文档库 最新最全的文档下载
当前位置:文档库 › 电动汽车控制系统设计

电动汽车控制系统设计

电动汽车控制系统设计
电动汽车控制系统设计

摘要

在当前全球汽车工业面临金融危机和能源环境问题的巨大挑战的情况下,发展电动汽车,利用无污染的绿色能源,实现汽车能源动力系统的电气化,推动传统汽车产业的战略转型,在国际上已经形成了广泛共识。

本课题以电动汽车他励电机控制器为例,以实现电动汽车的加、减速,起、制动等基本功能以及一些特殊情况下的处理。以开发出高可靠性、高性能指标、低成本并且具有自主知识产权的电动汽车电机驱动控制系统为目的。主要包括硬件电路板的设计,以及驱动系统的软件部分的仿真调试。

在驱动系统硬件设计中,这里主控制芯片采用ATMEL公司的ATmega64芯片。功率模块采用多MOSFET并联的方式,有效的节约了成本。电源模块采用基于UC3842的开关电源电路。选用IR公司的IR2110作为驱动芯片,高端输出驱动电流可到1.9A,低端输出驱动电流可到2.3A,能够提供7个MOSFET并联时驱动电流。对于电流检测模块,本文没有采用电流传感器或者是康铜丝,而是采用了一种基于MOSFET管压降的电流检测电路,这种方式即节约了成本也保证了检测精度。

驱动系统的软件设计中,主要实现的功能为:开关量的检测处理,故障检测,串口通讯,励磁、电枢控制,报警功能等。针对他励电机电动汽车的控制特性,提出了节能控制算法和最大转矩控制算法,用于提高电动汽车的续航里程和加速性能。

他励直流电动机驱动系统能够很好的运行在电动汽车上,性能可靠、结构简

单,并且节约了成本,使电动汽车的性价比大大提高,有利于电动汽车的普及。

关键词:电动汽车,ATmega64,他励直流电机,PID模糊控制

目录

摘要 (1)

第一章绪论

1.1纯电动汽车在国内的发展状况 (3)

1.2 国外电动汽车发展现状 (3)

1.3 本课题的任务和主要工作 (4)

第二章他励电动机的控制理论基础

2.1他励直流电动机的调速与制动 (5)

2.1.1直流电动机电枢电动势和电磁转矩 (5)

2.1.2 他励直流电动机的机械特性 (6)

第三章系统的硬件设计

3.1系统硬件的整体设计方案 (10)

3.2主控制器MCU的介绍 (10)

3.2.1 MCU的选择 (10)

3.2.2 ATmega64的特性与内部结构 (11)

3.3开关电源模块 (12)

3.4电流检测模块 (13)

3.5驱动电路的设计 (16)

3.6电压检测电路 (17)

3.7温度检测电路 (18)

3.8加减速踏板信号检测电路 (19)

3.9 开关量输入信号 (20)

3.10蜂鸣器报警电路 (20)

3.11通讯模块电路设计 (21)

3.12硬件抗干扰的设计 (22)

3.13本章小结 (23)

第四章系统的软件设计

4.1 电动汽车的控制策略研究 (24)

4.1.1再生制动控制策略 (24)

4.1.2驱动控制策略 (24)

4.2 主要任务模块的详细设计 (26)

4.2.1主程序 (26)

4.2.2 励磁、电枢PWM控制模块 (27)

4.2.3 电动机速度测量 (28)

4.3 本章小结 (29)

第五章总结 (30)

参考文献 (31)

第一章绪论

1.1 纯电动汽车在国内的发展状况

与世界其他国家一样,电动汽车研发工作在我国也正在如火如荼的进行着:“十五”期间,国家从维护我国能源安全、改善大气环境、提高汽车工业竞争力、实现我国汽车工业的跨越式发展的战略高度考虑,设立“电动汽车重大科技专项’’,通过组织企业、高等院校和科研机构,集中国家、地方、企业、高校、科研院所等方面的力量进行联合攻关。为此,从2001年10月起,国家共计拨款8.8亿元作为这一重大科技专项的经费【1】。

我国电动汽车重大科技专项实施4年来,经过200多家企业、高校和科研院所的2 000多名技术骨干的努力,目前已取得重要进展:燃料电池汽车已经成功开发出性能样车,燃料电池轿车累计运行4000km,燃料电池客车累计运行8000km:混合动力客车已在武汉等地公交线路上试验运行超过140000km:纯电动轿车和纯电动客车均已通过国家有关认证试验。

国内主要汽车制造商对纯电动汽车的开发和研制也投入了相当的人力和物力,并取得了一定的成果。北京奥运会期间,奇瑞、长安、东风、一汽、京华及福田等汽车生产企业联合清华大学、北京理工大学等单位,向社会提供了自主研发的55辆纯电动锂电池汽车、25辆混合动力客车、75辆混合动力轿车、20辆燃料电池轿车,以及400辆纯电动场地车等各种新能源汽车为奥运会服务。奥运会后,科技部还将计划连续3年在国内10个以上有条件的大中城市开展千辆级混合动力汽车、纯电动汽车和燃料电池汽车、以及提供基础设施的大规模示范,到2010年底节能与新能源汽车达到1万辆。

最近,比亚迪公司新推出一款商业化的电动汽车比亚迪e6,为我国电动汽车产业做出了重大贡献。

1.2 国外电动汽车发展现状

近二十多年来,西方工业发达国家把电动汽车的研究开发看是作解决环境问题和能源问题的一种有效手段。美国政府动员全美所有科研机构进行电动汽车(Electric vehicle,简称EV)的研究,在1991年,美国通用汽车公司、福特汽车公司、克莱斯勒汽车公司共同协议,成立了“先进电池联合体”(USABC),共同研发新一代电动汽车所需要的高性能电池。为实现新的节能车而能保持现有汽车的价格和性能,美国先后推出了PNGV、Freedom CAR、AVP计划。法国政府推出“PREDIT m--2002/2006"计划,并给购买EV的用户提供5000法郎的补贴。

德国政府同9个主要公司签订了一份理解备忘录,为创建一个清洁能源城市(柏林)而结成同盟。英国、意大利等欧洲国家都在开展电动汽车的研发工作。而日本政府更是特别重视电动汽车的研究和开发。1998年日本东京电力公司联合日本电池公司,共同开发了“ZA一牌电动汽车,该电动汽

车采用了高新技术,使其具有当时EV的世界最高水平。而丰田汽车公司在1996年就已成功地研制出燃料电池汽车的生产样车,并先于其他汽车厂家在1997年开始批量生产混合动力电池汽车,成为环保技术领域和世界电动汽车产业化的领头羊。以上各国政府在大力扶持大型汽车集团的同时,纷纷通过制定环保和节能法规,采取投资、税收优惠、政府补贴促进消费的政策,旨在抢占电动汽车产业制高点。代表着当代EV先进水平的福特汽车公司的Think、通用汽车公司的Impact、丰田汽车公司的E.corn、Prius 电动汽车、本田公司的Civic电动汽车正是这种竞争的产物。

1.3 本课题的任务和主要工作

本文在广泛查阅相关文献的基础上,设计基于ATmega64的他励电机电动汽车控制系统。本文的主要工作归纳为以下几点:

1.介绍了他励电动机的控制理论基础与调速系统的仿真,为后章系统硬件与软件的设计做好了准备。

2. 讨论系统的硬件设计。详细讨论了开关电源模块电路、电流检测电路、串口通信电路、驱动电路、及抗干扰电路的设计。

3. 讨论系统的软件设计。设计系统的程序整体框架、各任务模块程序、中断服务程序和抗干扰程序。

4. 进行系统调试与实验。系统设计完成后进行硬件调试和软件调试,搭建实验平台,记录实验数据及图表,进行实验分析。

第二章他励电动机的控制理论基础

2.1他励直流电动机的调速与制动

为了满足各种生产机械对负载转矩特性的要求,在实际应用中需通过设法改变电动机的各种控制参数来达到所需的人为机械特性。由于他励直流电动机的可控参数多,易实现所需要的人为机械特性,所以在直流调速中较多地采用他励直流电动机,电动汽车中一般也是选用他励直流电动机作为直流驱动电动机。因此,需要给出直流电动机电枢电动势和电磁转矩的两个数学公式,从而导出他励直流电动机的机械特性数学方程式,即电动机的电磁转矩和转速之间的函数关系式n=f(t),然后才能说明如何改变方程式中的相关参数来获得所需人为机械特性。

2.1.1直流电动机电枢电动势和电磁转矩

1)电枢电动势。电枢电动势是指直流电动机正常工作时,电枢绕组切割气隙磁通所产生的电动势。无论是发电机还是电动机,只要电枢旋转切割磁通就有电枢电动势。根据前述直流电动机的结构原理可导出直流电动机电枢电动势Ea为:

(2.1)

式(2.1)中 P——电动机极对数;

N——电枢绕组总的导体数;

a——电枢绕组的支路对数;

φ——电动机每极磁通(Wb);

n——电动机转速(r/min);

c(e)——电动势常数。

2)电磁转矩。电磁转矩是指直流电动机的电枢绕组流过电流时,这些载流导体在磁场中所受力而形成的总转矩。同样按直流电动机的结构原理可推得直流电动机的电磁转矩T为:

