文档库 最新最全的文档下载
当前位置:文档库 › 数字电压表原理图及程序设计

数字电压表原理图及程序设计

数字电压表原理图及程序设计
数字电压表原理图及程序设计

1. 实验任务

利用单片机AT89S51与ADC0809设计一个数字电压表,能够测量0-5V之间的直流电压值,四位数码显示,但要求使用的元器件数目最少。2.电路原理图

图1.28.1

3.系统板上硬件连线

1) 把“单片机系统”区域中的P1.0-P1.7与“动态数码显示”区域中的

ABCDEFGH端口用8芯排线连接。

2) 把“单片机系统”区域中的P2.0-P2.7与“动态数码显示”区域中的

S1S2S3S4S5S6S7S8端口用8芯排线连接。

3) 把“单片机系统”区域中的P3.0与“模数转换模块”区域中的ST端

子用导线相连接。

4) 把“单片机系统”区域中的P3.1与“模数转换模块”区域中的OE端

子用导线相连接。

5) 把“单片机系统”区域中的P3.2与“模数转换模块”区域中的EOC

端子用导线相连接。

6) 把“单片机系统”区域中的P3.3与“模数转换模块”区域中的CLK端

子用导线相连接。

7) 把“模数转换模块”区域中的A2A1A0端子用导线连接到“电源模

块”区域中的GND端子上。

8) 把“模数转换模块”区域中的IN0端子用导线连接到“三路可调电压

模块”区域中的VR1端子上。

9) 把“单片机系统”区域中的P0.0-P0.7用8芯排线连接到“模数转

换模块”区域中的D0D1D2D3D4D5D6D7端子上。

4.程序设计内容

1. 由于ADC0809在进行A/D转换时需要有CLK信号,而此时的

ADC0809的CLK是接在AT89S51单片机的P3.3端口上,也就是要求

从P3.3输出CLK信号供ADC0809使用。因此产生CLK信号的方法就得用软件来产生了。

2.由于ADC0809的参考电压VREF=VCC,所以转换之后的数据要经

过数据处理,在数码管上显示出电压值。实际显示的电压值

(D/256*VREF)

5. C语言源程序

#include

unsigned char code dispbitcode[]={0xfe,0xfd,0xfb,0xf7, 0xef,0xdf,0xbf,0x7f};

unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,0x66, 0x6d,0x7d,0x07,0x7f,0x6f,0x00};

unsigned char dispbuf[8]={10,10,10,10,10,0,0,0};

unsigned char dispcount;

unsigned char getdata;

unsigned int temp;

long int i;

sbit ST=P3^0;

sbit OE=P3^1;

sbit EOC=P3^2;

sbit CLK=P3^3;

void main(void)

{

ST=0;

OE=0;

ET0=1;

ET1=1;

EA=1;

TMOD=0x12;

TH0=216;

TL0=216;

TH1=(65536-5000)/256;

TL1=(65536-5000)%256;

TR1=1;

TR0=1;

ST=1;

ST=0;

while(1)

{

if(EOC==1)

{

OE=1;

getdata=P0;

OE=0;

i=getdata*196;

dispbuf[5]=i/10000;

i=i%10000;

dispbuf[6]=i/1000;

i=i%1000;

dispbuf[7]=i/100;

ST=1;

ST=0;

}

}

}

void t0(void) interrupt 1 using 0 //定时器0 中断服务{

CLK=~CLK;

}

void t1(void) interrupt 3 using 0 //定时器1 中断服务{

TH1=(65536-6000)/256;

TL1=(65536-6000)%256;

P1=dispcode[dispbuf[dispcount]];

P2=dispbitcode[dispcount];

if(dispcount==5)

{

P1=P1 | 0x80;

}

dispcount++;

if(dispcount==8)

{

dispcount=0;

}

}

多路数字电压表

多路数字电压表 1.课程设计的目的 本次设计了一个多路数字电压表,该电压表测量范围在0—5V之间。它主要利用A/D转换器,对多路电压值进行采样,得到相应的数字量,然后按照数字量与模拟量的比例关系得到对应的模拟电压值,通过显示设备显示出来。系统过程就是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示。由于采用高性能的单片机芯片为核心,同时利用LED数码管为显示设备,这样就使显示清晰直观、读数准确,大大地减少了因人为因素所造成的测量误差事件,大大的提高了测量的精确度。 2. 设计方案论证 2.1 设计方案的选择 单片机是一种集成电路芯片,采用超大规模技术把具有数据处理能力(如算术运算,逻辑运算、数据传送、中断处理)的微处理器(CPU)。随着单片机技术的飞速发展,各种单片机蜂拥而至,单片机技术已成为一个国家现代化科技水平的重要标志。 单片机可单独地完成现代工业控制所要求的智能化控制功能,这是单片机最大的特征。单片机控制系统能够取代以前利用复杂电子线路或数字电路构成的控制系统,可以软件控制来实现,并能够实现智能化。现在单片机控制范畴无所不在,例如通信产品、家用电器、智能仪器仪表、过程控制和专用控制装置等等,单片机的应用领域越来越广泛。本次课程设计的课题是“基于单片机的多路数字电压表的设计”。主要考核我们对单片机技术,编程能力等方面的情况。观察独立分析、设计单片机的能力,以及实际编程技能。 传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便。通过单片机,采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表,使测得的结果更为精准。 本课题主要解决A/D转换、数据处理及显示控制等三个模块。控制系统采用AT89C52单片机,A/D转换采用ADC0809。 2.2 设计任务 沈阳大学

