文档库 最新最全的文档下载
当前位置:文档库 › 胚胎干细胞发育分化的表观遗传学调控机制研究概述

胚胎干细胞发育分化的表观遗传学调控机制研究概述

胚胎干细胞发育分化的表观遗传学调控机制研究概述
胚胎干细胞发育分化的表观遗传学调控机制研究概述

胚胎干细胞发育分化的表观遗传学调控机制研究概述

摘要:ESC多能性的维持与分化系统提供了一个描述哺乳动物发育进程的理想模型,胚胎干细胞具有非常重要的理论研究意义和临床应用前景。以胚胎干细胞为模型,研究有关干细胞分化的表观遗传调控已成为新的研究热点。在广泛文献调研的基础上,本文重点介绍DNA甲基化和组蛋白修饰这两个热点研究领域的前沿进展,从而探讨ESC细胞多能性的维持与分化的分子机理,为进一步研究提供参考资料。

关键词:ESC;发育分化;表观遗传学;DNA甲基化;组蛋白修饰Study on epigenetic regulation in differentiation of embryonic stem cells Abstact:Progression from stem cells into different differentiated progeny requires long-lastingchanges in gene expression. Emerging evidences suggest that embryonic stem /progenitor cells are excellent candidates for exploring stem cells differentiation mechanism involving the action of a unique epigenetic program.The review focuses on dynamic epigenetic regulation of DNA methylation, histone modification in embryonic stem cell differentiation and also highlights a general role of epigenetic changes in stem cell differentiation.

Key words: embryonic stem cell,development and differentiation; epigenetic;DNA methylation, histone modification

胚胎干细胞(embryonic stem cell, ESC)是从早期囊胚的内细胞团(inner cell mass, ICM)分离出来的一种多能细胞系;它能在体外长期不断自我更新,并保持多向分化潜能,可以分化为内、中、外3个胚层的几乎所有类型细,其种系传递特性一直是遗传学、胚胎学、细胞生物学和发育生物学非常关注的研究对象之一[1]。ESC位于个体发育的顶端,在正常的发育过程中其多样性是暂时的,随着胚胎发育的进行,其多能性逐渐丧失而分化成各种类型的胚胎组织。因此ESC 多能性的维持与分化系统提供了一个描述哺乳动物发育进程的理想模型[2,8]。

表观遗传学是研究在基因型不发生改变的情况下产生可遗传基因表达改变的学科。这种改变是细胞内遗传信息以外的其他可遗传物质发生的改变,且这种改变在发育和细胞增殖过程中能稳定传递[5]。随着表观遗传学的飞速发展,人们已经认识到表观遗传调控在发育分化中起着重要的作用[4](图1)。例如组蛋白

赖氨酸甲基化与脱甲基化介导的基因转录调控是发育分化过程中表观遗传调节的重要部分。ESC发育分化过程中的表观遗传学修饰包括DNA甲基化、组蛋白修饰、印记基因、染色体失活及RNA干扰等[7]。其中DNA甲基化和组蛋白修饰使表观基因组调控ESC多能性与发育分化的两种重要机制[2],是近年来研究的重点和热点。因此,在广泛文献调研的基础上,本文试图从表观遗传学的角度,重点介绍DNA甲基化和组蛋白修饰这两个热点研究领域的前沿进展,从而探讨ESC细胞多能性的维持与分化的分子机理,为进一步研究提供参考资料。

1.DNA甲基化

在哺乳动物中,DNA甲基化通常发生在双核苷酸CpG中的胞嘧啶上,形成甲基化的CpG(图3A)[3],它们在基因组中有特定的表达谱式。在个体发育的特定阶段及细胞分化时,DNA甲基化基因表达谱会发生变化,例如在胚胎发育的早期,DNA甲基化修饰被去除,多能性基因的到表达,而发育相关基因受到甲基化抑制。从而在基因表达调控,基因印记及染色体失活等重要的生理过程中发挥重要作用,导致细胞多能性的改变及分化[1]。

1.1DNA甲基化形成机制

CpG二核苷酸胞嘧啶的甲基化过程是在DNA甲基化转移酶(Dnmt)催化下,一个甲基从S-腺苷甲硫氨酸转移到胞嘧啶环的第5位碳原子上。DNA甲基化转移酶主要包括所含有的氨基酸数分别为1616,391,912,853和387的Dnmt1、Dnmt2、Dnmt3a、Dn-mt3b和Dnmt3L。Dnmt1蛋白在G1、G2期定位于核质,S 期复制,具有较强的体外催化活性,其mRNA主要表达于胎盘、脑、肺、心脏等组织;Dnmt2蛋白亚细胞定位无特异性,体外无催化活性,其mRNA在各个组织中均有低水平的表达;Dnmt3a的mRNA主要在胚胎干细胞中大量表达,成体和胚胎有低水平表达,具有周期依赖性,其蛋白在细胞分裂过程中周期性地定位于细胞核,复制主要在S期,体外催化活性较弱;Dnmt3b的mRNA主要表达于未分化的ES细胞、胚胎、睾丸,具有细胞周期依赖性,其蛋白在NIH3T3细胞中分布于核内,在胚胎干细胞定位于异染色质中,体外未检测到明显的催化活性;Dnmt3L的mRNA主要表达于睾丸和胚胎中,其蛋白的亚细胞定位无特异性,体外催化活性较弱。在5种DNA甲基化转移酶中,Dnmt1具有维持甲基化的作用,Dnmt3a和Dnmt3b有催化重新甲基化的功能。DNA甲基化转移酶的催化过程需要辅助蛋白Dnmt3L[3-10,14]。

1.2DNA甲基化在胚胎干细胞分化中的作用

Shen等研究表明,在胚胎干细胞向神经干、祖细胞分化的过程中,大约有1.4%的CpG岛发生了显著的重新甲基化过程。此外还发现,胚胎干细胞的重新甲基化过程与癌细胞显著不同,两者的CpG岛基因没有任何重叠。在人类胚胎干细胞的长期培养过程中,虽然印记基因座的甲基化模式是相对稳定的,然而在一些胚胎干细胞系中,一些特定肿瘤的抑制基因的甲基化增强子是增多的。此外,在人胚胎干细胞的分化过程中,重新DNA甲基化转移酶参与了CpG岛的甲基化,动态的DNA甲基化通常发生在细胞非CpG岛区域的种系分化基因中。此外,甲基化印记基因Dnmt1或者Dnmt3的缺陷将导致小鼠基因组大规模的DNA低甲基化和早期胚胎的致死。这就提示,对于正常的机体发育,DNA甲基化转移酶介导的表遗传程序是不可或缺的。然而,在早期胚胎发育时期,Dnmt3a和Dnmt3b 如何参与建立体细胞系分化过程中的表观遗传标记仍需进一步探索[2-4,10-11]。2.组蛋白修饰

组蛋白是真核生物染色体的结构蛋白,是构成核小体的基本单位。组蛋白是一类小分子碱性蛋白质,分为H1、H2A、H2B、H3及H45种类型,它们富含带正电荷的碱性氨基酸,能够与DNA中带负电荷的磷酸基团相互作用,发生甲基化、乙酰化、磷酸化、泛素化、SUMO化、ADP-核糖基化等共价修饰作用(图3B),而且这些修饰几乎都可以逆转。染色质上的修饰可有专门的结合蛋白识别,解读其功能,导致转录活性的开或关两种状态,决定基因的活性。在ESC中,结合在染色质上的蛋白相对于体细胞都比较松散,以利于一旦ESC细胞需要分化时可使转录因子更加容易结合上去建立新的分化细胞特异性的基因程序。即正是其中较松散和开放的染色质结构才使ESC具有了建立各种体细胞特异性基因程序的能力,使其具有多能性[1-4,15]。

