文档库 最新最全的文档下载
当前位置:文档库 › 函数单调性与不等式

函数单调性与不等式

函数单调性与不等式
函数单调性与不等式

函数单调性与不等式

学习目标(考纲要求):

1. 2. 学习过程:

1、函数单调性的应用

例1、比较3log 2

1、5log 2

1的大小

例2、已知函数y =f (x )在R 上单调递减,解不等式()

()62f x x f >+

练习:已知f (x )=x e

x

-

,若1<f (b )>f (1) C .f (a )< f (1)f (1)>f (b )

2、利用函数单调性证明不等式

例3、利用函数的单调性,证明下列不等式,并通过函数图象直观验证: (1)),0(,sin π∈

(2))1,0(,2∈>x x x

(3)R x x e x ∈+≥,1

(4)0,ln ><

3、不等式恒成立问题

例4、(1)已知函数f (x )=x

ax 4

+在()+∞,1上单调递增,求a 的取值范围。

(2)设f (x )=e x

1+ax 2

,其中a >0.若f (x )为(-∞,+∞)上的单调函数,则a 的范围为________.

练习:已知函数f (x )=x 2+a ln x .

(1)当a =-2e 时,求函数f (x )的单调区间和极值;

(2)若函数g (x )=f (x )+2

x 在[1,4]上是减函数,求实数a 的取值范围.

高中数学函数的单调性与最值练习题

函数的单调性与最值 1.下列函数中,在区间(-1,1)为减函数的是( ) A .x y -=11 B .x y cos = C .)1ln(+=x y D .x y -=2 2.函数)82ln()(2--=x x x f 的单调递增区间是( ) A .)2,(--∞ B .)1,(-∞ C .),1(+∞ D .),4(+∞ 3.若函数m x x x f +-=2)(2在),3[+∞上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1 4函数x x x f -=1)(的单调递增区间是( ) A .)1,(-∞ B .),1(+∞ C .)1,(-∞,),1(+∞ D .)1,(--∞,),1(+∞ 5设函数)1()(,0,10,00,1)(2-=?? ???<-=>=x f x x g x x x x f ,则函数g (x)的单调递减区间是( ) A .]0,(-∞ B .)1,0[ C .),1[+∞ D .]0,1[- 6.若函数R x x a x x f ∈++=,2)(2在区间),3[+∞和]1,2[--上均为增函数,则实数a 的取值范围是( )A .]3,311[-- B .]4,6[-- C .]22,3[-- D .]3,4[-- 7.函数],(,1 2n m x x x y ∈+-=的最小值为0,则m 的取值范围是( ) A .)2,1( B .)2,1(- C .)2,1[ D .)2,1[- 8.已知函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数x x f x g )()(=在区间),1(+∞上一定( )A .有最小值 B .有最大值 C .是减函数 D .是增函数 9.若函数2)(2-+=x a x x f 在),0(+∞上单调递增,则实数a 的取值范围是 10.已知函数f (x)的值域为]9 4,83[,则函数)(21)()(x f x f x g -+=的值域为 1.已知函数)1(log 2-=ax y 在)2,1(上单调递增,则实数a 的取值范围是( ) A .]1,0( B .]2,1[ C .+∞,1[) D .+∞,2[)

单调性与几个重要不等式

单调性与几个重要不等式 [摘要] 本文利用单调性或函数的凹凸性证明不等式,并由此给出了詹生(Jensen)不等式,杨氏不等式,Holder不等式以及不等式等几个重要的不等式。 [关键词] 单调性詹生(Jensen)不等式杨氏不等式Holder不等式不等式 [Abstract] An effective method which is used constantly on proving inequalities in advanced mathematics has been introduced in the paper.And we also gave some important inequalities such as Jensen Inequality, Yang-Inequality, Holder Inequality, andInequality. [Key words] Monotone Jensen Inequality Yang-Inequality Holder InequalityInequality 在高等数学中,利用函数的单调性证明不等式的具有普遍的意义。本文通过利用函数的单调性证明数学中几个重要的不等式: 詹生(Jensen)不等式,杨氏不等式,Holder不等式以及不等式。以期对高等数学的教学有一定的启发和帮助。 引理1:设在区间有可导,且,,则。 引理2 设在区间有二阶导数,且,则对任意的,下面不等式成立 (1) 证无妨设, 对任意取定的,令 则 当时,有。又因为,所以由引理1知严格递增,于是有,因此严格递减,从而有,即 。 在引理2的条件下,假设 ,利用数学归纳法可以证明如下詹生(Jensen)不等式,即 且等号仅在时成立。 证明:由引理2有