数字电压表的设计实验报告

课程设计 ——基于51数字电压表设计 物理与电子信息学院 电子信息工程 1、课程设计要求 使用单片机AT89C52和ADC0832设计一个数字电压表,能够测量0-5V之间的直流电压值,两位数码显示。在单片机的作用下,能监测两路的输入电压值,用8位串行A/D转换器,8位分辨率,逐次逼近型,基准电压为 5V;能用两位LED进行轮流显示或单路选择显示,显示精度0.1伏。 2、硬件单元电路设计 AT89S52单片机简介 AT89S52是一个低功耗,高性能CMOS 8位单片机,片内含8k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存

储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS -51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S52可为许多嵌入式控制应用系统提供高性价比的解决方案。 AT89S52具有如下特点:40个引脚,8k Bytes Flash片内程序存储器,256 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级,2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。 ADC0832模数转换器简介 ADC0832 是美国国家半导体公司生产的一种8 位分辨率、双通道A/D转换芯片。由于它体积小,兼容性强,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率。学习并使用ADC0832 可是使我们了解A/D转换器的原理,有助于我们单片机技术水平的提高。 图1 芯片接口说明: 〃 CS_ 片选使能,低电平芯片使能。 〃 CH0 模拟输入通道0,或作为IN+/-使用。

基于单片机的数字电压表设计

引言 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本论文重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

1 实训要求 (1)基本要求: ①实现8路直流电压检测 ②测量电压范围0-5V ③显示指定电压通道和电压值 ④用按键切换显示通道 (2)发挥要求 ①测量电压范围为0-25V ②循环显示8路电压 2 实训目的 (1)进一步熟悉和掌握单片机的结构和工作原理; (2)掌握单片机的借口技术及,ADC0809芯片的特性,控制方法; (3)通过这次实训设计,掌握以单片机为核心的电路设计的基本方法和技术;(4)通过实际程序设计和调试,逐步掌握模块化程序设计的方法和调试技术。 3 实训意义 通过完成一个包括电路设计和程序开发的完整过程,使自身了解开发单片机应用系统的全过程,强化巩固所学知识,为以后的学习和工作打下基础。 4 总体实训方案 测量一个0——5V的直流电压,通过输入电路把信号送给AD0809,转换为数字信号再送至89s52单片机,通过其P1口经数码管显示出测量值。 4.1 结构框图 如图1—1所示 图1—1

单片机课程设计报告——数字电压表[1]剖析

数字电压表 单片机课程设计报告 班级: 姓名: 学号: 指导教师: 2011 年3 月29 日

数字电压表电路设计报告 一、题目及设计要求 采用51系列单片机和ADC设计一个数字电压表,输入为0~5V线性模拟信号,输出通过LED显示,要求显示两位小数。 二、主要技术指标 1、数字芯片A/D转换技术 2、单片机控制的数码管显示技术 3、单片机的数据处理技术 三、方案论证及选择 主要设计方框图如下: 1、主控芯片 方案1:选用专用转化芯片INC7107实现电压的测量和实现,用四位数码管显示出最后的转换电压结果。缺点是京都比较低,内部电压转换和控制部分不可控制。优点是价格低廉。 方案2:选用单片机AT89C51和A/D转换芯片ADC0809实现电压的转换和控制,用四位数码管显示出最后的转换电压结果。缺点是价格稍贵;优点是转换京都高,且转换的过程和控制、显示部分可以控制。 基于课程设计的要求和实验室能提供的芯片,我选用了:方案2。 2、显示部分 方案1:选用4个单体的共阴极数码管。优点是价格比较便宜;缺点是焊接时比较麻烦,容易出错。 方案2:选用一个四联的共阴极数码管,外加四个三极管驱动。这个电路几乎没有缺点;优点是便于控制,价格低廉,焊接简单。 基于课程设计的要求和实验室所能提供的仪器,我选用了:方案2。