2.1组蛋白的甲基化修饰

组蛋白甲基化修饰可以发生在赖氨酸或精氨酸残基上,组蛋白赖氨酸甲基化发生在组蛋白H3的N端4、9、14、27、36及79位,组蛋白H4的N端20及59位赖氮酸,每个位点又分单、双和三甲荃化。通常H3的4、36、79位赖氨酸甲基化与常染色质及转录激活有关,H3的9、27位以及H4的20位赖氮酸甲基化与异染色质及转录抑制有关。目前已发现多种具有组蛋白赖氨酸甲基转移酶活

性的蛋白质分子,有的晶体结构已解析,组蛋白赖氨酸甲基转移酶〔除Dotl外)均含有一个SET[su(var),enhance of zeste,trithorax]结构域、负责催化和结合供体甲基AdoMet。组蛋白甲基化修饰并不影响氨基酸的电荷数,但会造成空间位阻并导致疏水性变化,破坏分子内或分子氢键,形成新的蛋白质结合位点[9-11,]。

由美国麻省Whitehead生物医药研究院的Rudolf和Richard Yong两个实验室最近的研究表明,干细胞之所以据有全能性主要是因为聚梳蛋白(Polycomb group,PcG)抑制了启动体细胞分化调控蛋白的转录。他们在小鼠和人类ESC中鉴定出几百多个聚梳蛋白抑制的基因,而这些基因大部分也受到干细胞所特有的转录因子Oct4、Sox2、Nanog的抑制,因而另一侧面证明了PcG蛋白家族与Oct4、Sox2、Nanog之间的相互作用是维持ESC全能性的关键。这些PcG靶基因在干细胞分化时才表达,如果在干细胞中不受抑制,他们就会发生分化。在此之前的研究证明,PcG蛋白家族与组蛋白H3K27甲基化有关,有了这种共价修饰,染色质与各种转录因子之间的结合能力降低,使转录过程受到抑制[1-3,12]。

由Eric Lander带领的麻省理工与哈佛大学的研究组发现,干细胞染色质的某些地方具有―二价区域‖的特性,这些二价区域既含有一直转录的H3K27甲基化标志[2,3](图2,图3A)。这些区域的DNA序列属于哺乳动物进化中比较保守的非编码调节序列,位于发育相关转录因子编码区的上游。在干细胞分化时,其中一种修饰被去掉,只剩下H3K27甲基化或H3K4甲基化。分化时不表达的基因一般只留下H3K27甲基化,而被激活的基因一般保留H3K4甲基化。这些二价染色质区域对于干细胞来说具有重要意义,一方面,它们可以抑制参与体细胞激活途径的转录因子的表达,另一方面在干细胞开始分化的时候又可以很快改变。每个细胞的命运再决定之前,其主要调节基因必须处于沉默状态。但随着时间的推移,细胞命运一但需要决定,这个细胞又必须时刻准备激活其中一种调节基因,启动细胞分化。二价染色质区域的表观遗传修饰使这些基因在细胞未分化时就做好了准备。因此,在一定程度上可以说干细胞分化是特定的表观基因组建立的过程[3]。(图4)。

2.2组蛋白的乙酰化修饰

组蛋白乙酰化与基因活化以及DNA复制相关,组蛋白的去乙酰化与基因的失活相关。Hajkova等研究显示,组蛋白的乙酰化修饰大多在组蛋白H3的Lys

9,14,18,23和H4的Lys 5,8,12,16等位点,该过程是一可逆的动态过程,由组蛋白乙酰化酶(HATs)和组蛋白去乙酰化酶( HDACs)调控。HATs在细胞质中将组蛋白H3、H4的N末端赖氨酸加上乙酰基,然后将乙酰化的组蛋白转移到细胞核中,在细胞核中带正电的乙酰化组蛋白尾可以选择性地中和DNA中带负电的磷酸骨架,使得染色质处于舒展状态而有助于转录因子和聚合酶Ⅱ与DNA结合。HDACs的作用与HATs相反,组蛋白的乙酰化状态在HATs和HDACs的作用下保持着动态平衡。乙酰化酶家族既可作为辅激活因子调控转录,调节细胞周期,参与DNA损伤修复,还可作为DNA结合蛋白。去乙酰化酶家族则与染色体易位、转录调控、基因沉默、细胞周期、细胞分化和增殖以及细胞凋亡有关[1-3,13-15]。

2.3其他

组蛋白的磷酸化通过改变组蛋白的电荷,修饰组蛋白的结合表面,在基因转录、DNA修复、细胞凋亡及染色质凝聚等过程中起调控作用[6]。

组蛋白的SUMO修饰是指小泛素相关修饰物(SUMO)共价结合于组蛋白的赖氨酸残基上,从而在基因转录调控中起到非常重要的作用。Nathan等发现酿酒酵母组蛋白SUMO化之后抑制了基因的转录,从而揭示了一种新的基因沉默机制[1,15]。

3.小结与展望

表观遗传修饰对ESC多能性的维持与分化具有至关重要的调控作用。目前,相关研究已取得很大进展,对于解决细胞分化机制、机体发育进程的科学难题提供了新的视角、方法和手段。随着相关研究的深入,我们有理由相信对于ESC 发育分化的表观遗传学修饰将有更多的机制探明,为生物学和基础医学研究带来新的革命,为临床医学带来福音。

参考文献:

1.中国科学技术协会,编著.生物学学科发展报告[M],中国科学技术出版社,2008,55-58,86-97.

2.BernsteinB.E.,A.Meissner,and https://www.wendangku.net/doc/ab749070.html,nder.The manmalian epigenome.

Cell,2007.128:669:669-81.

3.Bradley E. Bernstein, Tarjei S. Mikkelsen,Xiaohui Xie,et.al.A Bivalent Chromatin Structure MarksKey Developmental Genes inEmbryonic Stem Cells.Cell ,2006,125 , 315–326.

4.Wolf Reik .Stability and flexibility of epigenetic gene regulation in mammalian development..2007.Nature 447, 425-432.

5.张春燕,邹平.表观遗传学及其研究进展[J].四川生理科学杂志.2006,28(2):72-74.

6.孙军伟,华进联.表观遗传学与生殖细胞发育分化研究发展[J].西北农林科技大学学报(自然科学版),2010,38(03):28-34.

7.薛京伦. 表观遗传学———原理、技术与实践[M]. 上海:上海科学

技术出版社, 2006, 60-288.

8.马克学,席兴字,李芬.表观遗传修饰与干细胞分化调控[J].生命的化学.2007 ,27 (02):136-142.

9.孙红梅,刘琳玲,丛波,等.DNA甲基化修饰与干细胞分化[J].中国细胞生物学学报,2012, 34(2): 185–189.

10.孔祥东,王军,张思仲. DNA甲基化与基因表达调节[J]. 国外医学:分子生物学分册. 2000, 22(5):2652268.

11.陶冶,王勇.DNA甲基化及其新进展[J].国际妇产科学杂志.2010,37(05):340-343.

12.席兴字,高武军,马克学.PcG蛋白在干细胞调控中的作用[J].中国生物化学与分子生物学报.2011,27(07):604-609.

13.夏靖, 冯冰虹.组蛋白去乙酰化酶(HDACs)的研究进展[J].广东药学院学报.2010, 26( 5):546-552.

14.王凌燕,张学明,岳占碰.细胞核重新编程的研究进展[J].细胞生物学杂志. 2007, 29: 661-665.

15.黄璇, 徐丹, 汪晖.胚胎(胎儿)发育编程中的表观遗传修饰现象[J].国际病理科学与临床杂志.2008,28(04):291-296.

图1.发育的表观遗传调控。图中主要显示主要发育阶段全基因组范围表观遗传修饰语与基因表达谱的变化,长方形中颜色的深浅代表修饰或基因表达的水平的高低。原图引自:Wolf Reik,2007,Nature。

图2具有特征性组蛋白修饰的二价区域在干细胞分化时的变化。图中显示的是112KB的DLX7-DLX2基因簇。黄色代表H3K27甲基化区域,绿色代表H3K4的甲基化。在四种分化细胞系(C2C12,Neuro2a,MLF与MEF)中,H3K23甲基化消退。原图引自:Bradley E. Bernstein,et.al,Cell,2006.