(2.2)

式(2.2)中 I(a)——电枢电流(A);

C(t)——转矩常数。

电动势常数C(e)和转矩常数C(t)都是决定于电动机结构的数据,对于一台已制的电动机C(e)和C(T)都是恒定不变的常数,并且从式(2.1)和式(2.2)可知两者之间的关系为:

2.1.2 他励直流电动机的机械特性

得出他励直流电动机的机械特性数学方程式:

(2.3)

式(2.3)中 R(a)——电枢绕组内电阻;

R(c)——电枢外串联电阻;

n(0) ——理想空载转速;

β——机械特性斜率

其中,

2.1.3他励直流电动机的调速

通过对他励直流电动机的机械特性数学方程式(2.3)的分析,可知改变其中U、φ、R(c)三个参数即可改变其转速n。因此相应的调速方法也要降压、弱磁、串电阻三种:降压调速是改变电源电压U来获得恒转矩调速;弱磁调速是通过改变励磁电流I(f),从而改变电动机磁通量Φ来获得恒功率调速;串电阻调速是通过逐级改变电枢回路中所串电阻R(c)来进行调速,它使机械特性变软,并增加了功耗,所以目前很少采用,主要用在大电动机的起动过程,即通过逐级减小电枢回路中所串电阻来减小起动电流。而前两种调速方法目前用得较多,并也是电动

汽车中需配合采用的方法,现分别具体介绍如下:

(1)降低电源电压的恒转矩调速

保持他励直流电动机的磁通为额定值,电枢回路不串电阻,若将电源电压分别降低为U1、U2、U3等不同数值时,则可获得与固有机械特性平行的人为机械特性,如图2.1所示。图中所示的负载为恒转矩负载,在电源电压为额定值U(e)时,其工作点为e,电动机为额定转速n(e);当电压降低到U1时,工作点为A,转速为n(a);电压为U2时,工作点为B,转速为n(b)等。即转速随电源电压降低,调速方向是从基数(额定转速N(e))向下调节,并且电源电压为不同值时,其机械特性的斜率都与固有机械特性斜率相等,即特性较硬。通常电源电压不超过额定值,即采用连续降低电源电压来实现恒转矩无级调速,以获得如图2.3所示的从基速到零速段的调速控制。

(2)减弱磁通的恒功率调速

由于通常电动机额定运行时均已在磁通近饱和状态,故一般只能采用减弱磁通量的方法来调速。保持他励直流电动机电源为额定值,电枢回路不串联电阻,通过减小电动机的励磁电流I(f),即减弱电动机磁通Φ时,其机械特性方程式为:

(2.4)

从式(2.4)中可看出n(0)随φ的减弱成反比例增加,而△n随φ的二次方成反比地增加,若将近饱和额定磁通φ(e)的比例定为l,减弱后其比例也就小于l,平方后其比例是减小,因此n(0)比△n增加得快,即减弱磁通φ后电动机的转速n将升高,调速方向是从基速(额定转速n(e))向上调节。’弱磁调速的机械特性如图2.2所示。设电动机拖动恒转矩负载互运行于固有机械特性e点上,转速为n(e)。当磁通从φ(e)降到φ(1)时,转速n未能及时变化,而电枢电动势E(a)= c(e) φn(e),则因φ下降而减小,使电枢

电流I(a)=(U-E(a))/R(a)增大。由于R(a)较小,E(a)稍有减小就能使I(a)增加很多,此时虽然φ减小了,但它减小的幅度小于I(a)增加的幅度,所以电磁转矩T=c(t) φI(a)还是增大了。增大后的电磁转矩即为图4-9中的T’,工作点由e点过渡到φ=φ1的人为机械特性曲线上的C点。由于T>T(L),转速n上升,E(a)随之增大,I(a)及T也跟着下降,当T下降到T=T(L)时,又建立新的转矩平衡,电动机转速升至n(a)稳定运行于A点。

在弱磁调速中,电枢电压U为额定电压U(e),若保持电枢电流I(a)为额定电流I(e)不变时,则输出转矩T=C(T)φI(e),代人式(2.3)即可得变化磁通φ与转速n的关系式:

(2.5)

式(2.5)中C1——常数1;

于是电磁转矩可表示为,

(2.6)

式(2.6)中C2——常数,C2=C1C(T)I(e)。

带入电动机输出的功率公式有

该式说明了弱磁调速时电动机允许输出功率为常数,与转速无关;允许输出转矩与转速成反比变化,即属恒功率调速方式。

由于励磁电流一般较小,因此弱磁调速控制较方便、功耗也小,通过连续调节励磁电源的电压,即可实现无级的弱磁恒功率调速,以获得如图2.3所示的低速恒转矩、高速恒功率的调速特性。他励直流电动机弱磁升速能达到的最高转速,受电动机换向条件和机械强度的限制,一般他励直流电动机的最高转速只能升到额定转速n(e)的1.2~2倍,对于特制的调速电动机才可升到ne的3~4倍。在此需特别注意的是励磁电流I(f),在运行中绝对不能为0,否则φ趋近于0,n趋近于无穷即将产生飞车,因此必须采取相应的互锁保护措施。为满足电动汽车行驶时能有较宽的速度要求,可把降低电枢电压和减弱磁通两种调速方法合起来实用,以获得低速恒转矩、高速恒功率的调速特性。【7-9】

第三章系统的硬件设计

本章主要介绍了他励直流电机电动汽车控制器的硬件设计,其中包括了控制器整体电路模块的设计、电源模块设计、驱动模块设计、电流检测模块设计和通信模块设计等。下面做具体的介绍。

3.1系统硬件的整体设计方案

本电动汽车动力系统是基于他励直流电机设计的,控制器的硬件设计既要达到动力性能要求,也要达到便捷的操控性要求。根据第二章对他励直流电机调速系统提出的性能要求结合电动汽车的操控性要求,设计了如图3.1所示的硬件系统。

本控制系统包括对电枢和励磁的分别PWM控制模块,电源模块,开关量处理模块,和模拟量处理模块,硬件性能满足设计要求,可在此硬件系统上对MCU进行软件设计,从而达到最终的控制要求。

3.2主控制器MCU的介绍

3.2.1 MCU的选择

MCU是整个系统的控制核心,实现对数据的处理、存储和通讯等功能。

选择一款合适的控制器对整个系统起着至关重要的作用。对于明确应用对象的系统,选择功能过少的控制器,难于完成控制任务,外围器件的扩展也会使系统的硬件结构笨重复杂从而使精确度降低。选择功能过强的控制器,则会造成资源浪费,使产品的性能价格比下降。目前,市面上的控制器不仅种类繁多,而且在性能方面也各有不同。考虑到单片机结构简单容易上手且系统对速度要求不高,因此本系统选用一款高性价比的单片机充当MCU。在实际应用中,选择单片机时应考虑以下几点:【5】

(1)单片机的基本性能参数,例如指令执行速度,程序存储器容量,中断能力及可用I/O口引脚数量等。

(2)单片机的增强功能,例如看门狗,A/D功能,双串口,RTC(实时时钟),EEPROM,CAN接口等。

(3)单片机的存储介质,对于程序存储器来说,Flash存储器和OTP(一次性可编程)存储器相比较,最好是选择Flash存储器。

(4)芯片的封装形式,如DIP封装,PLCC封装及表面贴附封装等。

(5)芯片工作温度范围符合工业级、军品级还是商业级,如果设计户外产品,必须选用工业级芯片。。

(6)单片机的工作电压是否在常用范围内。

(7)单片机的抗干扰性能。

(8)编程器以及仿真器的价格,单片机开发是否支持高级语言以及编程环境要好用易学。

(9)供货渠道是否畅通,价格是否低廉,是否具有良好的技术服务支持。

根据上面所述的原则,结合本系统实际情况,仪表选用ATMEL公司生产的ATmega64单片机作为主控模块的核心芯片

3.2.2 ATmega64的特性与内部结构

ATmega64是ATMEL公司生产的高性能、低功耗的8位AVR高档微处理器,采用RISC结构,具备IMIPS/MHz(百万条指令每秒/兆赫兹)的高速处理能力,有效缓减了系统在功耗和处理速度之间的矛盾。它可以广泛应用于计算机外部设备、工业实时控制、仪器仪表、通讯设备、家用电器等各个领域。其主要特点和优点如下:【6】

(1)自带廉价的程序存储器(FLASH)和非易失的数据存储器(EEPROM)。这些存储器可可擦写1000次以上,新工艺AVR器件,程序存储器擦写可达1万次以上,基本不再会有报废品产生。这样使程序开发更加方便,工作更可靠。

(2)高速度,低功耗。在和M51单片机外接相同晶振条件下,AVR单片机的工作速度是M51单片机的30--一40倍;并且增加了休眠功能及低功率、非挥发的CMOS工艺,一般耗电在1~2.5mA,典型功耗情况,WDT关闭时为100hA,其功耗远低于M51单片机,更适用于电池供电的应用设备。