四、电路设计原理 模拟电压经过档位切换到不同的分压电路筛减后,经隔离干扰送到A/D 转换器进行A/D 转换。然后送到单片机中进行数据处理。处理后的数据送到LED 中显示。同时通过串行通讯与上位通信。硬件电路及软件程序。而硬件电路又大体可分为A/D 转换电路、LED 显示电路,各部分电路的设计及原理将会在硬件电路设计部分详细介绍;程序的设计使用汇编语言编程,利用Keil 和PROTEUS 软件对其编译和仿真。 一般I/O 接口芯片的驱动能力是很有限的,在LED 显示器接口电路中,输出口所能提供的驱动电流一般是不够的尤其是设计中需要用到多位LED ,此时就需要增加LED 驱动电路。驱动电路有多种,常用的是TTL 或MOS 集成电路驱动器,在本设计中采用了74LS244驱动电路。 本实验采用AT89C51单片机芯片配合ADC0808模/数转换芯片构成一个简易的数字电压表,原理电路如图1所示。该电路通过ADC0808芯片采样输入口IN0输入的0~5 V 的模拟量电压,经过模/数转换后,产生相应的数字量经过其输出通道 D0~D7传送给AT89C51芯片的P0口。AT89C51负责把接收到的数字量经过数据处理,产生正确的7段数码管的显示段码,并通过其P1口传送给数码管。同时它还通过其三位I/O 口P1.0、P1.1、P1.2、P1.3产生位选信号,控制数码管的亮灭。另外,AT89C51还控制着ADC0808的工作。其ALE 管脚为ADC0808提供了1MHz 工作的时钟脉冲;P2.4控制ADC0808的地址锁存端 (ALE);P2.1控制ADC0808的启动端(START);P2.3控制ADC0808的输出允许端(OE);P2.0控制ADC0808的转换结束信号(EOC)。 电路原理图如下所示,三个地址位ADDA,ADDB,ADDC 均接高电平+5V 电压,因而所需测量的外部电压可由ADC0808的IN7端口输入。由于ADC0808

8通道的数字电压表设计报告

8通道的数字电压表 设计方案

目录 第一章设计分析 (1) 第二章硬件电路分析 (3) 2.1单片机AT89C51的分析 (3) 2.2 ADC0808的分析 (4) 2.3显示译码器和LED分析 (5) 第三章程序设计分析 (6) 3.1主函数 (6) 3.2A/D转换函数 (6) 3.4中断服务函数 (6) 第四章调试过程分析及仿真 (7) 第五章总结 (8) 第六章附录 (9)

第一章设计分析 设计一个8通道的电压表,基于AT89X51单片机(在professional中使用的AT89C51)和ADC0809(在professional中使用的ADC0808)芯片实现模数转换,由74247显示译码器和4位LED数码管连接并显示,具有通道自选和量程(0-5v 的电压)变换的功能。 设计方案如下: 采用定时器/计数器T0、T1定时,T0定时溢出中断时对P3.7取反,输出频率为10KHZ的方波信号,作为ADC0808的转换时钟信号,T1定时1MS,定时溢出中断后,在中断服务程序中完成在数码管显示A/D转换结果的任务。 采用主程序、子程序结构。主程序中完成定时器的初始化设置,产生A/D 转换的启动,在转换过程中判别转换是否结束。当转换结束时,让输入允许OE 有效,将转换结果通过P0口读到单片机内部RAM单元格储存。将二进制数转换为十进制数的程序设计成子程序,在主程序中调用。将LED数码管的动态显示设计成子程序,在T1的中断服务程序中调用。

第二章硬件电路分析 2.1单片机AT89C51的分析 AT89C51 的引脚 (1)工作电源端 Vcc:接+5V电源 Vss:接地 (2)晶振引脚(时钟电路) XTAL1:芯片内部振荡电路输入端。 XTAL2:芯片内部振荡电路输出端(3)并行I/O口引脚 (4)控制引脚

双通道数字电压表课程设计

目录 1 引言.......................................................... - 2 - 2设计原理及要求................................................ - 2 - 2.1数字电压表的实现原理..................................... - 2 - 2.2数字电压表的设计要求..................................... - 2 - 3软件仿真电路设计................................. 错误!未定义书签。 3.1设计思路.................................... 错误!未定义书签。 3.3设计过程.................................... 错误!未定义书签。 3.4 AT89C51的功能介绍....................................... - 3 - 3.4.1简单概述........................................... - 3 - 3.4.2主要功能特性....................................... - 3 - 3.4.3 AT89C51的引脚介绍................................. - 3 - 3.5 ADC0808的引脚及功能介绍................................. - 5 - 3.5.1芯片概述........................................... - 5 - 3.5.2 引脚简介........................................... - 5 - 3.5.3 ADC0808的转换原理................................. - 6 - 3.6 74LS373芯片的引脚及功能................................. - 6 - 3.6.1芯片概述........................................... - 6 - 3.6.2引脚介绍........................................... - 6 - 3.7 LED数码管的控制显示..................................... - 7 - 3.7.1 LED数码管的模型................................... - 7 - 3.7.2 LED数码管的接口简介............................... - 7 - 4系统软件程序的设计............................... 错误!未定义书签。 4.1 主程序................................................. - 15 - 4.2 A/D转换子程序.......................................... - 16 - 4.3 中断显示程序............................... 错误!未定义书签。5电压表的调试及性能分析........................... 错误!未定义书签。 5.1 调试与测试................................. 错误!未定义书签。 5.2 性能分析............................................... - 17 - 6电路仿真图....................................... 错误!未定义书签。7总结......................................................... - 14 - 参考文献........................................... 错误!未定义书签。