图3.A说明胞嘧啶甲基化修饰的结构和作用和两种组蛋白标志K3K4和K3K27的甲基化修饰。B说明组蛋白H3修饰的多样性。原图引自:BernsteinB.E.,Cell,

2007.

图4:表观遗传组包含了基因组范围内―可遗传‖DNA和组蛋白修饰状态。A:在特定细胞内,表观遗传组由基因组遗传因素、种系特异性基因因素和环境因素三者共同决定。这些化学变化互相影响,构成了一个复杂的调控网络,共同对染色质结构和基因组功能发挥调节作用。B多方面证据提示:干细胞的表观基因组具

有独特的可塑性。原图引自:BernsteinB.E.,Cell,2007.

胚胎干细胞的体外诱导分化模型

胚胎干细胞的体外诱导分化模型马宗源 李祺福(厦门大学生命科学学院福建厦门361005) 胚胎干细胞是具有全能性及无限制的自我更新与分化能力的一类特殊的细胞群体,它能通过祖细胞为中介,分化为各种类型的体细胞,可重演体内干细胞的分化过程。自80年代从小鼠囊胚的内细胞团分离到胚胎干细胞并建系到现在已建立了神经细胞、肌肉细胞、上皮细胞、造血细胞等体外分化体系。将胚胎干细胞体外分化成为可利用的分化模型,无论从组织结构、细胞及分子水平都体现了体内分化过程的体外重演,再加上胚胎干细胞系具有体系简单,影响因子少,可控制,便于研究等特点,因此可用于研究早期胚胎发育和细胞分化调控;可成为器官移植和修复器官的细胞来源;还可用于新型药物筛选。 1 胚胎干细胞的生物学特性 胚胎干细胞具有与早期胚胎相似的结构特征,具有较高的核质比和整倍体核型。体外培养的细胞紧密堆积,呈克隆状生长,具有发育分化的多潜能性和无限制的自我更新能力,碱性磷酸酶染色呈阳性,具有高的端粒酶活性,早期胚胎细胞均表达胚胎阶段特异性抗原SSEA-1、SSEA-3、SSEA-4、T RA-1-81、T R A-1-60等;表达种系转录因子OCT-4,并且可将O CT-4基因作为细胞多能性的一个标志;白介素6型细胞因子家族参与维持调节胚胎干细胞未分化状态。 胚胎干细胞建系的过程中要解决的问题在于体外不断增殖的过程中保持未分化的状态,但是细胞如何维持其未分化状态的机理并不清楚。研究发现主要是通过膜上的特异受体蛋白gp130来发挥作用,细胞因子受体蛋白g p130可激活JA N U S、酪氨酸激酶,JA K-ST A T、M EK/M A P K等信号途径,而JAK/ST A T3和M EK/ ERK信号途径则处于相对平衡的状态。另外,一些未知的膜结合分子也参与胚胎干细胞的增殖与分化。分离纯化及鉴定调节细胞的自我更新及分化的未知分子已成为研究的热点。 2 胚胎干细胞为基础的分化模型 胚胎干细胞要维持其未分化的状态,需要在胚胎饲养层中加入分化抑制因子。一旦改变了维持胚胎干细胞未分化状态的条件,胚胎干细胞首先形成胚胎小体,胚胎小体有外中内三胚层,继续分化可形成多种类型的细胞。在体外分化培养时,可自发形成有节律性跳动的心肌细胞,同时还形成骨骼肌、神经细胞、上皮细胞等。由于体外胚胎细胞可重演体内胚胎细胞的发育过程,并且基因的表达时相与体内的胚胎发育过程是相似的,在这一过程中加入外源的诱导分化因子并与相关的调控基因结合,可使胚胎干细胞分化为各种类型的细胞。现在已初步建立了神经细胞、肌肉细胞、上皮细胞和造血细胞等体外分化模型。 2.1 神经细胞 体外培养胚胎干细胞可模拟从未定型细胞向功能性神经元转化的过程,并且其基因的表达时相与体内的胚胎发育过程相似。在分化的早期表达N FL、N F M基因,后期则表达N eur ocan基因。维甲酸及神经生长因子可诱导胚胎干细胞定向分化为神经细胞,是常用的诱导分化物,它能上调神经元特异基因的表达,同时下调中胚层基因的表达。将神经元特异的SOX2基因转进胚胎干细胞,再经维甲酸诱导,可表达90%以上的具有神经元标志的神经细胞。可能是外源基因和维甲酸同时拮抗分化抑制因子的作用,阻碍细胞向其他的方向分化,迫使其向神经元的方向分化。维甲酸能诱导胚胎干细胞分化为C-氨基丁酸能和多巴胺能神经元,而维甲酸分别结合无血清培养基和含胎牛血清的培养基培养胚胎干细胞后发现,采用无血清培养时,几乎检测不到分化的多巴胺能神经元的存在;但在有血清培养时,却能检测到大量的多巴胺神经元。这暗示血清中的某些未知的因子和维甲酸共同起到定向诱导分化 化为特定组织细胞,将这些细胞回输体内,从而达到长期治疗的目的。干细胞的医学应用还包括体外克隆人体器官,然而这比体内移植干细胞要复杂的多。相信随着研究的不断深入,来自人体干细胞的器官应用于临床治疗已为期不远。干细胞研究与应用不仅在疾病治疗方面有着极其诱人的前景,而且将对克隆动物,转基因动物生产,发育生物学,新药物的开发与药效、毒性评估等领域产生极其重要的影响。 参考文献  1 Th omson J A,Itsk ovitz-Eldor J os eph,Shapiro S S,et al. Em bryonic s tem cell lin es d erived from human b las tocysts.S cience,1998,282:1145—1147.  2 Sh amb lott M J,Axelman J,W ang S,et al.Derivation of Plurip otent stem cells from cultured human primordial germ cell.Proc Natl Acad S ci U SA,1998,95:13726—13731.  3 Jack son K A,M i T,Goodell M A.Hematopoietic potential of s tem cells isolated from murie s keletal mus cle.Proc Natl Acad Sci USA,1999,96:14482— 14486.  4 裴雪涛.干细胞研究现状与展望.高技术通讯,2001, (6):93—95. (BH)

西南大学[1194]《生活中的DNA科学》答案

1、下面哪种酶是在重组DNA技术中不常用到的酶() 1.限制性核酸内切酶 2.DNA聚合酶 3.DNA连接酶 4.DNA解链酶 2、长期接触X射线的人群,后代遗传病发病率明显升高,主要原因是该人群生 殖细胞发生() 1.基因重组 2.基因突变 3.基因互换 4.基因分离 3、朊病毒的主要组成成分是:( ) 1.RNA 2.蛋白质 3.多糖 4.DNA 4、Western blot是() 1.检测DNA的方法 2.检测RNA的方法 3.检测蛋白的方法 4.检测酶的方法 5、针对耐药菌日益增多的情况,利用噬菌体作为一种新的抗菌治疗手段的研究 备受关注。下列有关噬菌体的叙述,正确的是() 1.利用宿主菌的氨基酸合成子代噬菌体的蛋白质 2.以宿主菌DNA为模板合成子代噬菌体的核酸 3.外壳抑制了宿主菌的蛋白质合成,使该细菌死亡 4.能在宿主菌内以二分裂方式增殖,使该细菌裂解 6、在真核细胞中肽链合成的终止原因是( ) 1.已达到mRNA分子的尽头 2.具有特异的tRNA识别终止密码子 3.终止密码子本身具有酯酶作用,可水解肽酰与tRNA之是的酯键 4.终止密码子被终止因子(RF)所识别 7、tRNA的作用是( ) 1.将一个氨基酸连接到另一个氨基酸上 2.把氨基酸带到mRNA位置上