(3)工业级产品。具有大电流输出可直接驱动SSR和继电器,内有看门狗定时器,防止程序跑飞,从而提高了产品的抗干扰能力。工作电压范围宽(2.7"-6.ov),电源抗干扰性强。I/O口功能强、驱动能力大。AVR的I /O口是真正的I/O口,能正确反映I/O口输入/输出的真实情况。I/O 口有输入/输出,三态高阻输入,也可设定内部拉高电阻作输入端的功能,便于作各种应用特性所需(多功能I/O口)。

(4)程序下载方便。AVR程序写入可以并行写入(用万用编程器),也可用串行ISP(通过PC机RS232H或打印E1)在线编程擦写。也就是说不需要将IC 芯片拆下拿到万用编程器上擦写,可直接在电路板上进行程序修改、烧录等操作,方便产品升级。

(5)具有模拟比较器、脉宽调制器、模数转换功能。AVR内带模拟比较器,I/O口可作A/D转换用,可组成廉价的A/D转换器。使得工业控制中的模拟信号处理更为简单方便。

(6)强大的通讯功能。内置了同步串行接HSH、通用串行接HUART、两线串行总线接HTWI(12C),使网络控制、数据传送更为方便。

(7)超级保密功能,应用程序可采用多重保护锁功能。不可破解的位加密锁Lock bit技术,Flash保密位单元深藏于芯片内部,无法用电子显微镜看到保密位,可多次烧写的Flash且具有多重密码保护锁死(LOCK)功能,因此可快速完成产品商品化,并可多次更改程序(产品升级)而不必浪费IC芯片或电路板,大大提高产品质量及竞争力。

由上述内容可知,ATmega64的处理速度快且功耗低,内部自带的EPROM 能够满足车辆运行曲线参数的存储,FOE]的推挽设计使抗干扰能力更加增强,在线仿真功能使得程序开发更加简单,两USARTD满足系统的需要(232和485),内部各种增强功能的设计使得控制器外设更加简单。因此,本系统选用ATmega64作为主控制芯片。

3.3开关电源模块、

近年来,随着电源技术的飞速发展,开关稳压电源朝着高频化,集成化的方向发展,开关电源已经得到广泛的应用。高频开关稳压电源与线性电源相比,具有如下优点1)效率高;2)体积小、重量轻;3)稳压范围广;

4)性能灵活、驱动能力强;5)可靠性高,当开关损坏时,也不会有危及负载的高低压出现。而传统的开关电源普遍采用电压型PWM技术。电流型PWM 是近年兴起的新技术,与电压型PWM相比,电流型PWM开关电源具有更好的电压和负载调整率,系统的稳定性和动态特性得以明显改善,特别是其内在的限流能力和并联均流能力可以使控制电路简单可靠。目前,小功率开关电源正从电压控制模式向电流控制模式方向转化。

UC3842是高性能固定频率电流模式控制器专为离线和直流至直流变换器应用而设计,为设计人员提供只需要最少外部元件就能获得成本效益高

的解决方案。此集成电路具有可微调的振荡器、能进行精确的占空比控制、温度补偿的参考、高增益误差放大器。电流取样比较器和大电流图腾柱式输出,是驱动功率MOSFET的理想器件。本文以UC3842为核心控制部件,设计了DC60 V输入、DCl2V输出的单端反激式开关稳压电源。开关电源控制电路是一个电压、电流双闭环PI控制系统。主要的功能模块包括:启动电路、反馈电路、保护电路、整流电路。

系统电源电路原理图如图3.3所示。

在电路设计中,利用UC3842控制芯片内部的误差放大器、由R1、R2构成的电压反馈电路,和R3、C1共同构成电压闭环PI调节器,利用芯片内部的比较器与由R5电流检测和R4、C2滤波电路构成的电流反馈电路构成电流闭环。外接的定时电阻R(T)和定时电容C(T),决定系统的工作频率,f=1.8/R(T)C(T)。系统中取R(T)为7.5KΩ,取C,为0.01uf。系统的工作频率f=24KHz。采用LM7905变换芯片产生-5V电源,给运放工作提供负电源。

3.4电流检测模块

在功率变换器中,经常要对流过主功率开关器件的电流进行检测,其目的主要有两个:1)对功率变换器进行过流保护;2)作为功率变换器控制器的电流反馈检测量。通常的做法是在功率变换器的直流母线上安装电流霍尔或电流互感器以提供电流反馈检测量。由于流过主开关器件的电流通

常都较大,所采用的霍尔器件或电流互感器的额定参数也必须很大,不仅成本高、体积大、安装不方便,且不便于实现功率变换器的高功率密度。文中介绍一种用半导体器件构成的电流检测电路,可以直接布置在功率变换器的控制器的印制板上,不仅成本低廉,体积小,安装方便,而且性能良好,还可以同功率变换器固化在一起形成专用集成电路(ASIC)。3.4.1 MOSFET电流检测原理

MOSFET的通态电阻具有正的温度系数,约为0.4%一0.8%,有利于采用多MOSFET管并联。多只元件并联工作时,MOSFET间可以自动均流。当MOSFET功率开关流过通态电流时,由于通态导通电阻的存在,在其导通沟道上有一定的压降,又因器件的导通沟道电阻基本稳定,该压降与器件的通态电流成正比。所以,检测出主开关器件的通态压降也就是检测流过器件的电流大小。即:

(3.1)

式(3.1)中,V(DSN)——OS开关的漏源通态压降;

R(D)——沟道等效电阻;Id——漏极电流。

3.4.2他励直流电机电流检测方法

他励直流电机控制器要采集的电流信号是电枢电流信号和励磁电流信号,电枢电流只有一相,励磁电流要采集的信号有两相,如图3.1硬件结构框图所示,电枢电流采集流过下桥MOSFET的电流,励磁采集流过H桥下桥MOSFET的电流。因为原理都是一样的,故只分析采集电枢电流的电路。由于电机所需功率比较大,所以每一项都是多个MOSFET管并联【251。他励电机电枢电流检测电路

如图3.4所示。

电路工作原理:Vlow驱动下桥MOSFET管,当Vlow为低电平时,D2右端也被钳位为低电平,U1的正向输入端即为低电平,U1的负向输入端为固定电平,此时U1输出为低电平,U2输出也为低电平,经过U3,正反输入端都为0,所以U3输出为0。MCU电流采样点V04为O。

当Vlow为高电平时,D2右端电压为高电平,此时U1输出为高阻态,Vol 的电压为MOSFET电流在内阻上的压降加上D1的管压降,因为加上了D1的管压降,所以检测的电流不准,故我们采用了U2来去除管压降,此时U2输出为高阻态,V02的电压为二极管管压降。 V03=K*(V01.V02);K=(R9/R8)为电压放大倍数;

V03经过C1和R10组成的滤波电路可得电压V04,此时V04的电压即能准确Ql上的管压降,将V04的电压送入MCU进行处理。

开关管管压降和电流检测电路相关点的波形分析如图3.5所示。

T1和T3是导通时刻,T2是MOSFET关断时刻,Vl是导通时D3的管压降,V2是运放的零飘电压。

3.5驱动电路的设计

驱动电路是电力电子主电路与控制电路之间的接口,是实现主电路中的电力电子器件按照预定设想运行的重要环节。采用性能良好的驱动电路,可以使电力电子器件工作在较为理想的开关状态,缩短开关时间,减小开关损耗。此外,对器件或整个装置的一些保护措施也往往设在驱动电路中,或通过驱动电路实现,因此驱动电路对装置的运行效率、可靠性和安全性都有重要的影响。功率MOSFET为电压型驱动功率器件,常见的MOSFET栅极集成驱动器为IR公司生产的IR21XX系列高压浮动MOS栅极驱动集成电路,该集成电路将驱动一个高压侧和一个低压侧MOSFET所需的绝大部分功能集成

在一个封装内,它们依据自举原理工作,驱动高压侧和低压侧两个元件时,不需要独立的驱动电源,因而使电路得到简化,而且开关速度快,可以得到理想的驱动波形。在设计功率主电路的驱动电路中,要综合考虑减小开关损耗、驱动的一致性、抑制感生电压等问题,因此驱动电路对系统的可靠性有重要的影响。在系统设计中,选用IR2110作为驱动芯片。图3.6为单桥臂的驱动电路的原理图。

在MOSFET栅极串联一个限流电阻Rl,降低MOSFET的开关速度,减小电压电流的变化率,降低EMI,且对动态均流有显著的作用,但增大了MOSFET 的开关损耗,经过反复实验,取R1的电阻值为15Ω;电阻R2是防静电电阻,以免由于静电烧损功率管;采用15V的TvS防止驱动电压过高,损坏功率管。3.6电压检测电路

在驱动控制系统中使用的功率器件是IRFB4310,其耐压值为100V,当电压过高时,功率器件会因过压而损坏,所以电压信号的检测是很重要的一个信号量。电压检测电路如图3.7所示。我们需要测量蓄电池电压值,在信号的采样点的选择上,我可以选择钥匙开关的接口点KEY作为蓄电池电压的采样点,为了配合系统的故障检测功能的实现,选择B+点作为蓄电池电压

