文档库 最新最全的文档下载
当前位置:文档库 › 基于BP神经网络的食品安全抽检数据挖掘

基于BP神经网络的食品安全抽检数据挖掘

基于BP神经网络的食品安全抽检数据挖掘
基于BP神经网络的食品安全抽检数据挖掘

BP神经网络测试例子(附数据)

Train.txt 5.0,3.0,1.6,0.2,1 5.0,3.4,1.6,0.4,1 5.2,3.5,1.5,0.2,1 5.2,3.4,1.4,0.2,1 4.7,3.2,1.6,0.2,1 4.8,3.1,1.6,0.2,1 5.4,3.4,1.5,0.4,1 5.2,4.1,1.5,0.1,1 5.5,4.2,1.4,0.2,1 4.9,3.1,1.5,0.1,1 5.0,3.2,1.2,0.2,1 5.5,3.5,1.3,0.2,1 4.9,3.1,1.5,0.1,1 4.4,3.0,1.3,0.2,1 5.1,3.4,1.5,0.2,1 5.0,3.5,1.3,0.3,1 4.5,2.3,1.3,0.3,1 4.4,3.2,1.3,0.2,1 5.0,3.5,1.6,0.6,1 5.1,3.8,1.9,0.4,1 4.8,3.0,1.4,0.3,1 5.1,3.8,1.6,0.2,1 4.6,3.2,1.4,0.2,1 5.3,3.7,1.5,0.2,1 5.0,3.3,1.4,0.2,1 6.6,3.0,4.4,1.4,2 6.8,2.8,4.8,1.4,2 6.7,3.0,5.0,1.7,2 6.0,2.9,4.5,1.5,2 5.7,2.6,3.5,1.0,2 5.5,2.4,3.8,1.1,2 5.5,2.4,3.7,1.0,2 5.8,2.7,3.9,1.2,2 6.0,2.7,5.1,1.6,2 5.4,3.0,4.5,1.5,2 6.0,3.4,4.5,1.6,2 6.7,3.1,4.7,1.5,2 6.3,2.3,4.4,1.3,2 5.6,3.0,4.1,1.3,2 5.5,2.5,4.0,1.3,2 5.5,2.6,4.4,1.2,2 6.1,3.0,4.6,1.4,2 5.8,2.6,4.0,1.2,2

《大数据时代下的数据挖掘》试题及答案..

《海量数据挖掘技术及工程实践》题目 一、单选题(共80题) 1)( D )的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到 和原始数据相同的分析结果。 A.数据清洗 B.数据集成 C.数据变换 D.数据归约 2)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖 掘的哪类问题?(A) A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理 3)以下两种描述分别对应哪两种对分类算法的评价标准? (A) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 (b)描述有多少比例的小偷给警察抓了的标准。 A. Precision,Recall B. Recall,Precision A. Precision,ROC D. Recall,ROC 4)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘 5)当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数 据相分离?(B) A. 分类 B. 聚类 C. 关联分析 D. 隐马尔可夫链 6)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的 哪一类任务?(C) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 7)下面哪种不属于数据预处理的方法? (D) A.变量代换 B.离散化

C.聚集 D.估计遗漏值 8)假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内? (B) A.第一个 B.第二个 C.第三个 D.第四个 9)下面哪个不属于数据的属性类型:(D) A.标称 B.序数 C.区间 D.相异 10)只有非零值才重要的二元属性被称作:( C ) A.计数属性 B.离散属性 C.非对称的二元属性 D.对称属性 11)以下哪种方法不属于特征选择的标准方法: (D) A.嵌入 B.过滤 C.包装 D.抽样 12)下面不属于创建新属性的相关方法的是: (B) A.特征提取 B.特征修改 C.映射数据到新的空间 D.特征构造 13)下面哪个属于映射数据到新的空间的方法? (A) A.傅立叶变换 B.特征加权 C.渐进抽样 D.维归约 14)假设属性income的最大最小值分别是12000元和98000元。利用最大最小规范化的方 法将属性的值映射到0至1的范围内。对属性income的73600元将被转化为:(D) A.0.821 B.1.224 C.1.458 D.0.716 15)一所大学内的各年纪人数分别为:一年级200人,二年级160人,三年级130人,四年 级110人。则年级属性的众数是: (A) A.一年级 B.二年级 C.三年级 D.四年级

神经网络在数据挖掘中的应用

神经网络在数据挖掘中的应用

————————————————————————————————作者:————————————————————————————————日期: ?