3.将mRNA接到核糖体上 4.增加氨基酸的有效浓度 8、“转基因动物”是指( ) 1.含有可利用基因的动物 2.基因组中插入外源基因的动物 3.本身具有抗体蛋白类的动物 4.能表达基因信息的动物 9、a和b是不同顺反子的突变,基因型ab/++和a+/+b的表型分别为() 1.野生型和野生型 2.野生型和突变型 3.突变型和野生型 4.突变型和突变型 10、法医DNA科学涉及的学科有() 1.分子遗传学 2.生物化学 3.生物统计学 4.以上都是 11、下列哪种碱基不属于DNA/RNA的碱基() 1.腺嘌呤 2.鸟嘌呤 3.次黄嘌呤 4.胸腺嘧啶 12、下列哪项不是法医DNA分析技术的衍生技术() 1.RT-PCR 2.SSP - PCR 3.PCR - SSOP 4.MVR – PCR 13、下列哪项不属于现在主要开发研究的微型化DNA分析仪器() 1.微芯片毛细管电泳装置 2.微型热循环仪 3.杂交阵列 4.流式细胞仪 14、不属于质粒被选为基因运载体的理由是() 1.能复制

人胚胎干细胞研究的临床意义

人胚胎干细胞研究的临床意义 [关键词] 人胚胎干 健康讯: 吕广秀 20XX14上海市解放军第85医院儿科1998年11月,美国James和John Gearhart领导的2个科学小组分别发表论文阐述如何利用囊胚和原始的胚胎生殖细胞培养出可能的人全能型胚胎干细胞(ES cells)和胚胎生殖细胞系(EG cells)[1,2]。ES细胞最引人关注的2条特征是:ES细胞能在体外条件下生长,在原始的去分化条件下能够无限地分裂;同时在体外培养的所有时间内都能保持胚胎来源细胞的一个关键性特征—全能性,即发育成成体中各种细胞的能力。ES细胞的应用前景十分令人鼓舞。胚胎干细胞可以作为研究人类胚胎发育、出生缺陷及胚胎瘤等疾病的新的手段;可以用于至今为止尚未进行的关于的方法;制造人类疾病模型以利用于基础研究、药物开发和毒理学研究,如果克隆技术可以从患者自体组织中获得干细胞,则它们可解决用于治疗退行性疾病的组织短缺以及结束在移植治疗中使用免疫抑制剂;另外干细胞还可以用来作为基因治疗的一种新的基因运载系统。总之,其前景十分广泛。 1 胚胎干细胞的一般定义特征考虑到ES或EG细胞的特性,可以认为有一些表型是所有的ES细胞都应该具有的,其他一些特点可能是属于从不同种属或不同组织中分离出来的某种特定全能性细胞所特有,或表现出在胚胎发育过程中某个特定阶段所具有的特征。一般认为全能性干细胞所应具有的特征如下:(1)来源于一个全能性的细胞群体;(2)具有正常的细胞核型;(3)具永生性,在胚胎状态下能无限制的分裂;(4)培养的细胞株在体外或在畸胎瘤中能自发分化成胚胎外组织(extraembryonic tissues)和分属所有3种胚层的体细胞。但到目前为止,所有已培养成功的哺乳动物细胞中,除小鼠外,灵长类动物ES细胞只满足上述4条标准的前3条。一些研究人员将ES细胞的定义限定为那些能分化成包括生殖细胞在内的所有的细胞。但出于伦理上的原因,来源于人的ES细胞不可能进行试验以验证是否满足这一标准。因此,如果来源于人的细胞能满足其他3条关于ES细胞的一般定义,我们就认为它属于ES细胞。需要指出的是,要从体外培养或畸胎瘤试验验证一个ES细胞能否分化成所有组织类型的细胞是十分困难的,因为不论在体外培养条件下或畸胎瘤中,一些组织都是十分罕见的。 2 胚胎干细胞的最新研究James Thomson和同事于1998年报道利用治疗不孕症所遗弃的囊胚分离出ES细胞。他们所使用的技术与分离小鼠ES细胞相似:将可能

第十六章表观遗传学(答)

第十一章表观遗传学 、名词解释 epige netics; huma n epige nome project,HEP; hist one code 一、A型题 1脆性X综合征是何基因发生重新甲基化而沉默导致?(D) A.H19基因 B. MeCP2基因 C. IGF2基因 D. FMR1 基因 2、对表观遗传的生物学意义的表述错误的是(D) A、补充了“中心法则”,阐明核酸并不是存储遗传信息的唯一载体。 B “表观遗传修饰”可以影响基因的转录和翻译。 C表观遗传学修饰的可遗传性在基因和环境的共同作用中起重要作用。 D“表观遗传修饰”不能在个体世代间遗传。 3、 Prader-Willi ( PW$综合征是由于 __________________ 印记基因缺失引起。(A) A、父源15q11-q13缺失 B 、母源15q11-q13 缺失 C父源和母源15q11-q13缺失 D 、父源11P15.5缺失 4、 Amgelma n (AS)综合征是由于 ________________ 印记基因缺失引起。(B) A、父源15q11-q13缺失 B 、母源15q11-q13 缺失 C父源和母源15q11-q13缺失 D 、父源11P15.5缺失 5、表观遗传学三个层面的含义不包括:(D) A、可遗传性,可在细胞或个体世代间遗传; B、基因表达的可变性; C、无DNA序列的变化。 D、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传; 6、 siRNA相关沉默修饰的作用机制是:(A ) A.与靶基因互补而降解靶基因 B. 抑制靶mRNA翻译 C.去除靶mRNA勺多聚腺苷酸尾巴,使其被 3 '核酸外切酶水解

胚胎干细胞的归类

胚胎干细胞的归类 干细胞按分化潜能可分为全能干细胞、多能干细胞和专能干细胞三类,对于胚胎干细胞和造血干细胞各属于哪一类,不同的教材和资料说法不同。新课标人教版必修1教师教学用书P31“胚胎干细胞分裂速度快,并且有产生多种分化细胞类型的潜力,因此,它们也被称为多能干细胞。”选修3教师教学用书P73“全能干细胞是可以发育成一个完整个体的未分化细胞,如受精卵。多能干细胞是指能分化成除胎盘之外所有其它组织细胞的未分化细胞,如ES细胞(胚胎干细胞),他的分化能力仅次于受精卵。专能干细胞是指与特定器官和特定功能相关的一类干细胞,如神经干细胞、造血干细胞等。”从中不难看出,胚胎干细胞和造血干细胞分别属于多能干细胞和专能干细胞。 而苏教版教材上是这样解释的:“专能干细胞只能分化成一种类型或功能密切相关的两种类型的细胞,如上皮组织基底层的干细胞、肌肉中的成肌干细胞;多能干细胞具有分化成多种细胞或组织的潜能,但失去了发育成完整个体的能力,如造血干细胞等;全能干细胞可以分化为全身200多种细胞,如神经细胞,并进一步形成机体的所有组织、器官,如胚胎干细胞。” 再看中图版教材上的描述:“全能干细胞具有形成机体的任何组织或器官,直至形成完整个体的潜能。受精卵便是一个最初的全能干细胞,它可以分化出许多全能干细胞,如胚胎干细胞。提取这些细胞中的任意一个置于子宫内,就可以发育出一个完整的个体。多能干细胞具有分化出多种组织的潜能,但不能发育成完整的个体,如骨髓造血干细胞可以分化出至少12种血细胞。专能干细胞只能分化成某一类型的,如神经干细胞只可分化出各类神经细胞。” 从苏教版和中图版教材的内容中可以看出,胚胎干细胞是全能干细胞,造血干细胞是多能干细胞,这和人教版教师教学用书上的叙述相矛盾,和人