基于51单片机的数字电压表设计

目录 摘要........................................................................ I 1 绪论. (1) 1.1数字电压表介绍 (1) 1.2仿真软件介绍 (1) 1.3 本次设计要求 (2) 2 单片机和AD相关知识 (3) 2.1 51单片机相关知识 (3) 2.2 AD转换器相关知识 (4) 3 数字电压表系统设计 (5) 3.1系统设计框图 (5) 3.2 单片机电路 (5) 3.3 ADC采样电路 (6) 3.4显示电路 (6) 3.5供电电路和参考电压 (7) 3.6 数字电压表系统电路原理图 (7) 4 软件设计 (8) 4.1 系统总流程图 (8) 4.2 程序代码 (8) 5 数字电压表电路仿真 (15) 5.1 仿真总图 (15) 5.2 仿真结果显示 (15) 6 系统优缺点分析 (16) 7 心得体会 (17) 参考文献 (18)

1 绪论 1.1数字电压表介绍 数字电压表简称DVM,数字电压表基本原理是将输入的模拟电压信号转化为数字信号,再进行输出显示。而A/D转换器的作用是将连续变化的模拟信号量转化为离散的数字信号,器基本结构是由采样保持,量化,编码等几部分组成。因此AD转换是此次设计的核心元件。输入的模拟量经过AD转换器转换,再由驱动器驱动显示器输出,便得到测量的数字电压。 本次自己的设计作品从各个角度分析了AD转换器组成的数字电压表的设计过程及各部分电路的组成及原理,并且分析了数模转换进而使系统运行起来的原理及方法。通过自己的实践提高了动手能力,也只有亲历亲为才能收获掌握到液晶学过的知识。其实也为建立节约成本的意识有些帮助。本次设计同时也牵涉到了几个问题:精度、位数、速度、还有功耗等不足之处,这些都是要慎重考虑的,这些也是在本次设计中的收获。 1.2仿真软件介绍 Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。它运行于Windows 操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是: (1)现了单片机仿真和SPICE电路仿真相结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 (2)支持主流单片机系统的仿真。目前支持的单片机类型有:68000系列、8051系列、 A VR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 (3)提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。 (4)具有强大的原理图绘制功能。 可以仿真51系列、A VR、PIC、ARM、等常用主流单片机。还可以直接在基于原理图的虚拟原型上编程,再配合显示及输出,能看到运行后输入输出的效果。配合系统配置的

数字电压表设计课程设计

东北石油大学课程设计 2

东北石油大学课程设计任务书 课程硬件课程设计 题目数字电压表设计 专业 主要内容、基本要求等 一、主要内容: 利用EL教学实验箱、微机和QuartusⅡ软件系统,使用VHDL语言输入方法设计数字钟。可以利用层次设计方法和VHDL语言,完成硬件设计设计和仿真。最后在EL教学实验箱中实现。 二、基本要求: 1、A/D转换接口电路的设计,负责对ADC0809的控制。 2、编码转换电路设计,负责把从ADC0809数据总线中读出的电压转换成BCD码。 3、输出七段显示电路的设计,负责将BCD码用7段显示器显示出来。 三、参考文献 [1] 潘松.EDA技术实用教程[M].北京:科学出版社, 2003.11-13. [2] 包明.《EDA技术与数字系统设计》.北京航天航空大学出版社. 2002. [3] EDA先锋工作室.Altera FPGA/CPLD设计[M].北京:人民邮电出版社 2005.32-33. [4] 潘松.SOPC技术实用教程[M] .清华大学出版社.2005.1-15. 完成期限第18-19周 指导教师 专业负责人

摘要 本文介绍了基于EDA技术的8位数字电压表。系统采用CPLD为控制核心,采用VHDL语言实现,论述了基于VHDL语言和CPLD芯片的数字系统设计思想和实现过程。在硬件电子电路设计领域中,电子设计自动化(EDA)工具已成为主要的设计手段,而VHDL语言则是EDA的关键技术之一,。VHDL的英文全名是 Very-High-Speed Integrated Circuit HardwareDescription Language,它采用自顶向下的设计方法,即从系统总体要求出发,自上至下地将设计任务分解为不同的功能模块,最后将各功能模块连接形成顶层模块,完成系统硬件的整体设计。 电子设计自动化技术EDA的发展给电子系统的设计带来了革命性的变化,EDA软件设计工具,硬件描述语言,可编程逻辑器件(PLD)使得EDA技术的应用走向普及。CPLD是新型的可编程逻辑器件,采用CPLD进行产品开发可以灵活地进行模块配置,大大缩短了产品开发周期,也有利于产品向小型化,集成化的方向发展。而 VHDL语言是EDA的关键技术之一,它采用自顶向下的设计方法,完成系统的整体设计。 本文用CPLD芯片和VHDL语言设计了一个八位的数字电压表。它的计时周期为24小时,显示满刻度为23时59分59秒,另外还具有校时功能和闹钟功能。总的程序由几个各具不同功能的单元模块程序拼接而成,其中包括分频程序模块、时分秒计数和设置程序模块、比较器程序模块、三输入数据选择器程序模块、译码显示程序模块和拼接程序模块。 关键词:数字电压表;QuartusⅡ软件;EDA(电子设计自动化)

