C) (10分)

证明:因为

x∈(A∪B)-C x∈(A∪B)-C

x∈(A∪B)∧x C

(x∈A∨x∈B)∧x C

(x∈A∧x C)∨(x∈B∧x C)

x∈(A-C)∨x∈(B-C)

x∈(A-C)∪(B-C)

所以,(A∪B)-C=(A-C)∪(B-C)。

八、证明整数集I上得模m同余关系R={|x y(mod m)}就是等价关系。其中,x y(mod m)得含义就是x-y可以被m整除(15分)。X(modm)=y(modm)

证明:1)x∈I,因为(x-x)/m=0,所以x x(mod m),即xRx。

2)x,y∈I,若xRy,则x y(mod m),即(x-y)/m=k∈I,所以(y - x)/m=-k∈I,所以y x(mod m),即yRx。

3)x,y,z∈I,若xRy,yRz,则(x-y)/m=u∈I,(y-z)/m=v∈I,于就是(x-z)/m=(x-y+y-z)/m=u+v ∈I,因此xRz。

九、若f:A→B与g:B→C就是双射,则(gf)-1=f-1g-1(10分)。

证明:

因为f、g就是双射,所以gf:A→C就是双射,所以gf有逆函数(gf)-1:C→A。同理可推f-1g-1:C→A就是双射。

因为∈f-1g-1存在z(∈g-1∈f-1)存在z(∈f∈g)∈gf∈(gf)-1,所以(gf)-1=f-1g-1。

离散数学考试试题(B卷及答案)

一、证明题(10分)

1)((P∨Q)∧(P∧(Q∨R)))∨(P∧Q)∨(P∧R)T

证明: 左端((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R))(摩根律)

((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))(分配律)

((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R)) (等幂律)

T (代入)

2) x y(P(x)Q(y))(xP(x)yQ(y))

证明:x y(P(x)Q(y))x y(P(x)∨Q(y))

x(P(x)∨yQ(y))

x P(x)∨yQ(y)

x P(x)∨yQ(y)

(xP(x)yQ(y))

二、求命题公式(P Q)(P∨Q) 得主析取范式与主合取范式(10分)

解:(P Q)(P∨Q)(P Q)∨(P∨Q)

(P∨Q)∨(P∨Q)

(P∧Q)∨(P∨Q)

(P∨P∨Q)∧(Q∨P∨Q)

(P∨Q)

M1析取要使之为假,即赋真值001,即M1

m0∨m2∨m3使之为真

三、推理证明题(10分)

1)(P(Q S))∧(R∨P)∧Q R S

证明:(1)R

(2)R∨P p

(3)P T(1)(2)析取三段论

(4)P(Q S) p

(5)Q S T(3)(4)I假言推理

(6)Q P

(7)S T(5)(6)I假言推理

(8)R S CP

2) x(A(x)yB(y)),x(B(x)yC(y))xA(x)yC(y)。

证明:(1)x(A(x)yB(y)) P

(2)A(a)yB(y) T(1)ES

(3)x(B(x)yC(y)) P

(4)x(B(x)C(c)) T(3)ES

(5)B(b)C(c) T(4)US

(6)A(a)B(b) T(2)US

(7)A(a)C(c) T(5)(6)I假言三段论

SvzPYSx。

(8)xA(x)C(c) T(7)UG

(9)xA(x)yC(y) T(8)EG

四、只要今天天气不好,就一定有考生不能提前进入考场,当且仅当所有考生提前进入考场,考试才能准时进行。所以,如果考试准时进行,那么天气就好(15分)。

解 :

设P:今天天气好,Q:考试准时进行,A(e):e提前进入考场,个体域:考生得集合,则命题可符号化为:P x A(x),xA(x)Q Q P。

(1)P x A(x) P

(2)P xA(x) T(1)E

(3)xA(x)P T(2)E

(4)xA(x)Q P

(5)(xA(x)Q)∧(Q xA(x)) T(4)E

(6)Q xA(x) T(5)I

(7)Q P T(6)(3)I

五、已知A、B、C就是三个集合,证明A∩(B∪C)=(A∩B)∪(A∩C) (10分)

证明:

∵x A∩(B∪C) x A∧x(B∪C) x A∧(x B∨x C)( x A∧x B)∨(x A∧x C) x(A∩B)∨x A∩C x(A∩B)∪(A∩C)∴A

∩(B∪C)=(A∩B)∪(A∩C)