表观遗传学

课程信息 当前位置:首页 > 教育教学 > 研究生教育 > 课程信息 表观遗传学 061M4021H 学期:2015-2016学年秋| 课程属性:| 任课教师:曹晓风等 教学目的、要求 本课程为遗传与发育生物学专业研究生的专业核心课,同时也可作为细胞生物学、基因组学和分子生物学等相关学科研究生的选修课。表观遗传学是研究非DNA序列改变、可遗传的表达改变的科学,是遗传学的深入和补充,与分子生物学、细胞生物学、生物化学、基因组学和结构生物学相互交融,是后基因组时代重要的生命科学学科之一。表观遗传学机制参与动、植物生长发育调控和环境适应的各个方面,其调控异常会导致人类癌症和其他疾病的发生。本课程将讲授表观遗传学现象和发展简史;详细阐释表观遗传调控的分子机制及相关的生物学过程,重点包括真核基因转录调控、DNA甲基化和去甲基化、组蛋白共价修饰和变体、非编码RNA、染色质重塑、染色质高级结构、表观遗传学与动植物发育/疾病、表观遗传组学、表观遗传继承性的概念、研究进展、新技术和新方法的原理和方法,旨在使研究生系统掌握所在学科的完整知识体系、理论框架、发展历史与现状,为研究生今后从事系统性、基础性和前沿性的科研工作实践提供理论知识,为设计研究课题的技术路线和方案奠定基础。 预修课程 分子生物学,遗传学,生物化学 教材 生命科学学院 主要内容 1. 经典表观遗传学现象(3学时,曹晓风)9月15日 2. 真核基因转录调控(3学时,朱冰)9月22日 3. DNA甲基化(3学时,慈维敏)9月29日 4. DNA去甲基化(3学时,慈维敏)10月8日 5.组蛋白共价修饰(3学时,李国红)10月13日 6. 组蛋白变体(3学时,李国红)10月20日 7. 非编码RNA和RNA修饰(3学时,杨运桂)10月27日 8. 染色质重塑(3学时,李国红)11月3日 9. 染色质结构与功能(3学时,李国红)11月10日10. 染色质高级结构(3学时,朱平)11月

胚胎干细胞体外诱导分化综述

胚胎干细胞体外诱导分化综述 摘要:由于胚胎干细胞具有自我更新、高度增值和多向分化的潜能,因此,自20世纪90年代开始,对胚胎干细胞的研究成为生物学领域和医药工程领域研究的一个焦点。本文从胚胎干细胞的分离、体外诱导胚胎干细胞的原理和定向分化的机制、胚胎干细胞体外诱导的方法、定向分化的细胞、应用前景和研究存在的问题对胚胎干细胞进行综述。 关键词:胚胎干细胞;体外培养;诱导分化;应用 干细胞是一种具有多分化潜能和自我更新功能的早期未分化细胞。在特定条件下,它可以 分化成不同的功能细胞,形成多种组织和器官,它包括胚胎干细胞和成体干细胞。前者指早期胚胎的多能干细胞,后者是存在于胎儿和成体不同的组织内的多潜能干细胞这些细胞具有自我复制能力,并产生不同种类的具有特定表型和功能的成熟细胞的能力,能够维持机体功能的稳定,发挥生理性的细胞更新和修复组织损伤作用[4,9,10]。 胚胎干细胞(embryonic stem cell,ESC)是从着床前胚胎内内细胞团(inner cell mass,ICM)或原始生殖细胞经体外分化抑制培养分离的一种全能性细胞[1]。它能在体外长期不断自我更新,并保持多向分化潜能,可以分化为内、中、外三个胚层的几乎所有类型细胞。自1981年Evans和Kauffman[2,8]用不同的方法首次成功分离得到小鼠胚胎干细胞以来,小鼠胚胎干细胞成为近20年来人们用来研究发育分化、基因表达调控、基因治疗等最理想的模型,并且有大量研究表明小鼠胚胎干细胞可以在体外被诱导分化为绝大多数类型的成体细胞.1998年Thomson等首次成功分离并建立人胚胎干细胞系。自此,人胚胎干细胞不但提供了一个研究人类自身发育分化的良好机会,而且如果人胚胎干细胞能像小鼠胚胎干细胞一样可以在体外诱导形成各种成体细胞,那么利用这些诱导分化形成的成熟细胞将有可能进行细胞和组织替代治疗, 包括糖尿病、帕金森病、早老性痴呆、心血管疾病和肿瘤等多种目前临床上难以治愈的疾病。 1 胚胎干细胞的分离 自Thomson成功分离并建立人胚胎干细胞系后,多年以来,人们研究出很多胚胎干细胞的 分离方法,在这里主要介绍三种: 1.1 分离自胚胎内细胞团 内细胞团又称胚细胞(embryoblast),是一团于哺乳动物初期胚胎中的一个细胞团块。从早期胚胎内细胞团(inner cell mass,ICM)分离是获得胚胎干细胞的主要途径。由于不同动物的胚胎发育存在差异,因此应注意取材时间。可通过免疫外科手术法、机械剥离法、组织培 养法等方法除去胚胎滋养层细胞获得囊胚内细胞团(ICM)细胞进行体外分化抑制培养。 1.2分离自原始生殖细胞

人胚胎干细胞的研究发展

人胚胎干细胞的研究发展 摘要:叙述了人胚胎干细胞(hES细胞)的研究现状,并对hES 细胞的研究进展及其应用前景等全面综述。 关键词:人,胚胎干细胞,原始生殖细胞,全能性,多功能性干细胞(Stemcell)是一类具有自我更新能力的多潜能细胞,即干细胞保持未定向分化状态和具有增殖能力,在合适的条件下或给予合适的信号,它可以分化成多种功能细胞或组织器官,又称其为“万用细胞”。干细胞来源于胚胎、胎儿组织和成年组织。根据发育阶段,干细胞分为胚胎干细胞和成体干细胞。1998 年Thomson等第一次从胚胎中分离培养了人体胚胎干细胞(hES C),并随后发现它能分化为体内几乎所有的细胞后,由此掀起全球范围内的hESC研究热潮。 人胚胎干细胞的生理意义:人胚胎干细胞最有价值的应用是用来修复甚至替换已丧失功能的组织和器官,因为它具有发育分化成所有类型组织细胞的能力。任何导致丧失正常细胞的疾病都可以通过移植由胚胎干细胞分化而来的特异组织细胞来治疗,如用神经细胞治疗神经变性疾病(帕金森综合征、亨廷顿舞蹈症、阿尔茨海默病等),用造血干细胞重建造血功能,用胰岛细胞治疗糖尿病,用心肌细胞修复已坏死的心肌等。 1 人胚胎干细胞的来源 胚胎干细胞来源于着床前的囊胚内细胞团或早期胚胎的原始生殖细胞是一大类未分化的二倍体全能干细胞,具有无限增殖、自我更新

和多向分化的潜能。 2 人胚胎干细胞的生物学特性 (1)具有分化的多潜能性,在体外可诱导分化出属于三个胚层的分化细胞; (2)具有种系传递功能; (3)具有长期的未分化增殖能力,细胞不仅能分化成各种器官组织,而且能增殖生成新的保持同种性状的ES 细胞; (4)易于进行基因改造操作; (5)保留了正常的二倍体的性质且核型正常; (6)胚胎干细胞端粒酶活性呈阳性,具有维持端粒长度,保持干细胞增殖能力的重要作用。 3 人胚胎干细胞的培养 (1) 常规培养液常用的基础培养基有改良伊格尔培养基(MEM)α、达氏修正依氏培养基(DMEM)、组织培养基(TCM)199、F12 等合成培养基,以DMEM应用最为普遍。它的主要成分是氨基酸、维生素、碳水化合物、无机离子和一些其他辅助物质。 (2) 无血清培养基血清中含有许多未知的成分和一些分化诱导因子,不利与ESC未分化状态的维持。为此人们尝试使用无血清培养液、化学合成培养液’进行ESC的培养,加入刺激细胞生长的激素、细胞因子等,实验表明ESC增殖旺盛,且能保持未分化状态,并认为无血清培养基优于血清培养基。但也有学者认为含血清培养液更利于胚胎干细胞向中胚层细胞分化,是因为血清中富含中胚层诱导因子,