神经网络在数据挖掘中的应用 摘要:给出了数据挖掘方法的研究现状,通过分析当前一些数据挖掘方法的局限性,介绍一种基于关系数据库的数据挖掘方法——神经网络方法,目前,在数据挖掘中最常用的神经网络是BP网络。在本文最后,也提出了神经网络方法在数据挖掘中存在的一些问题. 关键词:BP算法;神经网络;数据挖掘 1.引言 在“数据爆炸但知识贫乏”的网络时代,人们希望能够对其进行更高层次的分析,以便更好地利用这些数据。数据挖掘技术应运而生。并显示出强大的生命力。和传统的数据分析不同的是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。所得到的信息具有先未知,有效性和实用性三个特征。它是从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从各种数据源中选取和集成用于数据挖掘的数据;规律寻找是用某种方法将数据中的规律找出来;规律表示是用尽可能符合用户习惯的方式(如可视化)将找出的规律表示出来。数据挖掘在自身发展的过程中,吸收了数理统计、数据库和人工智能中的大量技术。作为近年来来一门处理数据的新兴技术,数据挖掘的目标主要是为了帮助决策者寻找数据间潜在的关联(Relation),特征(Pattern)、趋势(Trend)等,发现被忽略的要素,对预测未来和决策行为十分有用。 数据挖掘技术在商业方面应用较早,目前已经成为电子商务中的关键技术。并且由于数据挖掘在开发信息资源方面的优越性,已逐步推广到保险、医疗、制造业和电信等各个行业的应用。 数据挖掘(Data Mining)是数据库中知识发现的核心,形成了一种全新的应用领域。数据挖掘是从大量的、有噪声的、随机的数据中,识别有效的、新颖的、有潜在应用价值及完全可理解模式的非凡过程。从而对科学研究、商业决策和企业管理提供帮助。 数据挖掘是一个高级的处理过程,它从数据集中识别出以模式来表示的知识。它的核心技术是人工智能、机器学习、统计等,但一个DM系统不是多项技术的简单组合,而是一个完整的整体,它还需要其它辅助技术的支持,才能完成数据采集、预处理、数据分析、结果表述这一系列的高级处理过程。所谓高级处理过程是指一个多步骤的处理过程,多步骤之间相互影响、反复调整,形成一种螺旋式上升过程。最后将分析结果呈现在用户面前。根据功能,整个DM系统可以大致分为三级结构。 神经网络具有自适应和学习功能,网络不断检验预测结果与实际情况是否相符。把与实际情况不符合的输入输出数据对作为新的样本,神经网络对新样本进行动态学习并动态改变网络结构和参数,这样使网络适应环境或预测对象本身结构和参数的变化,从而使预测网络模型有更强的适应性,从而得到更符合实际情况的知识和规则,辅助决策者进行更好地决策。而在ANN的

人工神经网络概论

人工神经网络概论 梁飞 (中国矿业大学计算机科学与技术学院信科09-1班,江苏,徐州,221116) 摘要:进入21世纪以来,神经网络近来越来越受到人们的关注,因为神经网络可以很容易的解决具有上百个参数的问题,它为大复杂度问题提供了解决一种相对来说比较有效的简单方法。人工神经网络是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。本文简要介绍了人工神经网络的工作原理、属性、特点和优缺点、网络模型、发展历史及它的应用和发展前景等。 关键词:人工神经网络;人工智能;神经网络;神经系统 1.人工神经网络的简介 人工神经网络(Artificial Neural Networks,简写为 ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。 2.人工神经网络的工作原理 人脑的处理机制极其复杂,从结构上看它是包含有140亿神经细胞的大规模网络。单个神经细胞的工作速度并不高,但它通过超并行处理使得整个系统实现处理的高速性和表现的多样性。 因此,从处理的角度对人脑进行研究,并由此研制出一种象人脑一样能够“思维”的智能计算机和智能处理方法,一直是人工智能追求的目标。 人脑神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。