采样点。在驱动系统上电后,系统先通过二极管和PTC功率热敏电阻给功率电路中的滤波电容充电,延时lS后,通过检测B+点的电压,电压过低,可以判断功率电路出现故障,发出故障报警信号;电压过高,发出报警信号。如果系统正常,吸合主接触器,系统进入运行状态,但也存在主接触器不能可靠吸合在运行的过程中断开的故障情况,此时B+点的电压将下降,系统应及时停止运行。当功率电路出现故障时,充电电路的电流较大,PTC 功率电阻温度升高,其阻值升高,起到抑制充电电流,保护电路板的功能。

3.7温度检测电路

在驱动控制系统的功率电路中利用MOSFET的关断与导通来控制电机的转速。MOSFET的损耗都转换成热量,并变成温升,但MOSFET温度过高时,驱动控制系统的稳定性和可靠性将会下降,甚至造成功率器件损坏。因此控制器设计时,考虑功率器件温升情况,通过采集功率结构散热器的温度信号,间接检测功率器件工作的环境温度,当功率器件的工作环境温度大于60℃时,驱动系统将发出警报声音,提醒用户;当功率器件的工作环境温度大于70℃时,驱动系统将强制停止运行,并发出报警声音,等待功率器件的工作环境温度小于60℃时,重新恢复正常工作状态。在驱动控制系统中电路设计中,温度信号的检测采用玻封的NTC热敏电阻装在散热器上作为温度传感器,NTC热敏电阻是负温度系数热敏电阻,当温度升高时,其电阻值变小,通过查阅器件资料,可得到具体型号的NTC热敏电阻在不同环境温度下所对应的阻值。通过电阻分压,将温度信号转换成电压信号,输入微处理器的A/D口。温度检测电路如图3.8所示。

3.8加减速踏板信号检测电路

电动机的运转速度由加速踏板的加速器控制。在本驱动系统中,加速器采用线性霍尔测量驾驶员的速度给定信号,其输出为0.5V4.5V的电压信号,该信号经过RC滤波和电压跟随器后送人微处理器的A/D口。加速信号处理电路如图3.9所示。

在加减速踏板中,安装了微动开关,配合加速器的使用,可以提高系统的可靠性,微动开关闭合时,系统根据加速器的信号进入电动状态运行,微动开关断开时,系统进入制动状态,速度为零,转入静止准备状态。

3.9 开关量输入信号

控制系统中使用的开关量输入有:加速器内部的微动开关信号、档位信号及电机驱动使能开关信号。当外部的开关闭合时,相应的I/O口接收到4V的高电平信号;当外部的开关断开时,相应的I/0口接收到0的低电平信号。开关输入信号处理电路如图3.10所示。

3.10蜂鸣器报警电路

故障报警器件采用12V压电式蜂鸣器。当系统运行时发生电池电压在不

纯电动汽车整车控制器的设计

纯电动汽车整车控制器的设计 摘要:随着社会的发展与科技的进步,各个城市的汽车使用户喷井式增加。传 统的内燃机汽车消耗石油,排出大量废气,使得城市的空气质量不断下降。纯电 动汽车由于不使用传统化石能源,对环境不造成污染,受到人们的青睐。随着科 技的进步,电动汽车的核心技术不断地革新与突破,逐渐完善的城市基础设施提 供了有利的帮助,电动汽车已经成为潜力股,逐步取代传统汽车变为可能。本文 从汽车结构出发,结合整车信息传输过程,设计了整车控制器的软硬件结构。 关键词:纯电动汽车;整车控制器;硬件设计;软件设计 纯电动汽车作为新能源汽车的一种,以其清洁无污染、驱动能源多样化、能 量效率高等优点成为现代汽车的发展趋势。整车控制器(vehicle control unit,VCU)作为纯电动汽车整车控制系统的中心枢纽,主要实现数据采集和处理、控 制信息传递、整车能量管理、上下电控制、车辆部件控制和错误诊断及处理、车 辆安全监控等功能。国外在纯电动汽车整车控制器的产品开发中,积极推行整车 控制系统架构的标准化和统一化,汽车零部件厂商提供硬件电路和底层驱动软件,整车厂只需要开发核心应用软件,有利的推动了整车行业的快速发展。虽然国内 各大汽车厂商基本掌握了整车控制器的设计方案,开发技术进步明显,但是对核 心电子元器件、开发环境的严重依赖,所以导致了整车控制器的国产化水平较低。本文以复合电源纯电动汽车作为研究对象,针对电动汽车应有的结构和特性,对 整车控制器的设计和开发展开研究。 一、整车控制系统分析与设计 (一)整车控制系统分析 复合电源纯电动汽车整车控制系统主要由整车控制器、能量管理系统、整车 通信网络以及车载信息显示系统等组成。首先纯电动汽车整车控制器通过采集启动、踏板等传感器信号以及与电机控制器、能量管理系统等进行实时的信息交互,获取整车的实时数据,然后整车控制器通过所有当前数据对驾驶员意图和车辆行 驶状态进行判断,从而进入不同的工况与运行模式,对电机控制系统或制动系统 发出操控命令,并接受各子控制器做出的反馈。 保障纯电动汽车安全可靠运行,并对各个子控制器进行控制管理的整车控制器,属于纯电动汽车整车控制系统的核心设备。整车控制器实时地接收传感器传 输的数据和驾驶操作指令,依照给定的控制策略做出工况与模式的判断,实现实 时监控车辆运行状态及参数或者控制车辆的上下电,以整车控制器为中心通信节 点的整车通信网络,实现了数据快速、可靠的传递。 (二)整车控制系统设计 复合电源的结构设计,选择了超级电容与DC/DC串联的结构,双向DC/DC跟 踪动力电池电压来调整超级电容电压,使两者电压相匹配。为了车辆驾驶运行安全,同时为了更好地使超级电容吸收纯电动汽车的再生制动能量,在复合电源系 统中动力电池与一组由IGBT组成双向可控开关,防止了纯电动汽车处于再生制动状态时,动力电池继续供电,降低再生制动能量的吸收效率。 整车CAN通信网络设计,由整车控制器(VCU)、电机控制器(motor control unit,MCU)、电池管理系统(battery management system,BMS)、双向DC/DC控制器以及汽车组合仪表等控制单元(Electronic Control Unit,ECU)组成 了复合电源纯电动汽车的整车通信网络。 二、整车控制器硬件设计及软件设计

电动汽车驱动电机匹配设计.

电动汽车驱动电机匹配设计 目录 1 概述 (1) 2 世界电动汽车发展史 (2) 3 电驱动系统的基本要求 (5) 3.1电驱动系统结构 (5) 3.2电机的基本性能要求 (6) 4 电动汽车基本参数参数确定 (7) 4.1电动汽车基本参数要求 (7) 4.2 动力性指标 (7) 5 电机参数设计 (7) 5.1 以最高车速确定电机额定功率 (7) 5.2 根据要求车速的爬坡度计算 (8) 5.3 根据最大爬坡度确定电机的额定功率 (9) 5.4 根据额定功率来确定电机的最大功率 (9) 5.5 电机额定转速和转速的选择 (9) 6 传动系最大传动比的设计 (10) 7 电机的种类与性能分析 (11) 7.1 直流电动机 (11) 7.2交流三相感应电动机 (11)

7.3 永磁无刷直流电动机 (11) 7.4 开关磁阻电动机 (12) 8 电机的选择 (13) 9 电机其他选择与设计 (15) 9.1 电机形状位置设计 (15) 9.2 电机冷却设计 (15) 10 总结与展望 (17) 10.1 总结 (17) 10.2 问题与展望 (17) 致谢 (18) 参考文献 (19) 1.概述 汽车工业在促进世界经济飞速发展和给人们生活提供便利的同时,又展现出了其双刃剑的另一面,它将能源与环境问题推到了日益尴尬的处境。“能源、环境和安全”成为了21世纪世界汽车工业发展的3大主题。其中,能源与环境问题作为全球面临的重大挑战和制约汽车工业可持续发展的症结所在,更成为重中之重。电动汽车使用电能作为动力能源,而电能具有来源广、清洁无污染等特点。电动汽车被公认为21世纪重要的交通工具。 电动汽车是指汽车行驶的动力全部或部分来自电机驱动系统的汽车,它主要以动力电池组为车载能量源,是涉及机械、电子、电力、微机控制等多学科的高科技技术产品。按照汽车行驶动力来源的不同,一般将电动汽车划分为纯电动汽车(Pure Electric Vehicle,PEV)、混合动力电动汽车(Hybrid Electric Vehicle,HEV)、插电式混合动力电动汽车(Plug-in Hybrid Electric Vehicle,PHEV)和燃料电池电动汽车(Fuel Cell Electric Vehicle,FCEV)4种基本类型。 自1881年法国电气工程师Gustave Trouve制造出首辆电动汽车开始,电动汽车经历了曲折起伏的几个发展阶段,其中的决定因素就是动力电池技术和人们