六、A={ x1,x2,x3 },B={ y1,y2},R={,,},求其关系矩阵及关系图(10分)。有就就是1,没就就是0

七、设R={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>},求r(R)、s(R)与t(R),并作出它们及R得关系图(15分)。

r(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,1>,<2,2>,<3,3><5,5>}(自反闭包)

s(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<1,2>,<4,2>,<4,3>}(对称闭包)

t(R)={<2,1>,<2,5>,<2,4>,<3,4>,<4,4>,<5,2>,<2,2>,<5,1>,<5,4>,<5,5>}(传递闭包)

九、设f:A B,g:B C,h:C A,证明:如果h o g o f=I A,f o h o g=I B,g o f o h=I C,则f、g、h 均为双射,并求出f-1、g-1与h-1(10分)。

解因I A恒等函数,由h o g o f=I A可得f就是单射,h就是满射;因I B恒等函数,由f o h o g=I B可得g就是单射,f就是满射;因I C恒等函数,由g o f o h=I C可得h就是单射,g就是满射。从而f、g、h均为双射。

由h o g o f=I A,得f-1=h o g;由f o h o g=I B,得g-1=f o h;由g o f o h=I C,得h-1=g o f。

(12分)令X={x1,x2,、、、,xm},Y={y1,y2,、、、,yn},问:

(1) 有多少不同得由X到Y得关系?

(2) 有多少不同得由X到Y得影射?

(3) 有多少不同得由X到Y得单射,双射?

(12分)就是个群,u∈G,定义G中得运算“”为a b=a*u-1*b,对任意a,b∈G,求证:也就是个群。

证明:1)a,b∈G,a b=a*u-1*b∈G,运算就是封闭得。

2)a,b,c∈G,(a b)c=(a*u-1*b)*u-1*c=a*u-1*(b*u-1*c)=a(b c),运算就是可结合得。

3)a∈G,设E为得单位元,则a E=a*u-1*E=a,得E=u,存在单位元。

4)a∈G,a x=a*u-1*x=E,x=u*a-1*u,则x a=u*a-1*u*u-1*a=u=E,每个元素都有逆元。

所以也就是个群。

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案) 一、(10分)证明?(A∨B)→?(P∨Q),P,(B→A)∨?P A。 证明:(1)?(A∨B)→?(P∨Q) P (2)(P∨Q)→(A∨B) T(1),E (3)P P (4)A∨B T(2)(3),I (5)(B→A)∨?P P (6)B→A T(3)(5),I (7)A∨?B T(6),E (8)(A∨B)∧(A∨?B) T(4)(7),I (9)A∧(B∨?B) T(8),E (10)A T(9),E 二、(10分)甲、乙、丙、丁4个人有且仅有2个人参加围棋优胜比赛。关于谁参加竞赛,下列4种判断都是正确的: (1)甲和乙只有一人参加; (2)丙参加,丁必参加; (3)乙或丁至多参加一人; (4)丁不参加,甲也不会参加。 请推出哪两个人参加了围棋比赛。 解符号化命题,设A:甲参加了比赛;B:乙参加了比赛;C:丙参加了比赛;D:丁参加了比赛。 依题意有, (1)甲和乙只有一人参加,符号化为A⊕B?(?A∧B)∨(A∧?B); (2)丙参加,丁必参加,符号化为C→D; (3)乙或丁至多参加一人,符号化为?(B∧D); (4)丁不参加,甲也不会参加,符号化为?D→?A。 所以原命题为:(A⊕B)∧(C→D)∧(?(B∧D))∧(?D→?A) ?((?A∧B)∨(A∧?B))∧(?C∨D)∧(?B∨?D)∧(D∨?A) ?((?A∧B∧?C)∨(A∧?B∧?C)∨(?A∧B∧D)∨(A∧?B∧D))∧((?B∧D)∨(?B∧?A)∨(?D∧?A)) ?(A∧?B∧?C∧D)∨(A∧?B∧D)∨(?A∧B∧?C∧?D)?T 但依据题意条件,有且仅有两人参加竞赛,故?A∧B∧?C∧?D为F。所以只有:(A∧?B∧?C∧D)∨(A∧?B∧D)?T,即甲、丁参加了围棋比赛。 三、(10分)指出下列推理中,在哪些步骤上有错误?为什么?给出正确的推理形式。 (1)?x(P(x)→Q(x)) P (2)P(y)→Q(y) T(1),US (3)?xP(x) P (4)P(y) T(3),ES (5)Q(y) T(2)(4),I (6)?xQ(x) T(5),EG 解 (4)中ES错,因为对存在量词限制的变元x引用ES规则,只能将x换成某个个体常元c,而不能将其改为自由变元。所以应将(4)中P(y)改为P(c),c为个体常元。 正确的推理过程为: (1)?xP(x) P (2)P(c) T(1),ES (3)?x(P(x)→Q(x)) P (4)P(c)→Q(c) T(3),US (5)Q(c) T(2)(4),I (6)?xQ(x) T(5),EG 四、(10分)设A={a,b,c},试给出A上的一个二元关系R,使其同时不满足自反性、反自反性、对称性、反对称性和传递性。 解设R={},则