2015年武汉大学885分子生物学研究生入学考试初试真题

一、专业术语翻译与解释(共10小题,每小题4分,共40分) 1.Exon 2.Promoter 3.Proteomics 4.Frame-shift mutation 5.Wobble hypothesis 6.Single-strand binding protein 7.Tandem affinity purification 8.Chromation remodeling 9.Single Nucleotide Polymorphisms 10.Alternative splicing 二、简答题(共5小题,每小题10分,共50分) 1.真核细胞蛋白质磷酸化主要发生在哪三种氨基酸上?催化蛋白质磷酸化和去磷酸化的酶是什么?请举两个例证说明蛋白磷酸化对功能的影响。 2.请简述三种RNA在蛋白质生物合成中的作用。 3.什么是RNA干扰(RNA interference,RNAi)?请简述RNA于扰的作用机制。 4.遗传密码有哪些特点?请简述。 5.什么是表观遗传学?为什么研究与组蛋白乙酸化修饰相关的酶是表观遗传学领域的一个热点?

三、论述题(共3小题,每小题20分,共60分) 1.1953年,沃森和克里克发现了DMA双螺旋的结构,开启了分子生物学时代。请从主链、碱基配对、大沟小沟以及结构参数等多方面介绍DNA双螺旋结构。 2.请从基本结构、作用形式、功能特点等多方面论述原核生物和真核生物mRNA的主要区别。 3.假设你想要分析在果蝇发育过程中基因的表达变化情况。为此,你从果蝇胚胎和成虫中分别提取了总mRNA,并针对果蝇发育过程中必需的基因Z的mRNA序列,利用特异识别该基因编码区中间部分的DNA标记探针进行了Northern Blot杂交实验,结果如图1所示。

浅谈表观遗传学

浅谈表观遗传学 摘要:表观遗传学改变包括DNA甲基化、组蛋白修饰、非编码RNA作用等,产生基因组印记、母性影响、基因沉默、核仁显性、休眠转座子激活等效应。表观遗传变异是环境因素和细胞内遗传物质间交互作用的结果,其效应通过调节基因表达,控制生物学表型来实现。本文则从以上几个方面简述了表观遗传学的改变以及基本原理。 经典遗传学认为,核酸是遗传的分子基础,生命的遗传信息储存在核酸的碱基序列。每个个体内虽然所有细胞所含有的遗传信息是相通的,但由于基因的选择性表达,即不同细胞所表达的基因种类不同,这些来源相同的细胞经过增殖分化后将变成功能形态各不相同的细胞,从而组成机体内不同的组织和器官。几年来发现,在DNA序列不发生改变的情况下,基因表达也可发生能够遗传的改变,这种现象就被定义为表观遗传。它的主要论点是生命有机体的大部分性状是由DNA序列中编码蛋白质的基因传递的,但是DNA序列以外的化学标记编码的表观遗传密码,对于生命有机体的健康及其表型特征,同样也有深刻的影响。 表观遗传学的调节机制主要包括组蛋白修饰、DNA甲基化、非编码RNA作用等,通过这些调节模式,影响基因转录和(或)表达,从而参与调控机体的生长、发育、衰老及病理过程。这些调节模式相比核酸蛋白质的经典遗传途径更容易受环境的影响,因此表观遗传学更加关注环境诱导的表观遗传变异。因为表观遗传的这些调节机制易受环境影响,而任何一种调节机制发生异常都可能导致细胞状态、功能等发生紊乱,进而引起各种疾病,同时又由于许多表观遗传变异是可逆的,导致表观遗传异常引发的疾病相对容易治疗,因此近年来表观遗传学致病的研究成为了热门的话题之一。 组蛋白在DNA组装中发挥了关键作用, 利用核心组蛋白的共价修饰包括组蛋白甲基化、乙酰化、磷酸化、泛素化、ADP-核糖基化及特定氨基酸残基N-末端的SUMO化传递表观遗传学信息。修饰的主要靶点是组蛋白氨基末端上的赖氨酸、精氨酸残基,这些组蛋白翻译后修饰对基因特异性表达的调控,是其表观遗传学的重要标志。正常机体内,组蛋白修饰保持着可逆的动态平衡,当平衡打破,组蛋白去乙酰化则使得乙酰基从乙酰化组蛋白转移到乙酰辅酶A上,形成了致密的染色质状态, 从而使基因转录下降或沉默。

小鼠胚胎干细胞培养实验步骤

细胞的原代培养 点击次数:540 作者:佚名发表于:2009-03-06 16:26转载请注明来自丁香园 一、原代细胞培养原理 原代细胞培养是将机体内的某组织取出,分散成单细胞,在人工条件下培养使其生存并不断生长、繁殖的方法。借助这种方法可以观察细胞的分裂繁殖、细胞的接触抑制以及细胞的衰老、死亡等生命现象。 ? 幼稚状态的组织和细胞,如:动物的胚胎、幼仔的脏器等更容易进行原代培养 ? 掌握无菌操作技术 ? 了解小鼠解剖操作技术 ? 了解原代细胞培养的一般方法与步骤 ?了解培养细胞的消化分散 ? 了解倒置显微镜的使用 二、实验材料 ? 实验动物:孕鼠或新生小鼠 ? 液体:细胞生长液(内含20%小牛血清) 0.25%胰蛋白酶 平衡盐溶液 70%乙醇 ?器材:灭菌镊子、剪刀若干把 灭菌培养皿、细胞培养瓶、小瓶、烧杯若干个 吸管若干支 酒精灯 原代细胞培养方法 三、胰酶消化法 (1)胰酶消化法操作步骤——取材 a. 用颈椎脱位法使孕鼠迅速死亡。

b. 把整个孕鼠浸入盛有75%乙醇的烧杯中数秒钟消毒,取出后放在大平皿中携入超净台。 c. 用无菌的镊子和剪子在前腿下作一腹部水平切口,用无菌镊子将皮肤扯向后腿。 d. 用另一无菌的剪刀和镊子切开腹部,取出含有胚胎的子宫,置于无菌的培养皿上。 e. 剔除胚胎周围的包膜(若胚胎较大,应剪去头、爪),将胚胎放于无菌的含有平衡盐溶液的培养皿中。 f. 漂洗胚胎,去掉平衡盐溶液。继续用平衡盐溶液漂洗胚胎直至清洗液清亮为止。 (2)胰酶消化法操作步骤——切割 a. 将部分胚胎转移至一个无菌小瓶中,用平衡盐溶液漂洗。 b. 然后用眼科手术剪刀小心地绞碎胚胎,直到成1mm3左右的小块,再用平衡盐溶液清洗,洗到组织块发白为止。 c. 静置,使组织块自然沉淀到管底,弃去上清。 (3)胰酶消化法操作步骤——消化、接种培养 a. 视组织块量加入5-6倍的0.25%胰酶液,37℃中消化20-40分钟,每隔5分钟振荡一次,或用吸管吹打一次,使细胞分离。 b. 加入3-5ml细胞生长液以终止胰酶消化作用(或加入胰酶抑制剂)。 c. 静置5-10分钟,使未分散的组织块下沉,取悬液加入到离心管中。 d. 1000rpm,离心10分钟,弃上清液。 e. 加入平衡盐溶液5ml,冲散细胞,再离心一次,弃上清液。 f. 加入细胞生长液l-2ml(视细胞量),血球计数板计数。 e. 将细胞调整到5×105/ml左右,转移至25ml细胞培养瓶中,37℃下培养。 (4)胰酶消化法操作步骤——消化、接种培养