BP神经网络模型应用实例

BP神经网络模型 第1节基本原理简介 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络

设想,如图34-1所示。 BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 Q x e x f /11)(-+= 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并 传向输出层。每一层神经元的状态只影响下一层神经

神经网络基本概念

二.神经网络控制 §2.1 神经网络基本概念 一. 生物神经元模型:<1>P7 生物神经元,也称作神经细胞,是构成神经系统的基本功能单元。虽然神经元的形态有极大差异,但基本结构相似。本目从信息处理和生物控制的角度,简述其结构和功能。 1.神经元结构 神经元结构如图2-1所示 图2-1

1) 细胞体:由细胞核、细胞质和细胞膜等组成。 2) 树突:胞体上短而多分支的突起,相当于神经元的输入端,接收传入的神经冲 动。 3) 轴突:胞体上最长枝的突起,也称神经纤维。端部有很多神经末梢,传出神经 冲动。 4) 突触:是神经元之间的连接接口,每一个神经元约有104~106 个突触,前一个 神经元的轴突末梢称为突触的前膜,而后一个神经元的树突称为突触的后膜。一个神经元通过其轴突的神经末梢经突触,与另一个神经元的树突连接,以实现信息传递。由于突触的信息传递是特性可变的,随着神经冲动传递方式的变化,传递作用强弱不同,形成了神经元之间连接的柔性,称为结构的可塑性。 5) 细胞膜电位:神经细胞在受到电的、化学的、机械的刺激后能产生兴奋,此时细胞膜内外由电位差,称为膜电位。其电位膜内为正,膜外为负。 2. 神经元功能 1) 兴奋与抑制:传入神经元的冲动经整和后使细胞膜电位提高,超过动作电 位的阈值时即为兴奋状态,产生神经冲动,由轴突经神经末梢传出。传入神经元的冲动经整和后使细胞膜电位降低,低于阈值时即为抑制状态,不产生神经冲动。 2) 学习与遗忘:由于神经元结构的可塑性,突触的传递作用可增强与减弱, 因此神经元具有学习与遗忘的功能。 二.人工神经元模型 ,<2>P96 人工神经元是对生物神经元的一种模拟与简化。它是神经网络的基本处理单元。图2-2显示了一种简化的人工神经元结构。它是一个多输入单输出的非线形元件。 图2-2 其输入、输出的关系可描述为 =-= n j i j ji i Q X W I 1 2-1 )I (f y i i = 其中i X (j=1、2、……、n)是从其他神经元传来的输入信号;

人工神经网络综述

人工神经网络综述 摘要:人工神经网络是属于人工智能的一个组成部分,它的提出是基于现代神经科学的相关研究,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。首先论述了人工神经网络的发展历程,并介绍了几种常见的模型及应用现状,最后总结了当前存在的问题及发展方向。 关键词:神经网络、分类、应用 0引言 多年以来,科学家们不断从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度探索人脑工作的秘密,希望能制作模拟人脑的人工神经元。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在计算某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。在研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“人工神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。 1人工神经网络概述 1.1人工神经网络的发展 人工神经网络是20世纪80年代以来人工智能领域中兴起的研究热点,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。 1.1.1人工神经网络发展初期 1943年美国科学家家Pitts和MeCulloch从人脑信息处理观点出发,采用数理模型的方法研究了脑细胞的动作和结构及其生物神经元的一些基本生理特性,他们提出了第一个神经计算模型,即神经元的阈值元件模型,简称MP模型,这是人类最早对于人脑功能的模仿。他们主要贡献在于结点的并行计算能力很强,为计算神经行为的某此方面提供了可能性,从而开创了神经网络的研究。1958年Frank Rosenblatt提出了感知模型(Pereeptron),用来进行分类,并首次把神经网络的研究付诸于工程实践。1960年Bernard Widrow等提出自适应线形元件ADACINE网络模型,用于信号处理中的自适应滤波、预测和模型识别。 1.1.2人工神经网络低谷时期