多路数字电压表要点

多路数字电压表 摘要 随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段,对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。数字电压表(Digital V oltmeter)简称DVM,它采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。 本文中数字电压表的控制系统采用AT89C52单片机,A/D转换器采用 ADC0809为主要硬件,实现数字电压表的硬件电路与软件设计该系统的数字电压表电路简单,所用的元件较少,成本低,调节工作可实现自动化。还可以方便地进行8路A/D转换量的测量远程测量结果传送等功能。数字电压表可以测量 0-5V的8路输入电压值,并在四位LED数码管上轮流显示或单路选择显示。 关键词:单片机,电压,A/D转换,ADC0809 I

沈阳工程学院课程设计(论文) Abstract In modern measuring technology,it is often required to conduct site measuring with a digital voltmeter.The data measured will then be input into the micro-computer system to execute such functions like calculating,storing,controlling and displaying.The digital voltmeter control system described in this paper makes use of AT89C52 SC computer and ADC0809 A/D converter to fulfill the designing of the software as well as the electrical circuit. The voltmeter features in simple electrical circuit,Lower use of elements,low cost and automatic regulation,while it can also easily carry out the duties of measuring A/D converted values from 8 routes and remote transfer of measuring data.The meter is capable of measuring voltage inputs from 8 routes ranging from 0 to 5 volt.And displaying the measurements in turn or only that from a selected route. Key words:Micro Controller Unit,Voltmeter,A/D switch,ADC0809 II

自动测试实验数据采集系统的设计------多通道数字电压表的实现

实验三数据采集系统的设计 ——多通道数字电压表的实现 一、实验目的和要求 1.熟悉仿真器的使用方法; 2.了解教学实验系统的结构和地址译码方式; 3.掌握仪器系统中对模拟量信号的数据采集方法,了解数据采集系统的组成及单片机中的两种实现方法——利用外接专用ADC器件完成,利用片内ADC部件完成; 4.掌握系统中ADC接口的实现方法,进一步熟悉ADC0809的使用方法; 5.基本掌握智能仪器中数据运算和数据处理的方法; 6.体会一个典型仪器系统的总体设计思路 二、实验内容 模拟信号是最常见的被测信号,对它的采集与测量是自动化测试仪器中很重要的一部分。在许多高性能单片机内部拥有ADC部件,具有直接ADC功能。在没有片内ADC部件的单片机中,可直接选用专用ADC器件来完成。逐次比较式ADC器件转换速度快,性能价格比高,是当前ADC技术的主流,在本实验中以ADC0809为例来实现多通道数据采集过程。 1.利用实验系统上提供的ADC0809接口电路,当寻址为8000H~8007H时,可分别实现对VX0—VX7八个通道的模/数转换,

被测模拟电压有自制的+5V电阻分压网络提供,通过对ADC结束信号EOC的查询完成ADC结果的读入。如此循环采集每个通道10次,将所得数据一次存入片内RAM单元。 2.将每个通道10次采集所得的数据进行数字滤波处理,可采用限幅滤波和算术平均滤波或中值滤波的方法,并将结果依次存入指定的外部RAM单元。 3.将存入指定的外部RAM单元的十六进制被测数据通过标度转换变成十进制结果存入相应的外部RAM单元。 4.调用可手动切换的显示子程序(即第一节实验中的用上行/下行按键,手动控制显示程序),将八个通道的结果显示在LED数码管上。 流程图可参考图3-1 图3-1 三、实验仪器、设备(软、硬件)及仪器使用说明 1.计算机