纯电动汽车制动系统计算方案

纯电动汽车制动系统计算方案 1 2020年4月19日

文档仅供参考 目录 前言............................................................................ 错误!未定义书签。 一、制动法规基本要求 ............................................ 错误!未定义书签。 二、整车基本参数及样车制动系统主要参数 ......... 错误!未定义书签。 2.1整车基本参数................................................ 错误!未定义书签。 2.2样车制动系统主要参数 ................................ 错误!未定义书签。 三、前、后制动器制动力分配 ............................. 错误!未定义书签。 3.1地面对前、后车轮的法向反作用力 ............ 错误!未定义书签。 3.2理想前后制动力分配曲线及 曲线 ............. 错误!未定义书签。 3.2.1理想前后制动力分配 .......................... 错误!未定义书签。 3.2.2实际制动器制动力分配系数............... 错误!未定义书签。 五、利用附着系数与制动强度法规验算 ................. 错误!未定义书签。 六、制动距离的校核 ................................................ 错误!未定义书签。 七、真空助力器主要技术参数................................. 错误!未定义书签。 八、真空助力器失效时整车制动性能 ..................... 错误!未定义书签。 九、制动踏板力的校核 ............................................ 错误!未定义书签。 十、制动主缸行程校核 ............................................ 错误!未定义书签。十一、驻车制动校核 ................................................ 错误!未定义书签。 1、极限倾角 ....................................................... 错误!未定义书签。 2、制动器的操纵力校核.................................... 错误!未定义书签。 I 2020年4月19日

电动自行车定位防盗系统

电动车定位防盗系统设计方案 。

一、背景 近年来,电动车因小巧方便、节能环保等优点,受到了广大市民的青睐,成为很多人的代步工具。据中国自行车助力车专委会粗略统计,2004年电动车全国保有量为2000万辆;截至2014年,电动车保有量已达2亿辆。近十年时间,电动车的数量增长了10倍。 图1 电动车数量越来越多 . 然而随着电动车数量的增加,电动车安全为题日益凸显,电动车被盗事件频繁。2014年10月,武汉市警察局启动专项行动,全市共收缴来历不明电动车54辆。2016年3月,胶东市9天时间内有26辆自行车失窃。 电动车由于价格不高,普通市民一直对失窃电动车不够重视。造成了电动车盗贼的猖獗。目前,某些电动车制造商、保险公司等部门纷纷推出失窃险业务,更为市民增加了相应的保险开支。 基于上述问题,本方案拟构建电动车的防盗定位追踪系统,保障电动车的安全并能够对被盗自行车进行定位追踪。 二、项目需求 1、价格低廉 随着电动车销量的增加,电动车相应配件的价格逐渐下降导致电动车的价格越来越平民化,定位系统要安装在电动车上,价格不宜太高,定位精度要求不必太精确,1米以内的定位精度即可满足项目需求。 2、功耗低 定位系统的电源来自于电动车蓄电池,定位系统的能耗不能对电动车的续航造成过大的影响,否则很难得到电动车制造商以及使用者的青睐。 3、地下室停车场可用 地下停车场环境复杂、无线信号很难覆盖,克服这一问题拟采用相对定位方式,实现区域定位与绝对定位融合方法。 三、电动车定位技术分析 } 目前的定位导航技术主要分为绝对定位和相对定位方式两种,绝对定位方式主要有北斗和GPS定位、Wifi定位、蓝牙、超宽带定位、Zigbee基站定位法等;相对定位方法有激光、里程计、惯导模块IMU,视觉导航等方法。 1、北斗和GPS定位 全球定位系统的导航方式是一种绝对式的导航方式,但是目前单GPS定位精度误差较大,存在漂移现象严重,较高精度的差分GPS定位精度可以达到厘米级定位,精度虽高,但是价格昂贵,不适合低价的电动车采用。目前淘宝等商家已出售如电动车、摩托车定位追踪器,采用插入手机流量卡的方式与用户手机

纯电动汽车制动系统计算方案

目录 前言 (1) 一、制动法规基本要求 (1) 二、整车基本参数及样车制动系统主要参数 (2) 2.1整车基本参数 (2) 2.2样车制动系统主要参数 (2) 三、前、后制动器制动力分配 (3) 3.1地面对前、后车轮的法向反作用力 (3) 3.2理想前后制动力分配曲线及 曲线 (4) 3.2.1理想前后制动力分配 (4) 3.2.2实际制动器制动力分配系数 (4) 五、利用附着系数与制动强度法规验算 (9) 六、制动距离的校核 (11) 七、真空助力器主要技术参数 (12) 八、真空助力器失效时整车制动性能 (12) 九、制动踏板力的校核 (14) 十、制动主缸行程校核 (16) 十一、驻车制动校核 (17) 1、极限倾角 (17) 2、制动器的操纵力校核 (18)

前言 BM3车型的行车制动系统采用液压真空助力结构。前制动器为通风盘式制动器,后制动器有盘式制动器和鼓式制动器两种,采用吊挂式制动踏板,带真空助力器,制动管路为双回路对角线(X型)布置,安装ABS系统。 驻车制动系统为后盘中鼓式制动器和后鼓式制动器两种,采用手动机械拉线式操纵机构。 一、制动法规基本要求 1、GB21670《乘用车制动系统技术要求及试验方法》 2、GB12676《汽车制动系统结构、性能和试验方法》 3、GB13594《机动车和挂车防抱制动性能和试验方法》 4、GB7258《机动车运行安全技术条件》 400N

二、整车基本参数及样车制动系统主要参数 2.1整车基本参数 2.2样车制动系统主要参数

本车型要求安装ABS 三、 前、后制动器制动力分配 3.1地面对前、后车轮的法向反作用力 在分析前、后轮制动器制动力分配比前,首先了解地面作用于前后车轮的法向反作用力(图1)。 由图1,对后轮接地点取力矩得: 1z g du F L Gb m h dt =+……………………(1) 式中:1z F —地面对前轮的法向反作用力,N ; G —汽车重力,N ; b —汽车质心至后轴中心线的水平距离,m ; m —汽车质量,kg ; g h —汽车质心高度,m ; L —轴距,m ; du dt —汽车减速度2/m s 。 对前轮接地点取力矩,得: 2z du F L Ga m dt =-……………………(2) 式中:2z F —地面对后轮的法向反作用力,N ; a —汽车质心至前轴中心线的距离,m 。 12()()z g z g G F b h L G F a h L ???=+??? ?=-?? (3)

电动汽车控制系统设计设计

电动汽车控制系统设计设计

摘要 在当前全球汽车工业面临金融危机和能源环境问题的巨大挑战的情况下,发展电动汽车,利用无污染的绿色能源,实现汽车能源动力系统的电气化,推动传统汽车产业的战略转型,在国际上已经形成了广泛共识。 本课题以电动汽车他励电机控制器为例,以实现电动汽车的加、减速,起、制动等基本功能以及一些特殊情况下的处理。以开发出高可靠性、高性能指标、低成本并且具有自主知识产权的电动汽车电机驱动控制系统为目的。主要包括硬件电路板的设计,以及驱动系统的软件部分的仿真调试。 在驱动系统硬件设计中,这里主控制芯片采用ATMEL公司的ATmega64芯片。功率模块采用多MOSFET并联的方 37

式,有效的节约了成本。电源模块采用基于UC3842的开关电源电路。选用IR 公司的IR2110作为驱动芯片,高端输出驱动电流可到1.9A,低端输出驱动电流可到2.3A,能够提供7个MOSFET并联时驱动电流。对于电流检测模块,本文没有采用电流传感器或者是康铜丝,而是采用了一种基于MOSFET管压降的电流检测电路,这种方式即节约了成本也保证了检测精度。 驱动系统的软件设计中,主要实现的功能为:开关量的检测处理,故障检测,串口通讯,励磁、电枢控制,报警功能等。针对他励电机电动汽车的控制特性,提出了节能控制算法和最大转矩控制算法,用于提高电动汽车的续航里程和加速性能。 他励直流电动机驱动系统能够很 37

好的运行在电动汽车上,性能可靠、结构简 单,并且节约了成本,使电动汽车的性价比大大提高,有利于电动汽车的普及。 关键词:电动汽车,ATmega64,他励直流电机,PID模糊控制 37

电动车防盗系统有哪些作用

中国电动车经过十几年的发展,已成为人们不可缺少的交通工具。但事实上,一直以来电动车被盗案件居高不下,且呈日益上升趋势,已成为人们反映强烈、严重影响社会治安形势的热点问题。 其盗窃案件具有危害对象范围广、犯罪活动性强、打击难度大的特点,在科技上从源头遏制案件发生,解决实际问题已经刻不容缓。 目前是物联网时代,许多新型科技快速发展,给人们的现代生活带来很大的不同。物联网电动车防盗系统便是其中之一。 物联网电动车防盗系统的作用就在于可以使电动车实现“车、物、人”的无缝对接,起到定位防盗作用,从而有效遏制盗窃电动车案件的发生,使安保部门可以获得更多失窃车辆、嫌疑人线索,充分发挥职能作用,加大对电动自行车盗窃案件的侦破力度,以点带线、以线带面,力争破获一批盗窃电动自行车犯罪案件、抓获一批犯罪嫌疑人。 物联网电动车防盗系统建设,其实是在发挥出物联网电动车防盗系统建设工程的优势;可以进行全面宣传推广物联网电动车防盗系统的应用,将物联网管控范围放大,降低电动车被盗风险;要不断提升打防能力,充分发挥“科技手段”在维护社会治安中的优势功能。 建设物联网电动车防盗系统可以解决好电动车安全问题,预防和减少电动车盗窃案件的发生,提高案件侦破率、提升公众安全感和满意度。