离散数学形考任务1-7试题及答案完整版

2017年11月上交的离散数学形考任务一 本课程的教学内容分为三个单元,其中第三单元的名称是(A ). 选择一项: A. 数理逻辑 B. 集合论 C. 图论 D. 谓词逻辑 题目2 答案已保存 满分10.00 标记题目 题干 本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ). 选择一项: A. 函数 B. 关系的概念及其运算 C. 关系的性质与闭包运算 D. 几个重要关系 题目3 答案已保存 满分10.00 标记题目 题干 本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲. 选择一项: A. 18 B. 20 C. 19

D. 17 题目4 答案已保存 满分10.00 标记题目 题干 本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项: A. 集合恒等式与等价关系的判定 B. 图论部分书面作业 C. 集合论部分书面作业 D. 网上学习问答 题目5 答案已保存 满分10.00 标记题目 题干 课程学习平台左侧第1个版块名称是:(C). 选择一项: A. 课程导学 B. 课程公告 C. 课程信息 D. 使用帮助 题目6 答案已保存 满分10.00 标记题目 题干 课程学习平台右侧第5个版块名称是:(D). 选择一项:

A. 典型例题 B. 视频课堂 C. VOD点播 D. 常见问题 题目7 答案已保存 满分10.00 标记题目 题干 ―教学活动资料‖版块是课程学习平台右侧的第(A)个版块. 选择一项: A. 6 B. 7 C. 8 D. 9 题目8 答案已保存 满分10.00 标记题目 题干 课程学习平台中―课程复习‖版块下,放有本课程历年考试试卷的栏目名称是:(D ). 选择一项: A. 复习指导 B. 视频 C. 课件 D. 自测 请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交. 解答:学习计划 学习离散数学任务目标:

2012-2013(1)离散数学试卷及答案B卷

浙江工业大学期终考试命题稿 2010 /2011 学年第1 学期 命题注意事项: 一、命题稿请用A4纸电脑打印,或用教务处印刷的命题纸,并用黑 墨水书写,保持字迹清晰,页码完整。 二、两份试题必须同等要求,卷面上不要注明A、B字样,由教务处 抽定A、B卷。 三、命题稿必须经学院审核,并在考试前两周交教务处。

浙江工业大学2012/2013 学年 第1学期试卷 课程________ 姓名 ________ 班级________ 学号 ________ 题序 一 二 三 四 五 六 七 八 九 十 总分 计分 一、 1.下列语句是命题的是( A )。 A 、离散数学是重要的一门必修课。 B 、1+101=110? C 、我正在说谎。 D 、全体起立! 2.图 的邻接矩阵为( C )。 A 、 1 111111*********?? ? ? ? ??? B 、1 110011*********?? ? ? ? ??? C 、0 110001*********?? ? ? ? ??? D 、0 111101*********-?? ? - ? ?-- ?-?? 3.下列排列能构成图的顶点度序列的是( A )。 A 、1,2,2,3,4 B 、2,3,4,5,6,7 C 、2,1,1,1,2 D 、3,3,5,6,0 4.设{}b a A ,=,则I A =(D )。 A 、 A ; B 、A×I A ; C 、 I A ×A ; D 、{,,,}a a b b <><>。 5.下述命题公式中,是重言式的为( C )。 A 、)()(q p q p ∨→∧; B 、))())(()(p q q p q p →∧→??; C 、q q p ∧→?)(; D 、q p p ??∧)(。 二、填空题15分 (每小题 3分) 1已知一棵无向树T 有三个3度顶点,一个2度顶点,其余的都是1度顶点, 则T 中有 5 个1度顶点。

离散数学 第2章 习题解答

第2章习题解答 2.1 本题没有给出个体域,因而使用全总个体域. (1) 令x (是鸟 x F:) (会飞翔. G:) x x 命题符号化为 x F ?. G x→ ) ( )) ( (x (2)令x x (为人. F:) (爱吃糖 G:) x x 命题符号化为 x F x→ G ?? )) ( ) ( (x 或者 F x? x ∧ ? ) )) ( ( (x G (3)令x x (为人. F:) G:) (爱看小说. x x 命题符号化为 x F ?. G x∧ (x ( )) ( ) (4) x (为人. x F:) (爱看电视. G:) x x 命题符号化为 F x? ∧ ??. x G ( ) ( )) (x 分析 1°如果没指出要求什么样的个体域,就使用全总个休域,使用全总个体域时,往往要使用特性谓词。(1)-(4)中的) F都是特性谓词。 (x 2°初学者经常犯的错误是,将类似于(1)中的命题符号化为 F x ? G x∧ ( )) ( ) (x