指标筛选技术在神经网络数据挖掘中的应用

指标筛选技术在神经网络数据挖掘模型中的应用 摘要 在简要介绍神经网络基本原理的基础上,以分类神经网络中的RBF 网络为例,讨论了神经网络数据挖掘模型中指标筛选的重要性,并以信用卡欺诈检测神经网络数据挖掘模型为实证案例,演示了指标筛选方法能有效地提高神经网络模型的分类效率与收敛速度,同时,讨论如何针对数据挖掘主题与数据特点选择合适的指标筛选技术。常用的指标筛选技术有相关分析、回归分析、信息增益、模糊集与主成分法等,本文重点介绍了基于回归分析的指标筛选与基于信息增益的指标筛选,目的在于通过引入指标筛选技术,提高神经网络数据挖掘模型的准确率、响应速度与减少资源占用等。 关键词:数据挖掘、神经网络、指标筛选、信息增益 1. 引言 根据Universal Approximation Theore,即神经网络具有对任何复杂函数的模拟逼近功能,这为神经网大规模应用提供了强有力的理论依据。由于神经网络是基于生物神经网络的模拟,通过不断学习来认识事物潜在的规律。同时,由于神经网络没有对数据分布进行相应的假设,这使神经网络在各行业中的应用具有广泛的适用性。另一方面,由于没有对数据分布进行假定,使神经网络对噪声数据具有相当的柔性,这进一步使人们在面对高维空间与海量数据时,更偏向于采用基于生物模拟的神经网络,而非基于传统的统计分析与计量方法,如多元统计分析等。但是,神经网络的柔性与通用逼近性在实践中有时并未给研究分析带来理想的效果,其根本原因在于,直接导入高维空间数据致使神经网络的效率急剧下降,也使得神经网络很难满足实时响应的要求,如实时欺诈监控、实时风险评级、工业实时控制等。 因此,本文针对神经网络的应用,提出了高维空间的预处理,即指标筛选。文章安排具体如下,首先介绍了神经网络的基本原理;其次,介绍几种指标筛选方法,并进行比较,重点讨论信息增益方法在指标选择中的优势; 再次,根据一银行信用卡欺诈数据集,演示了指标筛选技术在神经网络中的作用,同时比较了不同指标筛选技术的效率;最后,总结了指标筛选技术在神经网络模型中应用要点。 2. 神经网络的基本原理 人工神经网络(Neural Networks)是对生物神经网络进行仿真研究的结果。它通过采集样本数据进行学习的方法来建立数据模型,系统通过样本不断学习,在此基础上建立计算模型,从而建立神经网络结构[2]。神经网络通过训练后可以执行复杂函数的功能,能对所有函数进行逼近,Universal Approximation Theorem。这就是说,如果一个网络通过训练后呈收敛状态,那么神经网络就具备了执行输入到输出这种线性或非线性的函数功能。当然,这种函数不是基于理论或经验的假设,而是基于对样本的有监督的训练,使神经网络具备了模拟复杂系统的功能。根据数据挖掘主题的类型,神经网

BP神经网络matlab实例

神经网络Matlab p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络 net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 = net newff PR S S SNl TF TF TFNl BTF BLF PF (,[1 2...],{ 1 2...},,,) R?维矩阵。 PR:由R维的输入样本最小最大值构成的2

S S SNl:各层的神经元个数。 [1 2...] TF TF TFNl:各层的神经元传递函数。 { 1 2...} BTF:训练用函数的名称。 (2)网络训练 = [,,,,,] (,,,,,,) net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真 = [,,,,] (,,,,) Y Pf Af E perf sim net P Pi Ai T {'tansig','purelin'},'trainrp' BP网络的训练函数 训练方法训练函数 梯度下降法traingd 有动量的梯度下降法traingdm 自适应lr梯度下降法traingda 自适应lr动量梯度下降法traingdx 弹性梯度下降法trainrp Fletcher-Reeves共轭梯度法traincgf Ploak-Ribiere共轭梯度法traincgp Powell-Beale共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlm

人工神经网络在数据挖掘中的潜在应用

人工神经网络在数据挖掘中的潜在应用 摘要:随着存储在文件,数据库,和其他的库中的数据量巨大,数据正在变得越来越重要,开发用于分析或解释这些数据和用于提取有趣的知识的强有力的手段可以帮助决策。数据挖掘,也普遍被称为数据库中的知识发现(KDD),是指从数据库中的数据中提取隐含的,先前未知的,潜在地有用的信息。因此,数据挖掘的过程就是从大型数据库中自动提取隐藏的,预测的信息。数据挖掘,包括:提取,转换和加载到数据仓库系统的数据。神经网络已经成功地广泛的应用在监督和无监督的学习应用当中。神经网络方法不常用于数据挖掘任务当中,因为它们可能会结构复杂,训练时间长,结果的表示不易理解并且经常产生不可理解的模型。然而,神经网络对嘈杂的高精度的数据具有高度的接受能力在数据挖掘中的应用是可取的。在本论文中,调查探索人工神经网络在数据挖掘技术的应用,关键技术和实现基于神经网络的数据挖掘研究方法。鉴于目前的行业状态,神经网络作为一个工具盒在数据挖掘领域是非常有价值的一点。 关键词:数据挖掘;KDD;SOM;数据挖掘的过程 一、引言 数据挖掘,从大型数据库中提取隐藏的预测性信息,是一个功能强大的具有巨大潜力的新技术在帮助公司集中重要的信息在他们的数据仓库中。数据挖掘工具预测未来的趋势和行为,允许企业作出主动的,知识驱动的决策。所提供的数据挖掘超越过去的事件进行回顾性工具的典型的决策支持系统提供了自动、前瞻性的分析。数据挖掘工具可以回答那些,传统上耗费太多的时间来解决的业务问题。他们寻找隐藏的模式数据库,寻找专家们可能由于超出在他们期望之外而错过的预测信息。不同类型的数据挖掘工具,在市场上是可用的,每个都有自己的长处和弱点。内部审计人员需要了解数据挖掘工具的不同种类和推荐的工具,满足组织电流检测的需要。这应该在项目的生命周期中尽早考虑,甚至可行性研究。 数据挖掘通常包括四类任务。 分类:把这些数据整理到组。例如一个电子邮件程序会试图将一封电子邮件分类为合法的或垃圾邮件。常见的算法包括决策树学习,最近邻,朴素贝叶斯分类和神经网络算法。 聚类:就像分类但这些组却没有被预定义,因此该算法会尝试将类似的物品放在一起进行分组。 回归:试图找到一个以最小的误差的数据函数模型。 关联规则的学习:变量之间的关系搜索。例如,超市会对将消费者的购买习惯的数据集合起来。利用关联规则的学习,超市可以决定哪些产品经常一起购买和利用此信息实现营销的目的。有时将这种方法称为“市场分析”。 人工神经网络是一个基于人类大脑的松散的系统建模。现场有许多名字,如联结,并行分布处理,神经计算,自然智能系统,机器学习算法,人工神经网络。它必须考虑任何功能的依赖性。网络发现(学习,模型)无需提示的依赖性。最初的数据挖掘应用中神经网络不被使用是由于其结构复杂,训练时间长,且操作性较差。而神经网络是解决许多现实世界的问题的一个有力的技术。他们从经验中学习,以提高其性能和适应变化的能力环境。此外,他们能够处理不完备信息或嘈杂的数据,特别是在无法定义的规则或步骤导致一个问题的解决方案的情况下是非常有效的。

介绍人工神经网络的发展历程和分类.

介绍人工神经网络的发展历程和分类 1943年,心理学家W.S.McCulloch 和数理逻辑学家W.Pitts 建立了神经网络和数学模型,称为MP 模型。他们通过MP 模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky 等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron 》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART 网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield 提出了Hopfield 神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield 神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC )”项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。层次型结构的神经网络将神经

人工神经网络基本概念

《神经网络》讲稿 主讲人:谷立臣教授 2003年9月

第1章基本概念 ?作为自然实例的人脑 ?人工神经元模型 ●人工神经网络的拓扑结构及其学习规则?神经网络的学习策略 ?人工神经网络与生物神经网络的比较?人工神经网络的发展与现状 ?人工神经网络与自动控制 ?人工神经网络与设备故障诊断 ?参考文献

?脑神经生理学家告诉我们:人脑借以记忆与思维的最基本单元是神经元,其数量 约为个; ?每一神经元约有个突触; ?神经元间通过突触形成的网络,传递着彼此间的兴奋与抑制;全部大脑神经元构成拓扑上极其复杂的网络群体,由这一网络群体实现记忆与思维。见图1-1。 111210~103410~10