表观遗传学

表观遗传学:营养之间的新桥梁与健康 摘要:营养成分能逆转或改变表观遗传现象,如DNA甲基化和组蛋白修饰,从而改变表达与生理和病理过程,包括胚胎发育,衰老,和致癌作用有关的关键基因。它出现营养成分和生物活性食物成分能影响表观遗传现象,无论是催化DNA直接抑制酶甲基化或组蛋白修饰,或通过改变所必需的那些酶反应底物的可用性。在这方面,营养表观遗传学一直被看作是一个有吸引力的工具,以预防儿科发育疾病和癌症以及延迟衰老相关的过程。在最近几年,表观遗传学已成为广泛的疾病,例如2型糖尿病的新出现的问题糖尿病,肥胖,炎症,和神经认知障碍等。虽然开发治疗或预防发现的可能性这些疾病的措施是令人兴奋的,在营养表观遗传学当前的知识是有限的,还需要进一步的研究来扩大可利用的资源,更好地了解使用营养素或生物活性食品成分对保持我们的健康和预防疾病经过修改的表观遗传机制。 介绍: 表观遗传学可以被定义为基因的体细胞遗传状态,从不改变染色质结构产生的表达改变的DNA序列中,包括DNA甲基化,组蛋白修饰和染色质重塑。在过去的几十年里,表观遗传学的研究主要都集中在胚胎发育,衰老和癌症。目前,表观遗传学在许多其它领域,如炎症,肥胖,胰岛素突出抵抗,2型糖尿病,心血管疾病,神经变性疾病和免疫疾病。由于后生修饰可以通过外部或内部环境的改变因素和必须改变基因表达的能力,表观遗传学是现在被认为是在不明病因的重要机制的许多疾病。这种诱导表观遗传变化可以继承在细胞分裂,造成永久的保养所获得的表型。因此,表观遗传学可以提供一个新的框架为寻求病因在环境相关疾病,以及胚胎发育和衰老,这也是已知受许多环境因素的影响。 在营养领域,表观遗传学是格外重要的,因为营养物质和生物活性食物成分可以修改后生现象和改变的基因的表达在转录水平。叶酸,维生素B-12,甲硫氨酸,胆碱,和甜菜碱可以影响通过改变DNA甲基化和组蛋白甲基化1 - 碳代谢。两个代谢物的1-碳代谢可以影响DNA 和组蛋白的甲基化:S-腺苷甲硫氨酸(的AdoMet)5,这是一个甲基供体为甲基化反应,并S-腺苷高半胱氨酸(的AdoHcy),这是一种产物抑制剂的甲基化。因此,理论上,任何营养素,生物活性组件或条件可影响的AdoMet或的AdoHcy水平在组织中可以改变DNA和组蛋白的甲基化。其他水溶性维生素B像生物素,烟酸和泛酸也发挥组蛋白修饰重要的作用。生物素是组蛋白生物素化的底物。烟酸参与组蛋白ADPribosylation如聚(ADP-核糖)的基板聚合酶作为以及组蛋白乙酰为底物Sirt1的,其功能作为组蛋白乙酰化酶(HDAC)(1)。泛酸是的一部分辅酶A以形成乙酰CoA,这是乙酰基的中组蛋白乙酰化的源。生物活性食物成分直接影响酶参与表观遗传机制。例如,染料木黄酮和茶儿茶素会影响DNA甲基(转移酶)。白藜芦醇,丁酸盐,萝卜硫素,和二烯丙基硫化物抑制HDAC和姜黄素抑制组蛋白乙酰转移酶(HAT)。改变酶activit这些化合物可能我们的有生之年通过改变基因表达过程中影响到生理和病理过程。 在这次审查中,我们更新了关于最新知识营养表观遗传学,这将是一个有助于理解如何营养素有助于我们的健康。 知识的现状 DNA甲基化 DNA甲基化,它修改在CpG二残基与甲基的胞嘧啶碱基,通过转移酶催化和通过改变染色质结构调节基因表达模式。目前,5个不同的转移酶被称为:DNMT1,DNMT2转移酶3A,DNMT3B和DnmtL。DNMT1是一个维护转移酶和转移酶图3a,3b和L分别从头转移酶。DNMT2的功能尚不明确。通过在我们的一生,营养成分影响这些转移酶和生物活性食物成分可以改变全球DNA甲基化,这是与染色体完整性以及genespecific启动子DNA甲基化,

胚胎干细胞的定向诱导分化及应用前景

龙源期刊网 https://www.wendangku.net/doc/ab749070.html, 胚胎干细胞的定向诱导分化及应用前景 作者:王士珍李雪甫陈培 来源:《科技视界》2012年第23期 【摘要】胚胎干细胞(embryonic stem cell, ES细胞)主要来自于胚胎发育早期囊胚中内细胞群(inner cell mass, ICM), 具有无限增殖、自我更新和多向分化的特性。理论上可以诱导分化为机体中200多种细胞,可作为细胞移植、组织替代, 甚至器官克隆的细胞供体,为将来治疗人类诸多难治性疾病提供细胞来源。本文简述了胚胎干细胞的诱导分化方法、定向分化的一些细胞种类以及应用前景。 【关键词】胚胎干细胞;诱导;分化 ES细胞是由囊胚的内细胞群或胎儿的原始生殖细胞(Primordial germ cells,PGCs)经体外抑制分化培养而获得的一种具有多向分化潜能的细胞。英国剑桥大学的Evans等[1]于1981年首次建立了小鼠胚胎干细胞系。Thomson等[2]于1998年利用临床上体外受精的胚胎,采用免疫法分离出内细胞群,首次成功分离出人胚胎干细胞系。同年,Sham blott等[2]以STO作为饲养层首次建立了人胚胎生殖细胞(hEGC)系。一般情况下,可将胚胎干细胞和胚胎生殖细胞统称 为胚胎干细胞。饲养层或白血病抑制因子(LIF)是ES细胞体外培养过程中保持未分化状态的必要条件。当培养条件有轻微改变时,例如在培养液中添加某些诱导分化因子(维甲酸RA、DMSO等),ES细胞就会发生分化;另外,如果把脱离饲养层的ES细胞进行悬浮培养,会发育成大小不一的拟胚体(embryoid boby, EB),然后可诱导EB向不同类型细胞分化。至今,已从ES细胞诱导分化出心肌细胞、骨细胞、软骨细胞、肝细胞、造血细胞、脂肪细胞、胰岛素细胞、神经细胞、内皮细胞等。这些诱导后的细胞有望为器官移植、损伤器官的修复提供原材料,具有十分广阔的临床应用前景。所以,近年来有关胚胎干细胞的定向分化研究已成为全世界研究的热点。 1诱导ES细胞定向分化的方法 目前,通常针对人们设想要得到的终末靶细胞,而采用不同的诱导分化方法,使ES细胞最终定向分化为目的细胞。最常用的诱导方法一般包括以下四种:化学试剂诱导法、细胞因子诱导法、共培养诱导法以及转基因诱导法等。 1.1化学试剂诱导法 维甲酸(retinoic acid,RA)是体内维生素A的代谢中间产物,主要影响骨的生长和促进上皮细胞增生、分化、角质溶解等代谢作用。Schuldiner等[3]用一定浓度的RA(10-6M)诱导人ES细胞向神经细胞分化。实验证实:产生的神经细胞比未用RA处理的对照组增加了22%。目前,RA诱导ES细胞分化为神经细胞的机制还没有完全弄清楚。一般认为RA进入细胞后,最先与细胞质中维甲酸结合蛋白 (cellular RA binding protein,CRABP)形成复合物,然