即用合取联结词取代蕴含联结词,这是万万不可的。将(1)中命题叙述得更透彻些,是说“对于宇宙间的一切事物百言,如果它是鸟,则它会飞翔。”因而符号化应该使用联结词→而不能使用∧。若使用∧,使(1)中命题变成了“宇宙间的一切事物都是鸟并且都会飞翔。”这显然改变了原命题的意义。 3° (2)与(4)中两种符号化公式是等值的,请读者正确的使用量词否定等值式,证明(2),(4)中两公式各为等值的。 2.2 (1)d (a),(b),(c)中均符号化为 )(x xF ? 其中,12)1(:)(22++=+x x x x F 此命题在)(),(),(c b a 中均为真命题。 (2) 在)(),(),(c b a 中均符号化为 )(x xG ? 其中02:)(=+x x G ,此命题在(a )中为假命题,在(b)(c)中均为真命题。 (3)在)(),(),(c b a 中均符号化为 )(x xH ? 其中.15:)(=x x H 此命题在)(),(b a 中均为假命题,在(c)中为真命题。 分析 1°命题的真值与个体域有关。 2° 有的命题在不同个体域中,符号化的形式不同,考虑命题 “人都呼吸”。 在个体域为人类集合时,应符号化为 )(x xF ? 这里,x x F :)(呼吸,没有引入特性谓词。 在个体域为全总个体域时,应符号化为 ))()((x G x F x →? 这里,x x F :)(为人,且)(x F 为特性谓词。x x G :)(呼吸。 2.3 因题目中未给出个体域,因而应采用全总个体域。

2018国家开放大学离散数学本形考任务答案

离散数学作业4 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业. 要求:学生提交作业有以下三种方式可供选择: 1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档 3. 自备答题纸,将答题过程手工书写,并拍照上传. 一、填空题 1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15 . 2.设给定图G(如右由图所示),则图G的点割集是 { f },{ e,c} . 3.设G是一个图,结点集合为V,边集合为E,则 G的结点度数之和等于边数的两倍. 4.无向图G存在欧拉回路,当且仅当G连通且不含奇数度结 点. 5.设G=是具有n个结点的简单图,若在G中每一对结点度数之和大于等于︱v︱,则在G中存在一条汉密尔顿路.6.若图G=中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为W ≤S . 7.设完全图K n 有n个结点(n 2),m条边,当n为奇数时时, K n 中存在欧拉回路. 姓名: 学号: 得分: 教师签名:

8.结点数v与边数e满足e=v - 1 关系的无向连通图就是树. 9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 4 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路. 答:错误。应叙述为:“如果图G是无向连通图,且其结点度数均为偶数,则图G存在一条欧拉回路。” 2.如下图所示的图G存在一条欧拉回路. 答:错误。因为图中存在奇数度结点,所以不存在欧拉回路。 3.如下图所示的图G不是欧拉图而是汉密尔顿图.

离散数学期末试题及答案

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ). 5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).

离散数学课后习题答案_屈婉玲(高等教育出版社)

第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)?0∨(0∧1) ?0 (2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0. (3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?1 17.判断下面一段论述是否为真:“π是无理数。并且,如果3是无理数,则2也是无理数。另外6能被2整除,6才能被4整除。” 答:p: π是无理数 1 q: 3是无理数0 r: 2是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。19.用真值表判断下列公式的类型: (4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.

(1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)?(p→(q∧r)) (4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r) ? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r) (4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q) ?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r) 解: (1)主析取范式 (?p→q)→(?q∨p)

离散数学期末考试试卷(A卷)

离散数学期末考试试卷(A卷) 一、判断题:(每题2分,共10分) (1) (1) (2)对任意的命题公式, 若, 则 (0) (3)设是集合上的等价关系, 是由诱导的上的等价关系,则。(1) (4)任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等价。 (0) (5)设是上的关系,分别表示的对称和传递闭包,则 (0) 二、填空题:(每题2分,共10分) (1) 空集的幂集的幂集为()。 (2) 写出的对偶式()。 (3)设是我校本科生全体构成的集合,两位同学等价当且仅当他们在 同一个班,则等价类的个数为(),同学小王所在 的等价类为()。 (4)设是上的关系,则满足下列性质的哪几条:自反的,对称的,传递的,反自反的,反对称的。 () (5)写出命题公式的两种等价公式( )。 三、用命题公式符号化下列命题(1)(2)(3),用谓词公式符号化下列命题(4)(5)(6)。(12分) (1)(1)仅当今晚有时间,我去看电影。 (2)(2)假如上午不下雨,我去看电影,否则就在家里读书。 (3)你能通你能通过考试,除非你不复习。 (4)(4)并非发光的都是金子。 (5)(5)有些男同志,既是教练员,又是国家选手。 (6)(6)有一个数比任何数都大。 四、设,给定上的两个关系和分别是