目前,在公司的销售反馈中,电动车防盗系统已见很大成效,其中包括:绍兴:使用前后,电动车被盗的破案率由5 %升为60.9 %。 温州: 2015年前全市3万多起案件,2015年后下降到6千移起,下降幅度达到72.9%,2016年下降32.9%。40 0万辆电动车接近"0”案率。永康:共15.5万辆,”两车”发案同比下降43 %,利用物联网技术破获盗窃"两车”案件235起,打掉团伙21个,抓获盗窃”两车”嫌疑人221 人(刑拘7 5人),追回被盗“两车”332辆。 如有电动车防盗系统需求,可以考虑咨询专业公司。 杭州任联科技有限公司专注于物联网、大数据技术为基础的安防产品和解决方案的研发,能够为客户提供成熟的电动车智能防盗解决方案,老人、小孩及特殊人员定位,有源标签资产管理等解决方案,立体打造智慧城市安防体系。目前公司已经成功为多个城市提供电动车防盗系统全套解决方案,短时间内就已取得实效。若有相关需求,欢迎来电咨询。

电动汽车中的电池能量管理系统

一、前言 电动汽车的应用有效地解决了能源和环境可持续发展的问题。电动汽车的应用前景广阔。但电动汽车尤其纯电动汽车的应用遇到了动力电池的难题,电池的问题体现在两个方面。其一是动力电池比能量不高,影响电动汽车续驶里程的要求,价格太高直接影响电动汽车的初始成本; 其二是电池的性能差,使用寿命低影响电动汽车的使用成本。电动汽车用的电池使用中其性能发挥得如何,除与电池模块自身性能有关外,与其应用的电池能量管理系统的功能有着密切的关系,尤其是电池模块质量不太理想的条件下,应用功能完备的电池能量管理系统其作用就更加突出。借助电池能量管理系统的正常工作会使电池模块的性能得以充分发挥,减少电池模块故障,延长电池模块的使用寿命,增加电动汽车的使用安全感。因此,电动汽车电池能量管理系统的应用备受电动汽车设计者和使用者的重视。 二、电动汽车电池能量管理系统的功能电动汽车,尤其是纯电动汽车中的电池能量管理系统是该车的一种相当重要的技术措施,可以称为电动汽车电池的“保护神”,它起到了对电池性能的保护、防止个别电池的早期损坏、有利于电动汽车的运行,并具有各种警告功能等[1]。由于它参加电池箱内电池模块的监控工作使电动汽车的运行、充电等功能与电池的有关参数(电流、电压、内阻、容量)紧密相连和协调工作。它有计算,发出指令、执行指令和提出警告的功能。各种电池模块虽然有结构和性能上的差异,但它们都具备一些相同或相似的功能。典型的电池能量管理系统应具备如下功能: 2.1 对能量的检测功能 电动汽车在行车过程中,该系统能随时对车辆的能耗进行计算,最终给出该电池箱内电池模块剩余的电池能量值,并通过剩余能量计将数据显示出来,使驾驶人员知道车辆的续驶里程,以便决定如何行驶.在能量允许的条件下使车辆行驶到具有充电功能的地方,补充电量防止半路抛锚。 2.2 对电池工作状态的监测与控制功能 电池能量管理系统按电池箱内安装的传感器提供的信号对电池进行管理。一般情况下,电池箱内有温度传感器及电压、电流和内阻的测量值。由于温度的变化对其他参数都有影响,所以一般都以电池模块的温度来做为控制的指令信号,将测得的温度值与事先设定的温度值进行比较,决定对电池冷却与否。电动汽车能源是很宝贵的,应尽量采用节能元件,所以电池箱内的冷却风扇一般都是采用分级参与工作。这样能做到在保证电池性能的条件下尽量使用小排量的风扇。当第一级风扇工作后尚不能达到要求的温度时,第二级冷却风扇才参与工作,加强冷却。此时电池箱内的温度如果还不能达到要求的工作条件,温度继续升高已达到影响电池模块的正常工作条件,为保护电池模块不受损坏,能量管理系统会发出停止电池模块供电的指令,强行车辆停驶。当电池在充电状态下,能量管理系统会强令充电机停止充电而不损坏电池,由维修人员进行检测排除故障。 2.3 保证充电功能

新能源汽车电气技术教案47-48-新能源汽车制动系统认知

教学设计

教学过程 教学环节教师讲授、指导(主导)内容 学生学习、 操作(主体)活动 时间 分配 一、二、三、组织教学: 组织学生起立,师生问好。 导课部分: 作为一名新能源汽车售后服务人员,你知道纯电动汽车、混 合动力汽车制动系统于传涛的汽车制动系统有什么区别吗? 新授部分: 1.混动汽车制动系统的工作原理 电源开关打开后,蓄电池想控制器供电,控制器开始工作, 此时Emb信号灯显示系统应正常工作。驾驶员进行制动操作 时,首先由电子制动踏板行程传感器弹指驾驶员的制动意图, 把这一信息传给ECU。ECU汇集轮转速传感器、制动踏板行 程传感器等各路信号。根据车辆行驶状态计算出每个车轮的 最大值动力,在发出指令给执行器,让其执行哥车轮的制动, 电动机械制动器能快速而精确的提供车轮所需制动力,从而 保证最佳的整车减速和车辆的制动效果 2.制动能量回收系统 制动能量回收是电动汽车与混合动力汽车重要技术之一, 也 是它们的重要特点。在普通内燃机汽车上,当车辆减速、制动 时,车辆的运动能量通过制动系统而转变为热能,并向大气中 释放。而在电动汽车与混.合动力汽车上,这种被浪费掉的运动 能量已可通过制动能量回收。 3.制动能量回收系统的原理 一般情况下,在车辆非紧急制动的普通制动场合,约1/5的能量 可以通过制动回收。制动能量回收按照混合动力的工作方式 不同而有所不同。在发动机气门不停止工作场合,减速时能够 回收的能量约是车辆运动能的1/3。通过智能气门正时与升程 控制系统使气门停止工作,发动机本身的机械摩擦(含泵气损 失)能够减少约70%。回收能量增加到车辆运动能量的2/3。 班长报告出勤人数、 事由 学生进行回答 多媒体课件、动画演 示,制冷系统各部件 的作用。 2分 5分 15分 15分 15分 15分

基于单片机的电动车控制系统设计

毕业设计 题目:基于单片机的电动车控制系统设计 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期:

指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

国产电动车防盗系统有什么好选择

电动车出行十分方便,而且省力。但是电瓶甚至是整车容易被盗一直是大家所痛恨的。目前,发生在社区以及街道周边的电动车盗窃案经常发生,并且处于一种上升趋势,为此很多商家都推出了各式各样的防盗功能,提供一系列的防盗服务。 目前,国产电动车防盗系统已经发展成熟并且以及在各地铺设完毕,收获了很好的效果。所以在选择电动车防盗系统时,其实大可不必迷信外国品牌,选择国产品牌一点也不输进口产品。 国产的优质电动车防盗系统是通过2.45GHz RFID信号基站和车载电子标签通信,远距离采集交通工具信息,并由读卡器实时将信息传送至信息处理平台,由系统平台对信息进行处理和反馈,结合业务流程实现智能化管理。 电动车防盗系统用于电动自行车防盗备案项目。防盗标签间隔广播发送2.45G信号,信号内容包含车辆识别号,及数据安全信息。该标签用工业胶水或3M胶粘贴在电动自行车内部隐蔽处,采用高能电池供电使用寿命超过3年,防潮、防盐雾、防震、抗击打、高温测试。具体功能如下:识别范围: 300米的识别距离,具有自动识别、追踪、定位、收集,无需人工干预; 1、智能化识别:利用RFID有源电子标签,为电动车建立电子身份识别,进一步提高治安信息化系统建设 2、信息管理:对安装改防盗系统的电动车进行登记,相关信息能方便的记录到系统数据库,以备公安局快速查询 3、快速响应:在电动车被盗后1分钟内即可定位,并能实时监控被盗车辆的走向,提前预警围追堵截 4、高性价比:利用物联网RFID超低功耗技术,高性能,低功耗,低成本方

案,一次安装电动车管理时间超3年 5、辅助监控:系统能定点定时的记录车辆的经过,从而非常方便的配合干警调用视频记录。 6、扩展性强:整个城市布满基站,可扩展应用到智障老人防丢,学生下学轨迹查询,公交车到站提醒等。 据此,以上就是电动车防盗标签的具体应用,以及特点,可以很好的应对日常的电动动车失窃后,快速确定被盗车辆位置,找回率很高。对于社区里的人们再也不用担心电动车被盗这样的事情。 所以在选择国产电动车防盗系统时,可以选择文中所提到的这一款,更多详情欢迎点击右侧按钮,进入专业公司官网进行进一步咨询。 杭州任联科技有限公司专注于物联网、大数据技术为基础的安防产品和解决方案的研发,能够为客户提供成熟的电动车智能防盗解决方案,老人、小孩及特殊人员定位,有源标签资产管理等解决方案,立体打造智慧城市安防体系。目前公司已经成功为多个城市提供电动车防盗系统全套解决方案,短时间内就已取得实效。若有相关需求,欢迎来电咨询。

电动汽车驱动控制系统设计.