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

高中一年级函数单调性完整版

函数的单调性 学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应 用函数的基本性质解决一些问题。 (2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和 单调性定义判断、证明函数单调性的方法. (3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。 重点与难点 (1)判断或证明函数的单调性; (2)奇偶性概念的形成与函数奇偶性的判断。 学习过程 【学习导航】 知识网络 学习要求 1. 从特殊到一般,掌握增函数、减函数、单调区间的概念; 2. 会根据图像说出函数的单调区间,并能指出其增减性; 3. 会用定义证明一些简单函数的单调性. 自学评价 观察函数x x f =)(,2 )(x x f =的图象 从左至右看函数图象的变化规律: (1). x x f =)(的图象是_________的, 2)(x x f =的图象在y 轴左侧是______的,2)(x x f =的图象在y 轴右侧是_______的. (2). x x f =)(在),(+∞-∞上,f (x )随着x 的增大而___________;2 )(x x f =在]0,(-∞ 上,f (x )随着x 的增大而_______;2 )(x x f =在),0(+∞上,f (x )随着x 的增大而________. 一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时 函数的单调性 单调性的定义 定义法证明函数的单调性 增函数 减函数 单调区间 x y 0 x y 0 x x f =)( 2)(x x f =

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法 利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 1、从条件特征入手构造函数证明 【例1】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b , 求证:.a )(a f >b )(b f 【变式1】若函数y =)(x f 在R 上可导且满足不等式)(x f >)(x f ',且1)(-=x f y 为奇函数. 求不等式)(x f 2 x . 求不等式0)2(4)2015()2015(2 >--++f x f x 的解集. 2、移项法构造函数 【例2】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+- )1ln(1 1 1 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数11 1 )1ln()(-+++=x x x g ,从其导数入手即可证明。 3、作差法构造函数证明 【例3】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2 )(x x g =的图象的下方; 分析:函数)(x f 图象在函数)(x g 的图象的下方)()(x g x f + 都成立. 分析:本题是山东卷的第(II )问,从所证结构出发,只需令 x n =1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(2 3 ++-=x x x x h ,求导即可达到证明。

高考总复习:函数的单调性与最值

第三节函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义

图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1 x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-1 2 D .k <-1 2 解析:选D 函数y =(2k +1)x +b 是减函数, 则2k +1<0,即k <-1 2 .

3.(教材习题改编)函数f (x )=1 1-x 1-x 的最大值是( ) A.4 5 B.54 C.3 4 D.43 解析:选D ∵1-x (1-x )=x 2 -x +1=? ????x -122+34≥34 ,∴0<11-x 1-x ≤43. 4.(教材习题改编)f (x )=x 2 -2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8 5.已知函数f (x )为R 上的减函数,若m f (n ); ???? ??1x >1,即|x |<1,且x ≠0. 故-1 (-1,0)∪(0,1) 1.函数的单调性是局部性质 从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调. 2.函数的单调区间的求法 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. [注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