#简易数字电压表的设计

一、简易数字电压表的设计 l .功能要求 简易数字电压表可以测量0~5V 的8路输入电压值,并在四位LED 数码管上轮流显示或单路选择显示。测量最小分辨率为0.019 V ,测量误差约为土0.02V 。 2.方案论证 按系统功能实现要求,决定控制系统采用A T89C52单片机,A /D 转换采用ADC0809。系统除能确保实现要求的功能外,还可以方便地进行8路其它A /D 转换量的测量、远程测量结果传送等扩展功能。数字电压表系统设计方案框图如图1-1。 3.系统硬件电路的设 计 简易数字电压测量电 路由A /D 转换、数据处 理及显示控制等组成,电 路原理图如图1-2所示。A /D 转换由集成电路0809完 成。0809具有8路模拟输人 端口,地址线(23~25脚)可决定对哪一路模拟输入作A /D 转换,22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存,6脚为测试控制,当输入一个2us 宽高电平脉冲时,就开始A /D 转换,7脚为A /D 转换结束标志,当A /D 转换结束时,7脚输出高电平,9脚为A /D 转换数据输出允许控制,当OE 脚为高电平时,A /D 转换数据从该端口输出,10脚为0809的时钟输入端,利用单片机30脚的六分频晶振频率再通过14024二分频得到1 MHz 时钟。单片机的P1、P3.0~P3.3端口作为四位LED 数码管显示控制。P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。P0端口作A /D 转换数据读入用,P2端口用作0809的A /D 转换控制。 4.系统程序的设计 (1)初始化程序 系统上电时,初始化程序将70H ~77H 内存单元清0,P2口置0。 (2)主程序 在刚上电时,系统默认为循环显示8个通道的电压值状态。当进行一次测量后,将 图1-1 数字电压表系统设计方案

基于单片机的多路数字电压表设计

本科毕业论文 分类号 学号 密 级题 目 (中、英作者姓名 指导教师 学科门类 提交论文日期专业名称 学校代码 成绩评定 工 学

摘要 近十几年来,单片机技术的发展极为迅速,广泛应用于生产、生活的各个领域。从测量领域来看,一部分电子测量仪表在高速化、精确化方面有了明显的进步。电子测量仪表精确度的高低,直接影响着企业的经济效益。在我国现有经济水平下,使用单片机开发的电子测量仪表,测量精确而且性价比极高,不仅适用于电压、电流、电阻等的测量,还广泛适用于温度、湿度等测量场合。 本课题设计的多路数字电压表具有性能稳定、携带方便、显示清晰直观、读数准确,大大地减少了因人为因素所造成的测量误差事件,大大的提高了测量的精确度。 关键词:数字电压表;AT89C51;ADC0808

Abstract In recent years,the technology of SCM has got a jolly rapid development and been widely used in every field of our life and production.Judging from the measure realm,some electronical measuring instruments have remarkable improvments in its speed and accuracy.the accuracy of electronical measuring instruments directly affect enterprises' economic effectiveness.In the current economic level of our country,electronical measuring instruments developed by SCM have high accuracy as well as high cost performance,not only can be used to measure V oltage、Current and Resistance,but also be widely used in measuring temperature、humidity or some other Measurement situations. This topic design of multi-channel digital voltage meter has the advantages of stable performance, easy to carry, shows the clear and intuitive, accurate readings, greatly reducing the measurement error events caused by human factors, greatly improves the precision of measurement. Key words: D igital V oltage;AT89C51;ADC0808

虚拟数字电压表的设计

摘要 LabVIEw 8.5版本的工程技术比以往任何一个版本都丰富.它采用了中文界面,各个控件的功能一目了然。利用它全新的用户界面对象和功能,能开发出专业化、可完全自定义的前面板。LabVIEw 8.5对数学、信号处理和分析也进行了重大的补充和完善,信号处理分析和数学具有更为全面和强大的库,其中包括500多个函数。所以在LabVIEw 8.5版本下能够更方便地实现虚拟电压表的设计。 虚拟电压表是基于计算机和标准总线技术的模块化系统,通常它由控制模块、仪器模块和软件组成,由软件编程来实现仪器的功能。在虚拟仪器中,计算机显示器是惟一的交互界面,物理的开关、按键、旋钮以及数码管等显示器件均由与实物外观相似的图形控件来代替,操作人员只要通过鼠标或键盘操作虚拟仪器面板上的旋钮、开关、按键等设置各种参数,就能根据自己的需要定义仪器的功能。在虚拟电压表的设计中,考虑到仪器主要用于教学和实验,使用对象是学生,因此将引言中提到的三种检波方式的仪器合为一体,既简化了面板操作,又便于直接对比。 该电压表主要用于电路分析和模拟电子技术等实验课的教学和测量仪器,能够使学习者了解和掌握电压的测量和电压表对各种波形的不同响应。因此,虚拟电压表应具备电源开关控制、波形选择,以及显示峰值、有效值和平均值三种结果,且输入信号的大小可调节等功能。虚拟电压表由硬件设备与接口、设备驱动软件和虚拟仪器面板组成。其中,硬件设备与接口包括仪器接口设备和计算机,设备驱动软件是直接控制各种硬件接口的驱动程序,虚拟仪器通过底层设备驱动软件与真实的仪器系统进行通信,并以虚拟仪器面板的形式在计算机屏幕上显示与真实仪器面板操作相对应的各种控件。在此,用软件虚拟了一个信号发生器。该信号发生器可产生正弦波、方波和三角波,还可以输入公式,产生任意波形。根据需要,可调节面板上的控件来改变信号的频率和幅度等可调参数,然后检测电压表的运行情况。因此,在LabVIEW图形语言环境下设计的虚拟电压表主要分为两个部分:第一部分是虚拟电压表前面板的设计;第二部分是虚拟电压表流程图的设汁。