电动汽车驱动控制系统设计 摘要 驱动系统是电动汽车的心脏,也是电动汽车研制的关键技术之一,它直接决定电动汽车的性能,本文根据异步电动机矢量控制理论,结合电动汽车的实际要求,研究设计基于无速度传感器矢量控制的电动汽车驱动系统。矢量控制通过坐标变换将定子电流矢量分解为转子磁场定向的两个直流分量并分别加以控制,从而实现异步电动机磁通和转矩的解耦控制,已达到直流电动机的控制效果。最后,在Matlab环境中建立了仿真系统,验证了无速度传感器矢量控制系统原理应用于电动汽车驱动系统的可行性。 关键词:电动汽车;驱动系统;异步电动机;无速度传感器矢量控制

ABSTRACT Driving system is the heart of EV and one of the key parts of the vehicle that determines the performance of the EV directly. According to the control technique、the method of induction motor drive system and based on the factual requirement of EV, the speed sensorless vector control was designed in this article. By transforming coordinate, the stator current is decomposing two DC parts which orientated as the rotator magnetic field and controlled respectively, So magnetic flux and torque are decoupled. It controls the asynchronous motor as a synchronous way. Finally, intimation system is established in the environment of Matlab to validate these control arithmetic. The system proved its enormous practical value of application. Key words: EV; Drive system; Induction motor; speed sensorless vector control

电动汽车助力器

电动汽车真空助力制动系统的匹配计算与研究 以某微型汽车为例,建立了其真空助力制动系统的数学模型,对燃油汽车改装为电动汽车后的制动系统真空助力匹配进行了计算分析,从而为电动汽车真空助力系统中真空罐、真空助力器、真空泵的选型和匹配提供了理论依据。通过试验验证可知,本文的真空罐及真空泵阀值选择合理,电动真空泵工作时间为4~6 s。 绝大多数微型汽车和轿车采用真空助力伺服制 动系统。传统燃油汽车由发动机提供真空助力源,而纯电动汽车或燃料电池汽车的制动系统由于没有真空动力源而丧失真空助力功能,仅由人力所产生的制动力无法满足行车制动需要,因此需要对制动系统真空助力装置进行改装,而改装的核心问题是产生足够压力的真空源。考虑到行车制动可靠性及能源的节约,有必要对真空助力制动性能进行合理分析计算,以此为电动真空泵、真空储能机构的选择或设计提供理论依据。本文以改装的纯电动汽车为例,对其真空助力制动系统进行计算分析,在保证制动性能的前提下,设计出合理的所需真空度及合适的真空储能罐,为电动真空泵的选型提供理论依据。 原车采用带有真空助力装置的双管路液压制动系统和前盘后鼓式制动器。真空助力器安装于制动踏板和制动主缸之间,由踏板通过推杆直接操纵,真空助力器的真空伺服气室由带有橡胶的活塞分为常压室(与真空源连接)与变压室,一般常压室的真空度为66 . 7 kPa 。真空助力器所能够提供的助力大小取决于其常压室与变压室气压差值。制动系统真空助力装置的真空源来自于发动机进气歧管。拆除发动机总成后,制动系统由于没有了真空源而丧失真空助力功能,为此,需要重新匹配一个能够提供足够压力的真空源。若采用真空泵与电源直接相连的方案,一旦汽车接通电源,真空泵就开始持续工作,这样的工作情况比较苛刻,根据整车道路试验情况,汽车在城市工况下行驶6000 km后,电动真空泵就出现损坏。虽然现在真空泵寿命最小可以达到600h,但还是不能达到可以接受的目标行驶里程,故需要增加真空储能机构来延长行驶里程。真空泵采用间歇性工作模式,可以提高制动系统的工作寿命和可靠性。 图1为改装后的电动汽车真空助力制动系统。电动汽车起动时,控制程序会检测真空储能罐中的真空度。在行驶状态下,监控系统会监控真空储能罐中的真空度,低于设定的下限值时立即启动真空泵工作,达到设定的上限值时真空泵停止工作。 当真空助力器初始真空度小于34.7 kPa时,制动器不能提供足够的制动力 真空储能罐体积为2L 在一次完全制动工况下,真空储能罐中真空度降低值为48.4 kPa,即真空泵在不工作状态下,储存的真空度要够一次完全制动,就不得小于48.4 kPa。 真空度压力建立关系曲线如图4所示,从中可以看出,到60 kPa以后,斜率变小,制动真空泵压力建立时间增大。因此,真空度的选择要兼顾真空泵寿命和助力效果。电动机不工作时,踩下制动踏板时的真空度为48.4 kPa。结合真空泵真空度压力建立特性,电动真空泵停

(完整版)基于STM32F的电动汽车交流充电桩控制系统设计

基于STM32F的电动汽车交流充电桩控制系统设计0 引言 随着全球能源危机的不断加深,石油资源的日趋枯竭以及大气污染、全球气温上升的危害加剧,各国政府及汽车企业普遍认识到节能和减排是未来汽车技术发展的方向,发展电动汽车将是解决这两个难题的最佳途径。我国高度重视电动汽车的发展,国家相继出台了一系列标准来扶持和规范电动汽车的发展。但要实现电动汽车大面积普及我国还有很长的路要走,需要解决的问题还有很多。在最近发布的《节能与新能源汽车产业规划》草案中指出将以纯电动汽车作为主要战略取向。有关专家指出纯电动汽车的发展存在三大瓶颈问题:一是标准的缺失,二是配套政策的不完善,三是基础设施的规划和建设的有序推进。本文所研究的电动汽车交流充电桩作为充电基础设施的一部分对于推进电动汽车的普及具有重要的意义。 1 电动汽车交流充电桩介绍 交流充电桩,又称交流供电装置,是指固定在地面或墙壁,安装于公共建筑(办公楼宇、商场、公共停车场等)和居民小区停车场或充电站内,采用传导方式为具有车载充电机的电动汽车提供人机交互操作界面及交流充电接口,并具备相应测控保护功能的专用装置。交流充电桩采用大屏幕LCD彩色触摸屏作为人机交互界面,可选择定电量、定时间、定金额、自动(充满为止)四种模式充电,具备运行状态监测、故障状态监测、充电分时计量、历史数据记录和存储等功能。充电桩的交流工作电压(220±15%)V,额度输出电流(AC)为32 A(七芯插座),普通纯电动轿车用交流充电桩充满电大约需要6~8 h,充电桩更适用于慢速充电。交流充电桩一般由桩体、电气模块、计量模块、账务管理模块四部分组成。根据安装方式的不同,桩体可分为落地式和壁挂式两种。落地式充电桩适合在各种停车场和路边停车位进行地面安装;壁挂式充电桩适合在空间拥挤、周边有墙壁等固定建筑物上进行壁挂安装,如地

电动车防盗系统论文

基于GSM模块电瓶车防盗系统设计 所在院系:通信学院 作者:陈兴兴曾伟胡阿敏 时间:2014-5-25

基于GSM模块电瓶车防盗系统设计 摘要 全球移动通讯系统(GSM)是一种基于全球各地共同使用一个移动电话网络标准的第二代移动通信技术;全球定位系统(GPS)是由空间星座、地面控制和用户设备等三部分构成的能够快速、高效、准确地提供点、线、面要素的精确三维坐标以及其他相关信息的定位系统;本论文基于GSM与GPS电瓶车防盗系统设计和研究,阐述GSM模块防盗系统的主要的系统设计思路、系统设计的元器件和工作模式,其次具体介绍了防盗系统的硬件和软件设计,最后是对本防盗系统的远行调试的结果进行分析和评价,并对该系统的市场应用性进行了评估。关键词:MSP430F149单片机;震动传感器;GSM;GPS;防盗报警;电瓶车 1 引言 由于GSM 网络在全国范围内实现了联网和漫游,具有网络能力强的特点, 利用GSM短信息系统进行无线通信还具有双数据传输功能,性能稳定,为远程数据传送和监控设备的通信提供了一个强大的支持平台。因此利用短信来实现报警是一个非常可行的方案。这个防盗系统运用电动车防盗报警技术和GSM网络移动通信技术集成,借助最可靠、最成熟的GSM移动网络,在车上的系统主机感知到发生被盗时,立即通过GSM移动通信网络及时、准确、有针对性地以最直观的中文短消息形式向车主的手机发送报警短信,直接把电动车的遇险情况反映到车主的手机屏幕上,以便车主在第一时间发觉爱车遇险,从而进行防范。