考研数学:如何用单调性与凹凸性证明不等式

考研数学:如何用单调性和凹凸性证明不等式 纵观考研数学多年来的考试大纲和考试真题试卷,总体上讲变化不大。每年的考试范围和知识点基本相同或相近,考试题型的变化幅度也不是很大,其中有一些重要题型是年年考或经常考,如果考生能完全掌握这些重要题型的解题思路和方法,并能熟练地解答这些题型,则对于顺利地通过考研数学考试将有极大帮助。为了帮助各位考生学会并提高解答数学重要题型的水平,文都老师针对历年考研数学中的重要题型进行深入解剖,分析提炼出各种常考重要题型及方法,供考生们参考。下面分析高等数学中如何用单调性和凹凸性证明不等式这类问题。 用单调性和凹凸性证明不等式的基本思路: 大部分不等式的证明题,往往需要根据条件作辅助函数,然后由导数判断函数的单调性、凹凸性,再由单调性、凹凸性得出要证的不等式。 根据单调性证明: 若函数(),()f x g x 在[,]a b 上连续,在(,)a b 上可导,且()(),()()f a g a f x g x ''≥≥,则在(,)a b 上,()()f x g x ≥;若将上面的“≥”都改成“>”(或“≤”,或“<”),则不等式亦成立。 根据凹凸性证明: 若在区间I 上()<0f x '',则()f x 是凸函数,12,x x I ?∈,恒有1212()()( )22x x f x f x f ++> ;对凹函数则相反,若()0f x ''>,则1212()()( )<22x x f x f x f ++ 。 典型例题: 例1.设()f x 在(,)a b 内二阶可导,且()0f x ''>,证明:对于(,)a b 内任意两点12x x 、及01t ≤≤,有1212[(1)](1)()()f t x tx t f x tf x -+≤-+ 证:不妨设12x x <,令11()(1)()()[(1)]g x t f x tf x f t x tx =-+--+,12x x x ≤≤,记1(1)u t x t x =-+,则 1()0g x =,()()()()()0,g x tf x tf u tf x u u x ξξ'''''=-=-≥<<,故()g x 单调不减,于是1()()0g x g x ≥=,取2x x =,得2()0g x ≥,1212[(1)](1)()()f t x tx t f x tf x -+≤-+ 注:1)此题是用单调性证明凹函数的一个重要特性。 2)此题结论的几何意义:凹函数图形上任意两点之间的连线都在其图形之上。

高等数学不等式的证明试题及答案

微积分中不等式的证明方法讨论 不等式的证明题经常出现在考研题中,虽然题目各种各样,但方法无非以下几种: 1.利用函数的单调性证明不等式 若在),(b a 上总有0)(>'x f ,则)(x f 在),(b a 单调增加;若在),(b a 上总有0)(<'x f ,则)(x f 在),(b a 单调减少。 注:考研题的难点是,构造恰当的辅助函数,有时需要两次利用函数的单调性证明不等式,有时需要对),(b a 进行分割,分别在小区间上讨论。 例1:证明:当0a b π<<<时, sin 2cos sin 2cos b b b b a a a a ππ++>++. 【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明. 【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时), 故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即 sin 2cos sin 2cos b b b b a a a a ππ++>++. 【评注】 证明数值不等式一般需构造辅助函数,辅助函数一般通过移项,使不等式一端为“0”,另一端即为所作辅助函数()f x ,然后求导验证()f x 的增减性,并求出区间端点的函数值(或极限值)。 例2:设2e b a e <<<, 证明)(4ln ln 2 22a b e a b ->-. 【分析】即证a e a b e b 2 222 4ln 4ln ->- 证明: 设x e x x 224ln )(-=?,则 24ln 2)(e x x x -='?, 2ln 12)(x x x -=''?, 所以当x>e 时,,0)(<''x ? 故)(x ?'单调减少,从而当2 e x e <<时,

9运用函数地单调性与奇偶性解抽象函数不等式(附加半节课)—学生版

教学容概要

教学容 【知识精讲】 一、常见的抽象函数模型: ① 正比例函数模型:()0,≠=k kx x f ┄┄┄()()()y f x f y x f ±=±。 ② 幂函数模型:()2 x x f =┄┄┄()()()y f x f xy f ?=;() ()y f x f y x f =??? ? ??。 ③ 指数函数模型:()x a x f =┄┄┄()()()y f x f y x f ?=+;()()() y f x f y x f = -。 ④ 对数函数模型:()x x f a log =┄┄()()()y f x f xy f +=;()()y f x f y x f -=??? ? ??。 ⑤ 三角函数模型:()x x f tan =┄┄┄()()()()() y f x f y f x f y x f ?-+= +1。 如何利用函数单调性解题是历年高考和模考的重点,其中利用函数单调性解不等式是一个重点中的难点,如何攻克这个难点呢?一个词:去壳。 二、奇偶函数的性质:

奇函数:(1)()()f x f x -=-; (2)若奇函数()f x 的定义域包含0,则(0)0f =; (3)图像关于原点对称; (4)y 轴左右两侧的单调性相同; 偶函数:(1)()()f x f x -=; (3)图像关于y 轴对称; (4)y 轴左右两侧的单调性相反; 三、函数单调性的逆用: 若()f x 在区间D 上递增,则1212()()f x f x x x .(1x 2,x D ∈). 四、不等式恒成立问题的解法 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 通过上面的等价转化,转换为函数求最值的问题。 【经典例题】

第05讲-函数的单调性与最值(讲义版)

第05讲-函数的单调性与最值 一、考情分析 借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义. 二、知识梳理 1.函数的单调性 (1)单调函数的定义 增函数减函数 定义设函数y=f(x)的定义域为A,区间M?A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当 Δy=f(x2)-f(x1)>0时,就称 函数y=f(x)在区间M上是增 函数 Δy=f(x2)-f(x1)<0时,就称函数y =f(x)在区间M上是减函数 图象 描述 自左向右看图象是上升的自左向右看图象是下降的 (2)上是增函数或是减函数, 性,区间M称为单调区间. 2.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件(1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M (3)对于任意x∈I,都有f(x)≥M; (4)存在x0∈I,使得f(x0)=M 结论M为最大值M为最小值 [方法技巧] 1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到. (2)开区间上的“单峰”函数一定存在最大值(或最小值).

2.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1 f (x ) 的单调性相反. 3.“对勾函数”y =x +a x (a >0)的增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ]. 三、 经典例题 考点一 确定函数的单调性(区间) 【例1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),下列结论不正确的是( ) A . ()()1212 f x f x x x -->0 B .f(a)0 D .()() 2121x x f x f x -->0 【答案】B 【解析】 试题分析:函数在[a ,b]上是增函数则满足对于该区间上的12,x x ,当12x x <时有()()12f x f x <,因此 ()()1212 0f x f x x x ->-,(x 1-x 2) [f(x 1)-f(x 2)]>0, ()() 21 210x x f x f x ->-均成立,因为不能确定12,x x 的 大小,因此f(a)

利用函数单调性证明积分不等式(修改)

利用函数单调性证明积分不等式 黄道增 浙江省台州学院 (浙江 317000) 摘要:积分不等式的证明方法多种多样,本文主要利用被积函数的单调性和通过构造辅助函数的单调性证明积分不等式。 关键词:函数单调性 积分不等式 辅助函数 中图分类号 O172.2 积分不等式是微积分学中一类重要的不等式,其证明方法多种多样。如果题目条件中含“单调性”或隐含“单调性”的条件,利用函数单调性证明比较简单。本文主要讨论利用被积函数的单调性和通过构造辅助函数的单调性证明积分不等式。 1 利用被积函数的单调性 证明方法根据----定积分性质之一:设)(x f 与)(x g 为定义],[b a 在上的两个可积函数,若],[),()(b a x x g x f ∈≤,则dx x g dx x f b a b a ??≤)()(. 例1 设)(x f 为]1,0[上非负单调递减函数, 证明:对于10<<<βα,有?? >βααβαdx x f dx x f )()(0 证明:由)(x f 的单调递减性得: 若10<≤<αx ,有)()(αf x f ≥ 所以)()()(00αααα αf dx f dx x f =≥?? (1) 同理有 )()()()(ααβαβαβ αf dx f dx x f -=≤?? (2) 由(1)(2)得: dx x f f dx x f ??-≥≥β αα αβαα)(1)()(10 (3) 将(3)式两边同乘以β αβα)(-,有 dx x f dx x f ??≥-βαα βαβα β)()(0 因为1<-β αβ,所以??>βααβαdx x f dx x f )()(0 例2 试证:dx x x dx x x ??-≥-1021021sin 1cos . 分析:不等式两边的积分是瑕积分。在两边的积分中分别作变换x t arccos =与