每一个神经元包括细胞体(Cell body或Soma)和突起(Process)两部分。 ◆细胞体是神经元新陈代谢的中心,还是接收与处理信息的部件 ◆突起有两类,即轴突(Axon)与树突(Dendrite)。轴突的长度相差很大,长的可达1米。轴突的末端与树突进行信号传递的界面称为突触(synapse),通过突触向其他神经元发送出生物信息,在轴突中电脉冲的传导速度可达到10~100米/秒。另一类突起——树突(输入),一般较短,但分枝很多,它能接收来自其他神经元的生物电信号,从而与轴突一起实现神经元之间的信息沟通。突起的作用是传递信息。 ◆通过“轴突---突触――树突”这样的路径,某一神经元就有可能和数百个以至更多的神经元沟通信息。那些具有很长轴突的神经元,更可将信息从一脑区传送到另一脑区。

?绝大多数神经元不论其体积﹑形状﹑功能如何,不论是记忆神经元还是运动神经元,均可分为一个输入(或感知)器官,一个代数求和器官,一个长距离传递器官和一个输出器官。见图1-2。 ?既然所有神经元的功能均是相近的,那么何以实现复杂的功能呢?答案是:无一功能是由单个神经元实现的,而是由许多神经元以不同的拓扑结构所共同产生的。这一平行处理性提高了神经网路系统的冗余度与可靠性。

(完整版)BP神经网络matlab实例(简单而经典)

p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化 net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 = net newff PR S S SNl TF TF TFNl BTF BLF PF (,[1 2...],{ 1 2...},,,) PR:由R维的输入样本最小最大值构成的2 R?维矩阵。 S S SNl:各层的神经元个数。 [ 1 2...] { 1 2...} TF TF TFNl:各层的神经元传递函数。 BTF:训练用函数的名称。 (2)网络训练 [,,,,,] (,,,,,,) = net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真 = [,,,,] (,,,,) Y Pf Af E perf sim net P Pi Ai T {'tansig','purelin'},'trainrp'

基于神经网络型数据挖掘技术的股价预测_冯家诚

收稿日期:2008-11-11;修订日期:2009-01-15。 作者简介:冯家诚(1979-),男,安徽无为人,硕士研究生,主要研究方向:数据挖掘; 马锐(1972-),女,北京人,副教授,主要研究方向:人工智能。 文章编号:1001-9081(2009)S1-0155-02 基于神经网络型数据挖掘技术的股价预测 冯家诚1 ,马 锐 2 (1.华商基金管理有限公司运营保障部,北京100034; 2.北京理工大学软件学院,北京100081) (fengjc@hsfund .com ) 摘 要:提出适用于神经网络型数据挖掘的过程模型。按照选取数据样本、数据转换、网络建模、网络仿真、结果评价这样一个完整的数据挖掘过程,对上证指数走势进行预测,得到了较高的预测精度。说明了神经网络型数据挖掘技术在非线性系统预测中的优势,探讨了非线性系统预测的一种新思路。 关键词:数据挖掘;BP 网络;股价预测中图分类号:TP309 文献标志码:A Stock pr i ce foreca st ba sed on da t a m i n i n g of neura l networks FENG J ia 2cheng 1 ,MA Rui 2 (1.O peration and Support D epart m ent,Huashang Fund M anage m ent Co m pany L i m ited,B eijing 100034,China; 2.School of Soft w are,B eijing Institute of Technology,B eijing 100081,China ) Abstract:The authors gave a p r ocedure model for data m ining based on neural net w orks .According t o each step of the model,the technol ogy of data m ining could p r ovide a higher accuracy of p redicti on of st ock p rice forecast,which p r oved the advantage of data m ining in the field of no 2linear f orecast .M ean while,a ne w method t o the non 2linear f orecast was als o poposed . Key words:data m ining;BP N;st ock p rice forecast 0 引言 就股市投资而言,辨认市场的运动规律,对将来时刻的股价指数进行预测,是股票市场投资决策的关键。 目前,经常采用的预测方法主要通过移动平均、回归分析等线性方法展开。随着科学技术的发展,出现了一些新型的股票价格预测方法,如基于神经网络和遗传算法的股价预测、基于小波分析的股价预测和基于行为金融学的股价预测。 对于神经网络在股价预测中的应用,研究者们已经做了大量的研究 [1-2] 。但是,现有的研究主要是围绕神经网络模 型的构建和模型的优化展开的,着重于技术方面的解决,缺少对解决此类问题方法的讨论。 本文根据数据挖掘过程,以BP 神经网络模型作为技术关键,通过实证分析,定量预测了上证指数走势,说明了BP 神经网络在预测股票市场方面的有效性。 1 基于神经网络的数据挖掘过程 在运用数据挖掘技术预测股价走势之前,需要确定数据挖掘的一般过程。参考S AS 研究所的SE MMA 模型和SPSS 公司的5A 模型[3],并结合神经网络数据挖掘技术的自身特点,确定基于神经网络型数据挖掘一般过程如图1所示。 以上步骤不是一次完成的,其中某些或者全部步骤可能需要反复进行。 2 股价预测过程 2.1 问题定义 在对股票市场预测分析之前,辨认其运动规律是非常必 要的。如果市场是线性的,则线性的预测方法就能够与之相适应。但如果市场是非线性的,那么仅依靠线性的方法去预测股价,就容易丢失很多有用的信息[4]。已有的研究成果表明,现阶段的中国股市具有非线性的特征。因此,运用神经网络的方法进行股价预测具有特殊的优越性。 在这样的背景下,此次数据挖掘的目的就是针对我国股市的非线性特征,建立符合这种特征的神经网络模型。在此 基础上,通过实证研究来证明模型预测的有效性,说明基于神经网络的预测方法在股价预测中的优势 。 图1 基于神经网络的数据挖掘过程 2.2 数据选样2.2.1 数据样本的选取 就股票市场而言,数据样本的选取主要遵循两个原则:一是尽可能选择符合交易规律、并且交易特征相对明显的样本;二是顾及神经网络模型本身的性能。 在此次试验中,选取2004211230—200524229间连续100个交易日的上证综合指数作为待挖掘数据样本,并根据需要将其划分为训练样本和测试样本两个部分。上证综合指数作 第29卷2009年6月   计算机应用 Journal of Co mputer App licati ons   Vol .29June 2009