2 方案设计与论证 2.1 总体方案描述 随着移动通信技术的迅猛发展,利用移动通信技术实现远程控制有着越来越广阔的理论和实践方面的研究价值,基于GSM手机模块的无线遥控控制开关电瓶车防盗系统就是充分利用了移动通信技术,它区别与一般报警系统的最大优点在于它能实现实时双向通信和不受地域范围方面的限制。为了有效地防止电瓶车被盗,基于GSM模块的电瓶车防盗报警系统被运用于电瓶车监控中去整个系统由MSP430F149微控制器,12864液晶显示模块,全球定位系统(GPS)模块,全球移动通信系统(GMS)模块,语音报警模块;振动传感器其振动作用是模拟防盗系统中盗窃过程中电动车产生的振动,当车产生振动时语音报警模块发出报警,单片机立即控制GSM系统向车主发送信息询问是否阻止,车主可以查看GPS准确定位当前车的位置,然后通过GSM系统控制继电器是否正常工作或者强行终止电机的工作确保电动车的安全,总体框图如图2—1所示。 2.2 微处理器模块的比较与论证 根据题目要求,控制器的选择有以下三种方案。 方案一:采用STC89C52 STC公司生产的STC89C52控制简单,应用广泛,但内部资源较少,指令集复杂,且仅有8位运算能力,运算速度较慢。 方案二:红外目标跟踪与无限测温系统采用以ARM为系统控制器采用32位RISC微处理器ARM实现调节装置和风扇控制功能的核心,能完成研究题目的要求,但是ARM不适合多线程操作,另外应用在系统中会使电路和软件设计变得复杂。

电动车控制系统设计

物理与电子工程学院 《自动控制原理》课程设计报告书 设计题目电动车控制系统设计 专业:自动化 班级: 2012级自动化二班 学生姓名: 金世传 学号: 2012341232 指导教师:樊炳航 2015年6月22日

物理与电子工程学院课程设计任务书 专业:自动化班级: 2012自动化本科2班

摘要 本设计依据经典自动控制原理,首先在理论上从时域和频域两个方面分析了火星漫游车转向控制系统的稳定性,并借助仿真软件MATLAB(矩阵实验室)绘制了其频域特性图像。最后使用校正原理中串联超前校正法和三频段概念对该系统在频域上进行了串联超前校正,使其达到一定的稳定要求。在分析的过程及校正的过程中大量使用了仿真软件MATLAB(矩阵实验室),其绘制出来的曲线精准、清晰,保证了结果的可靠性和准确性。 关键词:电动车控制;自动控制原理;MATLAB

目录 0 引言 ......................................................................................... - 1 - 1 概述 ......................................................................................... - 1 - 2 数学模型.................................................................................. - 2 - 3系统稳定性分析.......................................... 错误!未定义书签。 3.1时域分析法............................................ 错误!未定义书签。 3.2根轨迹分析法........................................ 错误!未定义书签。 3.3频域分析法............................................ 错误!未定义书签。 4 心得体会.................................................................................. - 8 - 参考文献 ..................................................................................... - 8 -附录 ............................................................................................. - 1 -

电动车防盗系统设计

(此文档为word格式,下载后您可任意编辑修改!) 本科毕业设计(论文) 题目电动车防盗系统设计 院(系部) 专业名称电子信息工程 年级班级 学生姓名 指导教师 2009 年06月2日

摘要 电动车具有环保,快捷,方便的优良特点。随着电动车的普及,防盗问题越来越突出。为了很好地解决防盗问题,应用新技术对防盗系统的设计非常必要。 本系统主要由单片机,振动传感器以及GSM短信模块组成,借助最可靠、最成熟的GSM移动网络,以最直观的中文短消息形式,直接把电动车的遇险情况反映到车主的手机屏幕上,以便车主在第一时间发现险情,从而进行必要的防范。它主要是采用振动传感器进行检测,把感应到的振动信号转换为电信号,单片机是该系统的主要部件,通过GSM模块发送信息。该基于GSM模块的电动车防盗系统较之以往传统的防盗系统有很多优点。首先,本防盗系统报警准确,误报率低,避免车主不必要的担心;其次,本防盗系统无噪音,避免了传统报警器报警声不断,吵人,扰民的情况;再次,本防盗系统借助的是最可靠、最成熟的GSM移动网络,由于GSM 全球无线移动通讯网络信号覆盖面积广,真正实现了低价优质的超远距离方便、灵活的智能无线控制及报警,解决了固定电话或有线宽带网络有线报警的局限性。 关键词:单片机; GSM模块; 振动传感器; 防盗。 Abstract The fine features of electric bicycle are environmentally friendly, efficient, convenient.With the popularity of electric bicycle, security issues become more grave. In order to solve security issues, application of new technologies on the design of anti-theft system has become very necessary. This system consists of single-chip microcomputer, pressure sensors and GSM modem. It uses the most reliable, most mature GSM mobile network, in order to tell the state of electric bicycle to

详解电动汽车传动系统原理、传动方式及拓扑构架设计

详解电动汽车传动系统原理、传动方式及拓扑构架设计 随着现代汽车电子技术的发展,新能源汽车、电动汽车的出现无疑给整个行业注入了一股新鲜而且充满挑战性的血液。凭借可以减少很多废弃物、有害气体的排放,对整个社会的生活环境都有很大的改善效果,得到社会及国家的高度的重视,具有很好的发展前景。下面我们就来从电动车的结构引入到电动汽车传动系统,并分析它的工作原理、传动方式、优势等,并简单的列举一些成功的应用案例。电动汽车和普通的汽车不同,它是用车载电源提供行驶的动力,用电机来驱动车轮的运动,而不是用点火装置来提供向前运动的力。我们知道,电动汽车主要是由电力驱动及控制系统、驱动力传动系统、工作装置等各个部分组成。它的工作原理是蓄电池中提供恒定的电流输出,这些恒定的电路通过电力调节器进行一次转换成可以驱动电动机的合适的电流和电压,从而可以驱动整个动力传动系统的正常运行,经过他们之间相互的作用最终给汽车提供可以运行的动力汽车可以正常的行驶。由此可见,电动汽车传动系统的有效性和安全性直接影响着整个系统的运行。电动汽车传动系统原理是直接将电动机的驱动转矩传给汽车的驱动轴。汽车传动轴在采用电动轮驱动时,由于它是靠车载电源提供动力源驱动电动机因而可以实现带负载启动,无需离合器;也正是因为是车载电源可以提供恒定的电流,中间会有电路控制的环境来实现驱动电机的方向和转速的控制,所以不需要倒档和差速器。若采用无级调速,就可以实现自动控制,无需变速器。电动汽车传动系统的传动方式主要有三种:(1)电机+传动轴+后桥(2)电机+变速箱+后桥(3)电机+磁力变矩器+后桥以目前的变速箱技术成熟度而言,除了传统车的变速箱外还没有一款真正成熟的适用于电动汽车的产品,最可靠和适用的传动方式还是电机+传动轴+后桥的直驱方案。当然在具体的设计时,我们需要更具实际情况来设计,包括电机的位置、电源的位置、驱动负载的能力、行驶速度要求、稳定性等这些都需要综合的来考虑。了解车辆效率损失分配即从发动机输出的功率消耗在不同汽车部件上的量及比例。这对改善车辆总体的传动效能非常有用,以达到适当配置资源,改善性能的目的。各种损失,使用安装在车辆适当位置的传感器进行测定。电动汽车传动系统拓扑构架设计汽车动力传动系统采用传统的内燃机和电动机作为动力能源,通过混合使用热能和电能两套系统开动汽车。在低速小功率运行时可以关闭发动机,采用电动机驱动;而高速行驶时用内燃机驱动;通过发动机和电动机的协同工作模式,将车辆在制动时产生的能量转化为电能,并积蓄起来成为新的驱动力量.从而在不同工况下都能达到高效率。一般上有串联式、并联式、混联式和复合式4种布置形式。(1)串联式—下图中采用的电力电子装置只有电机控制器,电池和辅助动力装置都直接并接在电机控制器的入口,属于串联式,车辆的驱动力只来源于电动机。 (2)并联式—下图中是典型的并联式动力系统结构,通常在电池和电机控制器之间安装了一个DC/DC变换器,电池的端电压通过DC/DC变换器的升压或降压来与系统直流母线的电压等级进行匹配。车辆的驱动力由电动机及发动机同时或单独供给。(3)混联式----采用四轮驱动、前后轮分别与不同的驱动系相连,后轮驱动有发动机、后置电机、发电机、变速器等组成,前轮驱动由前置电机、发电机组成。由于它使用不同的驱动方式,所以整个电动汽车传动系统既分离又相关联,可以更好的控制。下图就是一个简单的混联式的拓扑构架。同时具有串联式、并联式驱动方式。(4)复合式---改结构主要集中于双轴混合动力系统中,前轴和后轴独立驱动,前轮和后轮之间没有任何驱动抽或转电力主动型的设计,这种独立的驱动,让传动系统各个部件在运行过程中相互独立控制,因此可以有更好的传输能力。要让整个系统可以更好的运行,除了结构设计方面需要注意之外,还有一个就是电动汽车传动系统的参数设计也需要合理的匹配,这些参数对传动结构的性能影响也是很大的。这一方面的知识,小编在这边文章就不具体介绍了。总结能源问题和环境污染问题是现在社会日益突出的问题,深受国家的重视。因此寻找新能源汽车可以减少废气排放,让能源可以更好的利用在汽车电子设计行业是当务之急。电动汽车正是因为具有上面

相关文档
相关文档 最新文档