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

指数不等式、对数不等式的解法

指数不等式、对数不等式的解法·例题 例5-3-7 解不等式: 解(1)原不等式可化为 x2-2x-1<2(指数函数的单调性) x2-2x-3<0 (x+1)(x-3)<0 所以原不等式的解为-1<x<3。 (2)原不等式可化为 注函数的单调性是解指数不等式、对数不等式的重要依据。例5-3-8 解不等式log x+1(x2-x-2)>1。 解[法一] 原不等式同解于

所以原不等式的解为x>3。 [法二] 原不等式同解于 log x+1(x2-x-2)>log x+1(x+1) 所以原不等式的解为x>3。 注解这类对数不等式,要注意真数为正数,并须对底数的分类讨论。 解原不等式可化为 22x-6×2x-16<0 令2x=t(t>0),则得 t2-6t-16<0 (t+2)(t-8)<0 -2<t<8 又t>0,故0<t<8即0<2x<8,解得x<3。 注解这类指数不等式,常常需要通过变量代换把它变为整式不等式来解。 解原不等式可化为

解得t<-2或0<t<1,即 注解不同底的对数不等式,应先化为同底对数的不等式,再利用对数函数的单调性将它转化为整式不等式求解。这时也常常用到换元法。 例5-3-11设a>0且a≠1,解不等式 解原不等式可化为 令log a x=t,则得

当0<a<1时,由指数函数的单调性,有 4-t2<1-2t t2-2t-3>0 (t+1)(t-3)>0 t<-1,或t>3 当a>1时,则有 4-t2>1-2t t2-2t-3<0 (t+1)(t-3)<0 -1<t<3 注解既含指数又含对数的不等式的基本思想是“化同底,求单一”,即把不同底的指数或对数化为同底的,再通过函数的单调性将复合情形转化为只含指数或对数的单一情形求解。 例5-3-12设f(x)是定义在实数集R内的函数,对任意x,y∈R,有 f(x+y)=f(x)·f(y);并且当x>0时,f(x)>1,f(1)=a。解关于x的不等式f(x2+x-4)>a2。 分析由题设条件容易联想到f(x)是指数型函数,又a2=f(1)·f(1)=f(2),故原不等式同解于f(x2+x-4)>f(2)。于是,问题归结为先确定f(x)的单调性,再解一个二次不等式。 =0,否则,对任意x∈R,有 f(x)=f((x-x0)+x0)=f(x-x0)f(x0)=0 与已知矛盾,所以对任意x∈R,有f(x)>0。 现设x,y∈R,且y=x+δ(δ>0)。则 f(y)-f(x)=f(x+δ)-f(x)=f(x)f(δ)-f(x) =f(x)[f(δ)-1]>0(∵δ>0,∴f(δ)>1)。 故f(x)在R内是增函数。于是原不等式同解于 x2+x-4>2 x2+x-6>0 x<-3或x>2

函数的单调性与最值(含例题详解)

函数的单调性与最值 一、知识梳理 1.增函数、减函数 一般地,设函数f(x)的定义域为I,区间D?I,如果对于任意x1,x2∈D,且x1f(x2) . 2.单调区间的定义 若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间. 3.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件①对于任意x∈I,都有 f(x)≤M;②存在x0∈I,使得 f(x0)=M ①对于任意x∈I,都有f(x)≥M;②存在 x0 ∈ I,使得f(x0) =M 结论M为最大值M为最小值 注意: 1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 2.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但 f(x)·g(x),1等的单调性与其正负有关,切不可盲目类比. f( x) [试一试] 1.下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=ln(x+2) B.y=-x+1 D.y=x+1 解析:选 A 选项 A 的函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数. 2.函数f(x)=x2-2x(x∈[-2,4])的单调增区间为___ ;f(x)max= ________ . 解析:函数f(x)的对称轴x=1,单调增区间为[1,4],f(x)max=f(-2)=f(4)=8. 答案:

复合函数的单调性与不等式恒成立问题

复合函数的单调性与不等式恒成立问题 班级 学号 姓名 1、对于(0,3)上的一切实数x ,不等式()122-<-x m x 恒成立,则实数m 的取值范围是 。 2、不等式a 220x ax ++≥对任意x ∈R 恒成立,则a 的取值范围为 . 3、不等式022 ≥-+ax ax 的解集为φ,则a 的取值范围为 . 4、当[]1,3x ∈时,不等式220x ax ++>恒成立,则a 的范围为 . 5、当[]1,3a ∈时,不等式220x ax ++>恒成立,则x 的范围为 . 6、已知函数36,2(),63,2x x y f x x x +≥-?==?--<-? 若不等式()2f x x m ≥-恒成立,则实数m 的取值范围是 . 6.若二次函数()()22 42221f x x p x p p =----+在区间[-1,1]内至少存在一实数c ,使f(c)>0,则实数p 的取值范围 ( ) A .121<<-p B .233<<-p C .3-≤p D .2 13-<<-p 8.若满足不等式08603422<+-<+-x x x x 和同时成立的x 的值,使关于x 的不等式0 922<+-a x x 也成立,则 ( ) A .9>a B .9=a C .90≤+p x px x 恒成立的x 的取值范围是 . 7、已知a ax x x f -++=3)(2 ,若2)(],2,2[≥-∈x f x 恒成立,求a 的取值范围. 例1.若函数bx x a x f 1)1()(2++=,且3)1(=f ,2 9)2(=f ⑴求b a ,的值,写出)(x f 的表达式 ; ⑵判断)(x f 在),1[+∞上的增减性,并加以证明。 例4.已知f(x)=x a x x ++22 >0在x ∈[)+∞,1上恒成立,求实数a 的取值范围。

证明函数单调性的方法总结

证明函数单调性的方法总结 导读:1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的'单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 【证明函数单调性的方法总结】 1.函数单调性的说课稿 2.高中数学函数的单调性的教学设计 3.导数与函数的单调性的教学反思

《函数的单调性》教材分析

《函数的单调性》教材分析 一、内容结构 1、通过观察几个不同的函数图像,直观感受图像的变化 教材中通过以下三个不同的函数图像,让学生去发现它的变化规律,从而体验函数图像的上升与下降的变化。 2、结合直观图像和列表,归纳函数值的变化规律 教材中以二次函数为例,先从图像直观函数图像的上升与下降的变化,再结合列表归纳函数在某个区间上函数值与自变量的变化规律。 3、由特殊过渡到一般,得出增(减)函数的定义 教材中先由函数在某个区间上函数值与自变量的变化规律定义出该函数在某个区间是增函数还是减函数,再由特殊向一般转变,从而得出一般的增(减)函数的定义。 4、利用增(减)函数的定义,证明函数的单调性 教材中通过证明玻意耳定理,让学生得知如何利用定义证明函数的增减性,从而归纳证明函数单调性的一般证明方法与步骤。 二、教学目标与教学重、难点 依据课程标准的具体要求以及基于教材内容的具体分析,制定本节课的教学目标为: 1.通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质。 2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数的单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。 3.能够用函数的性质解决生活中简单的实际问题,使学生感受到学习单调性的必要性与重要性,增强学生学习函数的紧迫感,激发其积极性。

在本节课的教学中以函数的单调性的概念为线,它始终贯穿于教师的整个课堂教学过程和学生的学习过程;利用函数的单调性的定义证明简单函数的单调性是对函数单调性概念的深层理解,且“取值、作差与变形、判断、结论”过程学生不易掌握。所以对教学的重点、难点确定如下 教学重点:函数的单调性的判断与证明; 教学难点:增、减函数形式化定义的形成及利用函数单调性的定义证明简单函数的单调性。 三、地位与作用 《函数的单调性》选自人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性。这节内容是初中有关内容的深化、延伸和提高。这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的。教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。 四、教学建议 函数的单调性是描述函数的整体特征之一,因此观察函数的图像时,首先应注意图像的升降变化,还有某些特殊位置的函数值的状态。让学生观察图像获得图像的变化规律时,应注意使用数形结合的思想。此外教学时,要特别重视从几个实例的共同特征过渡到一般性质的概括过程,引导学生用数学语言表示出来,生成数学概念。具体的,研究函数单调性应遵循“三步曲”: 第一步:观察图像,直观感知图像的变化 第二步:结合图表,用自然语言描述函数图像的变化规律 第三步:用数学语言定义函数的单调性

相关文档
相关文档 最新文档