(1)(1)写出 和 的关系矩阵。(2)求 及 (12分) 五、求 的主析取范式和主合取范式。(10分) 六、设 是 到 的关系, 是 到 的关系,证明: (8分) 七、设 是一个等价关系,设 对某一个 ,有 ,证明: 也是一个等价关系。(10分) 八、(10分)用命题推理理论来论证 下述推证是否有效? 甲、乙、丙、丁四人参加比赛,如果甲获胜,则乙失败;如果丙获胜,则乙也获 胜,如果甲不获胜,则丁不失败。所以,如果丙获胜,则丁不失败。 九、(10分) 用谓词推理理论来论证下述推证。 任何人如果他喜欢步行,他就不喜欢乘汽车,每一个人或喜欢乘汽车,或喜欢骑 自行车(可能这两种都喜欢)。有的人不爱骑自行车,因而有的人不爱步行 (论 域是人)。 十、(8分) 利用命题公式求解下列问题。 甲、乙、丙、丁四人参加考试后,有人问他们,谁的成绩最好, 甲说:“不是我,”乙说:“是丁,”丙说:“是乙,” 丁说:“不是我。” 四人的回答只有一人符合实际,问若只有一人成绩最 好,是谁? 离散数学期末考试试卷答案(A 卷) 一、判断题:(每题2分,共10分) (1)}}{{}{x x x -∈ ( ∨) (2) 对任意的命题公式C B A ,,, 若 C B C A ∧?∧, 则B A ? ( ? ) (3)设R 是集合A 上的等价关系, L 是由 R A 诱导的A 上的等价关系,则L R =。 ( ∨ ) (4) 任意一个命题公式都与某一个只含合取和析取两种联结词的命题公式等 价。 ( ? ) (5)设R 是A 上的关系,)(),(R t R s 分别表示R 的对称和传递闭包,则 )()(R st R ts ? ( ? ) 二、填空题:(每题2分,共10分)

(完整版)离散数学试卷及答案

离散数学试题(A卷答案) 一、(10分)求(P↓Q)→(P∧?(Q∨?R))的主析取范式 解:(P↓Q)→(P∧?(Q∨?R))??(?( P∨Q))∨(P∧?Q∧R)) ?(P∨Q)∨(P∧?Q∧R)) ?(P∨Q∨P)∧(P∨Q∨?Q)∧(P∨Q∨R) ?(P∨Q)∧(P∨Q∨R) ?(P∨Q∨(R∧?R))∧(P∨Q∨R) ?(P∨Q∨R)∧(P∨Q∨?R)∧(P∨Q∨R) ? M∧1M ? m∨3m∨4m∨5m∨6m∨7m 2 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解设设P:王教授是苏州人;Q:王教授是上海人;R:王教授是杭州人。则根据题意应有: 甲:?P∧Q 乙:?Q∧P 丙:?Q∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?'R 。由定理4.15和由定理4.16得sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。 综上可知,tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 四、(15分)集合A ={a ,b ,c ,d ,e }上的二元关系R 为R ={}, (1)写出R 的关系矩阵。 (2)判断R 是不是偏序关系,为什么? 解 (1) R 的关系矩阵为: ??? ??? ? ? ? ?=100001100010100 10110 11111 )(R M (2)由关系矩阵可知,对角线上所有元素全为1,故R 是自反的;ij r +ji r ≤1,故R 是反对称的;可计算对应的关系矩阵为:

离散数学 第2章 习题解答

习题 2.1 1.将下列命题符号化。 (1) 4不是奇数。 解:设A(x):x是奇数。a:4。 “4不是奇数。”符号化为:?A(a) (2) 2是偶数且是质数。 解:设A(x):x是偶数。B(x):x是质数。a:2。 “2是偶数且是质数。”符号化为:A(a)∧B(a) (3) 老王是山东人或河北人。 解:设A(x):x是山东人。B(x):x是河北人。a:老王。 “老王是山东人或河北人。”符号化为:A(a)∨B(a) (4) 2与3都是偶数。 解:设A(x):x是偶数。a:2,b:3。 “2与3都是偶数。”符号化为:A(a)∧A(b) (5) 5大于3。 解:设G(x,y):x大于y。a:5。b:3。 “5大于3。”符号化为:G(a,b) (6) 若m是奇数,则2m不是奇数。 解:设A(x):x是奇数。a:m。b:2m。 “若m是奇数,则2m不是奇数。”符号化为:A(a)→A(b) (7) 直线A平行于直线B当且仅当直线A不相交于直线B。 解:设C(x,y):直线x平行于直线y。设D(x,y):直线x相交于直线y。a:直线A。b:直线B。 “直线A平行于直线B当且仅当直线A不相交于直线B。”符号化为:C(a,b)??D(x,y) (8) 小王既聪明又用功,但身体不好。 解:设A(x):x聪明。B(x):x用功。C(x):x身体好。a:小王。 “小王既聪明又用功,但身体不好。”符号化为:A(a)∧B(a)∧?C(a) (9) 秦岭隔开了渭水和汉水。 解:设A(x,y,z):x隔开了y和z。a:秦岭。b:渭水。c:汉水。 “秦岭隔开了渭水和汉水。”符号化为:A(a,b,c) (10) 除非小李是东北人,否则她一定怕冷。 解:设A(x):x是东北人。B(x):x怕冷。a:小李。 “除非小李是东北人,否则她一定怕冷。”符号化为:B(a)→?A(a) 2.将下列命题符号化。并讨论它们的真值。 (1) 有些实数是有理数。 解:设R(x):x是实数。Q(x):x是有理数。 “有些实数是有理数。”符号化为:(?x)(R(x)∧Q(x))

离散数学试卷二十三试题与答案

试卷二十三试题与答案 一、单项选择题:(每小题1分,本大题共10分) 1.命题公式)(P Q P ∨→是( )。 A 、 矛盾式; B 、可满足式; C 、重言式; D 、等价式。 2.下列各式中哪个不成立( )。 A 、)()())()((x xQ x xP x Q x P x ?∨??∨?; B 、)()())()((x xQ x xP x Q x P x ?∨??∨?; C 、)()())()((x xQ x xP x Q x P x ?∧??∧?; D 、Q x xP Q x P x ∧??∧?)())((。 3.谓词公式)())()((x Q y yR x P x →?∨?中的 x 是( )。 A 、自由变元; B 、约束变元; C 、既是自由变元又是约束变元; D 、既不是自由变元又不是约束变元。 4.在0 Φ之间应填入( )符号。 A 、= ; B 、?; C 、∈; D 、?。 5.设< A , > 是偏序集,A B ?,下面结论正确的是( )。 A 、 B 的极大元B b ∈且唯一; B 、B 的极大元A b ∈且不唯一; C 、B 的上界B b ∈且不唯一; D 、B 的上确界A b ∈且唯一。 6.在自然数集N 上,下列( )运算是可结合的。 (对任意N b a ∈,) A 、b a b a -=*; B 、),max(b a b a =*; C 、b a b a 5+=*; D 、b a b a -=*。 7.Q 为有理数集N ,Q 上定义运算*为a*b = a + b – ab ,则的幺元为( )。 A 、a ; B 、b ; C 、1; D 、0。 8.给定下列序列,( )可以构成无向简单图的结点度数序列。 A 、(1,1,2,2,3); B 、(1,1,2,2,2); C 、(0,1,3,3,3); D 、(1,3,4,4,5)。 9.设G 是简单有向图,可达矩阵P(G)刻划下列 ( )关系。 A 、点与边; B 、边与点; C 、点与点; D 、边与边。 10.一颗树有两个2度结点,1个3度结点和3个4度结点,则1度结点数为( )。 A 、5; B 、7; C 、9; D 、8。

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

离散数学答案第二章习题解答

习题与解答 1. 将下列命题符号化: (1) 所有的火车都比某些汽车快。 (2) 任何金属都可以溶解在某种液体中。 (3) 至少有一种金属可以溶解在所有液体中。 (4) 每个人都有自己喜欢的职业。 (5) 有些职业是所有的人都喜欢的。 解 (1) 取论域为所有交通工具的集合。令 x x T :)(是火车, x x C :)(是汽车, x y x F :),(比y 跑得快。 “所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧?→?。 (2) 取论域为所有物质的集合。令 x x M :)(是金属, x x L :)(是液体, x y x D :),(可以溶解在y 中。 “任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y x D y L y x M x ∧?→?。 (3) 论域和谓词与(2)同。“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →?∧?。 (4) 取论域为所有事物的集合。令 x x M :)(是人, x x J :)(是职业, x y x L :),(喜欢y 。 “每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧?→? (5)论域和谓词与(4)同。“有些职业是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →?∧?。 2. 取论域为正整数集,用函数+(加法),?(乘法)和谓词<,=将下列命题符号化: (1) 没有既是奇数,又是偶数的正整数。 (2) 任何两个正整数都有最小公倍数。 (3) 没有最大的素数。 (4) 并非所有的素数都不是偶数。 解 先引进一些谓词如下: x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =??。 x x J :)(是奇数,)(x J 可表示为)2(x v v =???。 x x E :)(是偶数,)(x E 可表示为)2(x v v =??。 x x P :)(是素数,)(x P 可表示为)1)(()1(x u u x u v v u x =∨=?=???∧=?。