BP神经网络实例

BP神经网络实例

智能控制 第一章BP神经网络基本原理 一、BP神经网络基本概念 1、人工神经网络 人工神经网络ANN(Artificial Neural Network),是对人类大脑系统的一阶特性的一种描述。简单地讲,它是一个数学模型,可以用电子线路来实现,也可以用计算机程序来模拟,是人工智能研究地一种方法。近年来发展迅速并逐渐成熟的一种人工智能技术,其来源于对神经元细胞的模拟。人工神经网络具有以下三个特点:信息分布表示,运算全局并行与局部操作,信息非线性处理。由于这三个特点,使得由人工神经网络构成的分类器具有强大的数据拟和与泛化能力,因而广泛运用于模式识别与机器学习领域。 神经网络模式识别的过程分为两步:首先是学习过程,通过大量的训练样本,对网络进行训练,根据某种学习规则不断对连接权值进行调节,然后使网络具有某种期望的输出,这种输出就可以将训练样本正确分类到其所属类别中去,此时可以认为网络是学习到了输入数据或样本间的内在规律。接下来是分类过程,应用前面学习过程所训练好的权值,对任意送入网络的样本进行分类。 人工神经网络模型各种各样,目前已有数十种。他们从各个角度对生物神经系统的不同层次进行了描述和模拟。代表模型有感知机、多层映射BP网、RBF 网络、HoPfiled模型、Boit~机等等。虽然人工神经网络有很多模型,但按神经元的连接方式只有两种型态:没有反馈的前向网络和相互结合型网络。前向网络是多层映射网络,每一层中的神经元只接受来自前一层神经元的信号,因此信号的传播是单方向的。BP网络是这类网络中最典型的例子。在相互结合型网络中,任意两个神经元都可能有连接,因此输入信号要在网络中往返传递,从某一初态开始,经过若干变化,渐渐趋于某一稳定状态或进入周期震荡等其它状态,这方面典型的网络有Hopfiled模型等。 1