单片机课程设计 数字电压表设计

《单片机原理及应用》课程设计报告书 课题名称数字电压表设计 名姓 学号 专业

指导教师 机电与控制工程学院月年日 1 任务书 电压表是测量仪器中不可缺少的设备,目前广泛应用的是采用专用集成电路实现的数字电压表。本系统以8051单片机为核心,以逐次逼近式A/D转换器ADC0809、LED显示器为主体,设计了一款简易的数字电压表,能够测量0~5V的直流电压,最小分辨率为0.02V。 该设计大体分为以下几个部分,同时,各部分选择使用的主要元器件确定如下: 1、单片机部分。使用常见的8051单片机,同时根据需要设计单片机电路。 2、测量部分。该部分是实验的重点,要求将外部采集的模拟信号转换成数字信号,通过单片机的处理显示在显示器上,该部分决定了数字电压表的精度等主要技术指标。根据需要本设计采用逐次逼近型A∕D转换器ADC0809进行模数转换。 3、键盘显示部分。利用4×6矩阵键盘的一个按键控制量程的转换,3或4位LED显示。其中一位为整数部分,其余位小数部分。 关键词:8051 模数转换LED显示矩阵键盘 2 目录

1 绪论 (1) 2 方案设计与论证 (2) 3 单元电路设计与参数计算 (3) 4 总原理图及参考程序 (8) 5 结论 (14) 6 心得体会 (15) 参考文献16 (7) 3 1.绪论 数字电压表的基本工作原理是利用A/D转换电路将待测的模拟信号转换成数字信号,通过相应换算后将测试结果以数字形式显示出来的一种电压表。较之于一般的模拟电压表,数字电压表具有精度高、测量准确、读数直观、使用方便等优

点。 电压表的数字化测量,关键在于如何把随时连续变化的模拟量转化成数字量,完成这种转换的电路叫模数转换器(A/D)。数字电压表的核心部件就是A/D转换器,由于各种不同的A/D转换原理构成了各种不同类型的DVM。一般说来,A/D 转换的方式可分为两类:积分式和逐次逼近式。 积分式A/D转换器是先用积分器将输入的模拟电压转换成时间或频率,再将其数字化。根据转化的中间量不同,它又分为U-T(电压-时间)式和U-F(电压-频率)式两种。 逐次逼近式A/D转换器分为比较式和斜坡电压式,根据不同的工作原理,比较式又分为逐次比较式及零平衡式等。斜坡电压式又分为线性斜坡式和阶梯斜坡式两种。 在高精度数字电压表中,常采用由积分式和比较式相结合起来的复合式A/D转换器。本设计以8051单片机为核心,以逐次比较型A/D转换器ADC0809、LED 显示器为主体,构造了一款简易的数字电压表,能够测量1路0~5V直流电压,最小分辨率0.02V。 4 2.方案设计与论证 基于单片机的多路数字电压表电路的基本组成如图3.1所示。

数字电压表设计

《单片机课程设计》设计报告 设计题目: 姓名: 设计时间:2010-12-28 备注:

目录 1.引言 (2) 2.概述··2 2.1实验要求 (2) 2.2实验目的 (2) 2.3 实验器材 (2) 3.总体设计方案 (3) 3.1系统的总体结构 (3) 3.2芯片的选择 (4) 3.3 ADC0809 的主要性能指标 (4) 4.硬件电路设计 (6) 4.1 AT89S52 单片机最小系统 (6) 4.2 ADC0809 与AT89S52 单片机接口电路设计 (6) 4.3显示电路与AT89S52 单片机接口电路设计 (6) 5.软件设计 (7) 5.1 主程序图 (7) 5.2 ADC0809 电压采集程序框图 (8) 5.3显示程序框图 (9) 6.调试与测量结果分析 (10) 6.1实验系统连线图 (11) 6.2程序调试 (12) 6.3 仿真结果 (13) 6.4 实验结果分析 (14) 7.程序清单和系统原理图 (15) 7.1程序清单 (15) 7.2 系统原理图 (16) 8.实验总结和实验收获 (17)