2020年国家开放大学电大《离散数学》形成性考核三次

电大离散数学作业答案3-7合集 离散数学作业3 离散数学集合论部分形成性考核书面作业 本课程形成性考核书面作业共3次.内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习.基本上是按照考试的题型(除单项选择题外)安排练习题目.目的是通过综合性书面作业.使同学自己检验学习成果.找出掌握的薄弱知识点.重点复习.争取尽快掌握。本次形考书面作业是第一次作业.大家要认真及时地完成集合论部分的综合练习作业。 一、填空题 1.设集合{1,2,3},{1,2} A B ==.则P(A)-P(B )= {{3}.{1,3}.{2,3}.{1,2,3}} .A? B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3.2>} . 2.设集合A有10个元素.那么A的幂集合P(A)的元素个数为 1024. 3.设集合A={0, 1, 2, 3}.B={2, 3, 4, 5}.R是A到B的二元关系. } , , {B A y x B y A x y x R? ∈ ∈ ∈ > < =且 且 则R的有序对集合为 {<2, 2>.<2, 3>.<3, 2>}.<3,3> .4.设集合A={1, 2, 3, 4 }.B={6, 8, 12}. A到B的二元关系 R=} , , 2 , {B y A x x y y x∈ ∈ = > < 那么R-1= {<6,3>,<8,4>} 5.设集合A={a, b, c, d}.A上的二元关系R={, , , }.则R具有的性质是没有任何性质. 6.设集合A={a, b, c, d}.A上的二元关系R={, , , }.若在R中再增加两个元素{,} .则新得到的关系就具有对称性. 7.如果R 1和R 2 是A上的自反关系.则R 1 ∪R 2 .R 1 ∩R 2 .R 1 -R 2 中自反关系有 2 个. 8.设A={1, 2}上的二元关系为R={|x∈A.y∈A, x+y =10}.则R的自反闭包为 {<1,1>,<2,2>} . 9.设R是集合A上的等价关系.且1 , 2 , 3是A中的元素.则R中至少包含 <1,1>,<2,2>,<3,3> 等元素.10.设A={1.2}.B={a.b}.C={3.4.5}.从A到B的函数f ={<1, a>, <2, b>}.

离散数学b卷及答案

武汉理工大学《离散数学》考试试题(B卷) 站点:姓名:专业:层次 一、单项选择题(本大题共15小题,每小题1分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.令P:今天下雪了,Q:路滑,则命题“虽然今天下雪了,但是路不.滑”可符号化为()A.P→Q B.P∨Q C.P∧Q D.P∧Q 2.下列命题公式为重言式的是() A.Q→(P∧Q)B.P→(P∧Q) C.(P∧Q)→P D.(P∨Q)→Q 3.下列4个推理定律中,不.正确的是() A.A?(A∧B)B.(A∨B)∧A?B C.(A→B)∧A?B D.(A→B)∧B?A 4.谓词公式?x(P(x)∨?yR(y))→Q(x)中量词x?的辖域是() A.)) x? P ?B.P(x) x ∨ (y ( ) ( yR

C.(P(x)∨?yR(y)) D.P(x), Q(x) 5.设个体域A={a,b},公式?xP(x)∧?xS(x)在A中消去量词后应为() A.P(x)∧S(x) B.P(a)∧P(b)∧(S(a)∨S(b)) C.P(a)∧S(b) D.P(a)∧P(b)∧S(a)∨S(b) 6.下列选项中错误 的是() .. A.??? B.?∈? C.??{?} D.?∈{?} 7.设A={a,b,c,d},A上的等价关系R={, , , }∪I A,则对应于R的A的划分是() A.{{a},{b, c},{d}} B.{{a, b},{c}, {d}} C.{{a},{b},{c},{d}} D.{{a, b}, {c,d}} 8.设R为实数集,函数f:R→R,f(x)=2x,则f是() A.满射函数B.入射函数 C.双射函数D.非入射非满射 9.设R为实数集,R+={x|x∈R∧x>0},*是数的乘法运算,是一个群,则下列集合关于数的乘法运算构成该群的子群的是()