人工神经网络,具有自学习功能

人工神经网络,具有自学习功能 学习类型学习是神经网络研究的一个重要内容,它的适应性是通过学习实 现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而 变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的 需要。有效的学习算法,使得神 人工神经网络经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。 根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。 在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与 网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练 后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适 应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学 习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段 成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简 单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是 与竞争学习有关的典型模型。 编辑本段分析方法 研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规 划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网 络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在 整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。 混沌是一个相当难以精确定义的数学概念。一般而言,"混沌"是指由确定性方 程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。"确定

2019神经网络实学习 例子.doc

神经网络实学习例子 1通过神经网络滤波和信号处理,传统的sigmoid函数具有全局逼近能力,而径向基rbf函数则具有更好的局部逼近能力,采用完全正交的rbf径向基函 数作为激励函数,具有更大的优越性,这就是小波神经网络,对细节逼近能力 更强。 BP网络的特点①网络实质上实现了一个从输入到输出的映射功能,而数学 理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解 内部机制复杂的问题。我们无需建立模型,或了解其内部过程,只需输入,获 得输出。只要BPNN结构优秀,一般20个输入函数以下的问题都能在50000次 的学习以内收敛到最低误差附近。而且理论上,一个三层的神经网络,能够以 任意精度逼近给定的函数,这是非常诱人的期望;②网络能通过学习带正确答 案的实例集自动提取"合理的"求解规则,即具有自学习能力;③网络具有一定 的推广、概括能力。bp主要应用回归预测(可以进行拟合,数据处理分析,事 物预测,控制等)、分类识别(进行类型划分,模式识别等),在后面的学习中,都将给出实例程序。但无论那种网络,什么方法,解决问题的精确度都无法打 到100%的,但并不影响其使用,因为现实中很多复杂的问题,精确的解释是毫 无意义的,有意义的解析必定会损失精度。BP注意问题1、BP算法的学习速度 很慢,其原因主要有:a由于BP算法本质上为梯度下降法,而它所要优化的目 标函数又非常复杂,因此,必然会出现"锯齿形现象",这使得BP算法低效; 结论4:由上表可以看出,后者的初始权值比较合适些,因此训练的时间 变短, 误差收敛速度明显快些。因此初始权值的选取对于一个网络的训练是很重 要的。 1.4,用最基本的BP算法来训练BP神经网络时,学习率、均方 误差、权值、阈值的设置都对网络的训练均有影响。综合选取合理的值, 将有

数据仓库与数据挖掘技术 第八章 人工神经网络

第8章人工神经网络方法8.1人工神经网络的基本概念 8.1.1人工神经元原理 图8-1神经元模型 图8-2常见的作用函数 8.1.2人工神经网络拓扑结构

数据仓库与数据挖掘技术 图8-3典型的神经网络结构8.1.3人工神经网络学习算法 1. 神经网络的学习方式 2. 神经网络的学习规则 8.1.4人工神经网络泛化 图8-4BP神经网络的拓扑结构

数据仓库与数据挖掘技术8.2误差反向传播(BP)神经网络 8.2.1BP神经网络的拓扑结构 8.2.2BP神经网络学习算法 8.2.3BP神经网络设计 8.3自组织特征映射(SOFM)神经网络8.3.1SOFM神经网络的拓扑结构 图8-5SOFM神经网络的拓扑结构8.3.2SOFM神经网络聚类的基本算法 8.3.3SOFM神经网络学习算法分析 1. 学习率 2. 邻域

数据仓库与数据挖掘技术8.4Elman神经网络 8.4.1Elman神经网络的拓扑结构 图8-6Elman神经网络的拓扑结构8.4.2Elman神经网络权值计算 8.5Hopfield神经网络 8.5.1Hopfield神经网络的拓扑结构 图8-7Hopfield神经网络的拓扑结构

数据仓库与数据挖掘技术 8.5.2Hopfield神经网络学习算法概述 8.5.3离散Hopfield神经网络 8.5.4连续Hopfield神经网络 1. 设置互连权值 2. 未知类别初始化 3. 迭代直到收敛 8.6利用SQL Server 2005神经网络进行数据挖掘8.6.1数据准备 图8-8统计类别个数的实现

数据仓库与数据挖掘技术 图8-9更新表中数据8.6.2挖掘流程 图8-10经处理的tdm数据示意图

相关文档
相关文档 最新文档