1.引言 本次课程设计要求完成是数字电压表的设计,随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段,对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量 最为普遍。本次课程设计我们小组xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx该电路设计新颖、功能强大、可 扩展性强。 实验报告首先简要介绍了设计数字电压表的实验要求和目的;根据要求和目的设计出直流数字电压表的系统结构流程,以及硬件系统和软件系统的设计,并给出了硬件电路的设计细节,以及调试和仿真结果。最后进行了实验和心得体会的总结。 通过完成一个包括电路设计和程序开发的完整过程,使自身了解开发单片机应用系统的全过程,强化巩固所学知识,为以后的学习和工作打下基础。 2.概述 2.1实验要求 采用ADC0809 和AT89S52 单片机及显示电路完成0~5V 直流电压的检测 2.2实验目的 (1)进一步熟悉和掌握单片机的结构和工作原理; (2)掌握单片机的借口技术及,ADC0809芯片的特性,控制方法;(3)通过这次实训设计,掌握以单片机为核心的电路设计的基本

基于51单片机的数字电压表adc0808多种设计方案单通道、ADC0809双通道、多通道可选

基于ADC0809的数字电压表 摘要:数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表,是诸多数字化仪表的核心与基础,以数字电压表为核心,可以扩展成各种通用数字仪表,专用数字仪表一级各种非电量的数字化仪表几乎覆盖了电子电工测量、工业测量、自动化仪表等各个领域,它的应用已经非常普及了,数字电压表的主要技术指标在:测量范围,显示位数,测量速度,分辨率等方面。 本文是一基于单片机的数字电压表设计为研究内容。首先对数字电压表作了简单的介绍、接着对A/D转换器作了解、单片机AT89C51与ADC0809的数字电压表的制作原理和系统设计,主要介绍了数字电压表的硬件电路、软件电路和利用Proteus仿真软件进行仿真等内容,以及设计的数字电压表的实用价值和优点。 关键词:AT89C51 ADC0809 A/D转换器 Proteus仿真软件 基于ADC0808与ADC0809的数字电压表有多种设计方案 第一种,最基础的一通道,数据进行处理显示0.00——5.00V 第二种,双通道,数据进行处理显示0.00——5.00V,可先择某一通道显示,可以选择两通道循环显示。 第三种,多通道,数据进行处理显示0.00——5.00V,多通道循环显示。 第四种,多通道,数据进行处理显示0.00——5.00V,可切换单通道显示与多通道循环显示。

(二)系统的主要模块 根据设计要求,系统可以分为A/D转换模块、接口模块、显示模块。 1. A/D转换模块 采用ADC0809转换芯片,其中A/D转换器用于实现模拟量向数字量的转换,单电源供电。它是具有8路模拟量输入、8位数字量输出功能的A/D转换器,转换时间为100us,模拟输入电压范围为0V~5V,不需要零点和满刻度校准,功耗低,约15mW。 2. 接口模块 采用AT89C51单片机作为系统的控制单元,通过A/D转换将被测量转换为数字量送入单片机中,再由单片机产生显示码送入显示模块显示。此方案各种功能易于实现,成本低、功耗低,显示稳定。 3.方案设计的基本思路 设计主要采用AT89C51单片机芯片和ADC0809模/数转换芯片来完成一个简易的数字电压表,能够对输入的0V~5V的模拟直流电压进行测量。设计电路主要通

简易数字直流电压表的设计

电子制作课程考核报告 课程名称简易数字直流电压表的设计 学生姓名贾晋学号1313014041 所在院(系)物理与电信工程 专业班级电子信息工程1302 指导教师秦伟 完成地点 PC PROTEUS 2015年 6 月 13 日

简易数字直流电压表的设计 简易数字直流电压表的设计 摘要本文介绍一种基于AT89C51单片机的简易数字电压表的设计。该设计主要由三个模块组成:A/D转换模块,数据处理模块及显示模块。A/D转换芯片为ADC0808,它主要负责把采集到的模拟量转换为数字量再传送到数据处理模块。数据处理则是由芯片AT89C51来完成,主要负责把ADC0808传送来的数字量经过一定的数据处理,产生相应的显示码送到显示模块进行显示;并且,它还控制着ADC0808芯片工作。 该系统的数字电压表电路简单,所用的元件较少,成本低,且测量精度和可靠性较高。此数字电压表可以测量0-200V的模拟直流输入电压值,并通过数码管显示。 关键词单片机;数字电压表;AT89C51;ADC0808

目录 1 引言............................................................................................... 2 总体设计方案............................................................................... 2.1设计要求 ............................................................................... 2.2 设计思路 .............................................................................. 2.3 设计方案 .............................................................................. 3 详细设计....................................................................................... 3.1 A/D转换模块 .................................................................... 3.2 单片机系统 ........................................................................ 3.3 时钟电路 ............................................................................ 3.4 LED显示系统设计 ........................................................... 3.5 总体电路设计 .................................................................... 4 程序设计....................................................................................... 4.1 程序设计总方案 ................................................................ 4.2 系统子程序设计 ................................................................ 5 仿真............................................................................................. 5.1 软件调试 (11) 5.2 显示结果及误差分析 ........................................................ 结论................................................................................................. 参考文献........................................................................................... 附录...................................................................................................

相关文档
相关文档 最新文档