离散数学答案(尹宝林版)第二章习题解答

第二章 谓词逻辑 习题与解答 1. 将下列命题符号化: (1) 所有的火车都比某些汽车快。 (2) 任何金属都可以溶解在某种液体中。 (3) 至少有一种金属可以溶解在所有液体中。 (4) 每个人都有自己喜欢的职业。 (5) 有些职业是所有的人都喜欢的。 解 (1) 取论域为所有交通工具的集合。令 x x T :)(是火车, x x C :)(是汽车, x y x F :),(比y 跑得快。 “所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧?→?。 (2) 取论域为所有物质的集合。令 x x M :)(是金属, x x L :)(是液体, x y x D :),(可以溶解在y 中。 “任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y x D y L y x M x ∧?→?。 (3) 论域和谓词与(2)同。“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →?∧?。 (4) 取论域为所有事物的集合。令 x x M :)(是人, x x J :)(是职业, x y x L :),(喜欢y 。 “每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧?→? (5)论域和谓词与(4)同。“有些职业是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →?∧?。 2. 取论域为正整数集,用函数+(加法),?(乘法)和谓词<,=将下列命题符号化: (1) 没有既是奇数,又是偶数的正整数。 (2) 任何两个正整数都有最小公倍数。 (3) 没有最大的素数。 (4) 并非所有的素数都不是偶数。 解 先引进一些谓词如下: x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =??。 x x J :)(是奇数,)(x J 可表示为)2(x v v =???。 x x E :)(是偶数,)(x E 可表示为)2(x v v =??。

离散数学期末考试试题(有几套带答案)

离散数学试题(A卷及答案) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R)?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R)?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R?T∧R(置换)?R 2)?x(A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x))??x?A(x)∨?xB(x)???xA(x)∨?xB(x)??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分) 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E, ?E→(A ∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E (2) ?E→(A∧?B) (3) (C∨D)→(A∧?B) (4) (A∧?B)→(R∨S) (5) (C∨D)→(R∨S) (6) C∨D (7) R∨S 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) (2)P(a) (3)?x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a)

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R) ?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R) ?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R ?T∧R(置换)?R 2) ?x (A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x)) ??x?A(x)∨?xB(x) ???xA(x)∨?xB(x) ??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E,?E→(A∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E P (2) ?E→(A∧?B) P (3) (C∨D)→(A∧?B) T(1)(2),I (4) (A∧?B)→(R∨S) P (5) (C∨D)→(R∨S) T(3)(4), I (6) C∨D P (7) R∨S T(5),I 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) P

离散数学试题及解答

离散数学 2^m*n 一、选择题(2*10) 1.令P:今天下雨了,Q:我没带伞,则命题“虽然今天下雨了,但是我没带伞”可符号化为()。 (A)P→?Q (B)P∨?Q (C)P∧Q (D)P∧?Q 2.下列命题公式为永真蕴含式的是()。 (A)Q→(P∧Q)(B)P→(P∧Q) (C)(P∧Q)→P (D)(P∨Q)→Q 3、命题“存在一些人是大学生”的否定是(A),而命题“所有的人都是要死的”的否定 是()。 (A)所有人都不是大学生,有些人不会死 (B)所有人不都是大学生,所有人都不会死 (C)存在一些人不是大学生,有些人不会死 (D)所有人都不是大学生,所有人都不会死 4、永真式的否定是()。

(A)永真式(B)永假式(C)可满足式(D)以上均有可能 5、以下选项中正确的是()。 (A)0= ? (B)0 ? (C)0∈? (D)0?? 6、以下哪个不是集合A上的等价关系的性质?() )。 (A)2 (B)4 (C)3 (D)5 10.连通图G是一棵树,当且仅当G中()。 (A)有些边不是割边(B)每条边都是割边 (C)无割边集(D)每条边都不是割边

二、填空题(2*10) 1、命题“2是偶数或-3是负数”的否定是________。 2、设全体域D是正整数集合,则命题?x?y(xy=y)的真值是______。 3、令R(x):x是实数,Q(x):x是有理数。则命题“并非每个实数都是有理数”的符号化表示为 4 5 6、设 7 8 (1)若A去,则C和D中要去1个人; (2)B和C不能都去; (3)若C去,则D留下 五、(15分)设A={1,2,3},写出下列图示关系的关系矩阵,并讨论它们的性质:

相关文档 最新文档