简述干细胞的形态特征及其研究进展

简述干细胞的形态特征及其研究进展 干细胞是一类具有自我复制能力的原始的未分化细胞,是形成哺乳类各组织器官的原始的多潜能的细胞。在一定条件下,它可以分化成多种功能细胞。干细胞在形态上具有共性,通常呈圆形或椭圆形,细胞体积小,核相对较大,细胞核多为常染色质,并具有较高的端粒酶活性。根据它所处的发育阶段可以分为胚胎干细胞和成体干细胞。 胚胎干细胞的发育等级较高,是全能干细胞,而成体干细胞的发育等级较低,是多能干细胞或单能干细胞。干细胞的发育受多种内在机制和微环境因素的影响。目前人类胚胎干细胞已可成功地在体外培养。 干细胞的形态特征: 干细胞具有自我更新复制的能力,能够产生高度分化的功能细胞。 1 胚胎干细胞:胚胎干细胞当受精卵分裂发育成囊胚时,内层细胞团的 细胞即为胚胎干细胞。具有全能性,可以自我更新并具有分化为体内所有组织的能力。进一步说,胚胎干细胞是一种高度未分化细胞。它具有发育的全能性,能分化出成体动物的所有组织和器官,包括生殖细胞。 2 成体干细胞:成年动物的许多组织和器官,比如表皮和造血系统,具 有修复和再生的能力。成体干细胞在其中起着关键的作用。在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的功能细胞,从而使组织和器官保持生长和衰退的动态平衡。 3 造血干细胞:造血干细胞是体内各种血细胞的唯一来源,它主要存在 于骨髓、外周血、脐带血中。造血干细胞的移植是治疗血液系统疾病、先天性遗传疾病以及多发性和转移性恶性肿瘤疾病的最有效方法。 4 神经干细胞:理论上讲,任何一种中枢神经系统疾病都可归结为神经 干细胞功能的紊乱。脑和脊髓由于血脑屏障的存在使之在干细胞移植到中枢神经系统后不会产生免疫排斥反应。除此之外,神经干细胞的功能还可延伸到药物检测方面,对判断药物有效性、毒性有一定的作用。 5 肌肉干细胞:可发育分化为成肌细胞,可互相融合成为多核的肌纤维,形成骨骼肌最基本的结构。

表观遗传学

表观遗传学 比较通俗的讲表观遗传学是研究在没有细胞核DNA序列改变的情况时,基因功能的可逆的、可遗传的改变。也指生物发育过程中包含的程序的研究。在这两种情况下,研究的对象都包括在DNA序列中未包含的基因调控信息如何传递到(细胞或生物体的)下一代这个问题。表观遗传学是与遗传学(genetic)相对应的概念。遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。所谓DNA甲基化是指在DNA 甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5—15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。 几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年新的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅可以影响个体的发育,而且还可以遗传下去。这种在基因组的水平上研究表观遗传修饰的领域被称为“表观基因组学(epigenomics)”。表观基因组学使人们对基因组的认识又增加了一个新视点:对基因组而言,不仅仅是序列包含遗传信息,而且其修饰也可以记载遗传信息。 摘要表观遗传学是研究没有DNA 序列变化的可遗传的基因表达的改变。遗传学和表观遗传学系统既相区别、彼此影响,又相辅相成,共同确保细胞的正常功能。表观遗传学信息的改变,可导致基因转录抑制、基因组印记、细胞凋亡、染色体灭活以及肿瘤发生等。 关键词表观遗传学;甲基化;组蛋白修饰;染色质重塑;非编码RNA 调控;副突变 表观遗传学( epigenetics) 是研究没有DNA序列变化的可遗传的基因表达的改变。它最早是在1939 年由Waddington在《现代遗传学导论》一书中提出,当时认为表观遗传学是研究基因型产生表型的过程。1996 年,国内学术界开始介绍epigenetics 研究,其中译名有表遗传学、表观遗传学、表型遗传修饰等10 余种,其中,表观遗传学、表遗传学在科技文献中出现的频率较高。 1 表观遗传学调控的分子机制 基因表达正确与否,既受控于DNA 序列,又受制于表观遗传学信息。表观遗传学主要通过DNA 的甲基化、组蛋白修饰、染色质重塑和非编码RNA 调控等方式控制基因表达。近年发现,副突变也包含有表观遗传性质的变化。 1.1 DNA 甲基化DNA 甲基化是由酶介导的一种化学修饰,即将甲基选择性地添加到蛋白质、DNA 或RNA上,虽未改变核苷酸顺序及组成,但基因表达却受影响。其修饰有多种方式,即被修饰位点的碱基可以是腺嘌呤N!6 位、胞嘧啶的N!4 位、鸟嘌呤的N!7 位和胞嘧啶的C!5 位,分别由不同的DNA 甲基化酶催化。在真核生物DNA 中,5- 甲基胞嘧啶是唯一存在的化学性修饰碱基,CG 二核苷酸是最主要的甲基化位点。DNA 甲基化时,胞嘧啶从DNA 双螺旋突出,进入能与酶结合的裂隙中,在胞嘧啶甲基转移酶催化下,有活性的甲基从S- 腺苷甲硫氨酸转移至胞嘧啶5' 位上,形成5- 甲基胞嘧啶( 5mC)。DNA 甲基化不仅可影响细胞基因的表达,

胚胎干细胞的定向诱导分化及应用前景

胚胎干细胞的定向诱导分化及应用前景 【摘要】胚胎干细胞(embryonic stem cell, ES细胞)主要来自于胚胎发育早期囊胚中内细胞群(inner cell mass, ICM), 具有无限增殖、自我更新和多向分化的特性。理论上可以诱导分化为机体中200多种细胞,可作为细胞移植、组织替代, 甚至器官克隆的细胞供体,为将来治疗人类诸多难治性疾病提供细胞来源。本文简述了胚胎干细胞的诱导分化方法、定向分化的一些细胞种类以及应用前景。 【关键词】胚胎干细胞;诱导;分化 ES细胞是由囊胚的内细胞群或胎儿的原始生殖细胞(Primordial germ cells,PGCs)经体外抑制分化培养而获得的一种具有多向分化潜能的细胞。英国剑桥大学的Evans等[1]于1981年首次建立了小鼠胚胎干细胞系。Thomson等[2]于1998年利用临床上体外受精的胚胎,采用免疫法分离出内细胞群,首次成功分离出人胚胎干细胞系。同年,Sham blott等[2]以STO作为饲养层首次建立了人胚胎生殖细胞(hEGC)系。一般情况下,可将胚胎干细胞和胚胎生殖细胞统称为胚胎干细胞。饲养层或白血病抑制因子(LIF)是ES细胞体外培养过程中保持未分化状态的必要条件。当培养条件有轻微改变时,例如在培养液中添加某些诱导分化因子(维甲酸RA、DMSO等),ES细胞就会发生分化;另外,如果把脱离饲养层的ES细胞进行悬浮培养,会发育成大小不一的拟胚体(embryoid boby, EB),然后可诱导EB向不同类型细胞分化。至今,已从ES细胞诱导分化出心肌细胞、骨细胞、软骨细胞、肝细胞、造血细胞、脂肪细胞、胰岛素细胞、神经细胞、内皮细胞等。这些诱导后的细胞有望为器官移植、损伤器官的修复提供原材料,具有十分广阔的临床应用前景。所以,近年来有关胚胎干细胞的定向分化研究已成为全世界研究的热点。 1诱导ES细胞定向分化的方法 目前,通常针对人们设想要得到的终末靶细胞,而采用不同的诱导分化方法,使ES细胞最终定向分化为目的细胞。最常用的诱导方法一般包括以下四种:化学试剂诱导法、细胞因子诱导法、共培养诱导法以及转基因诱导法等。 1.1化学试剂诱导法 维甲酸(retinoic acid,RA)是体内维生素A的代谢中间产物,主要影响骨的生长和促进上皮细胞增生、分化、角质溶解等代谢作用。Schuldiner等[3]用一定浓度的RA(10-6M)诱导人ES细胞向神经细胞分化。实验证实:产生的神经细胞比未用RA处理的对照组增加了22%。目前,RA诱导ES细胞分化为神经细胞的机制还没有完全弄清楚。一般认为RA进入细胞后,最先与细胞质中维甲酸结合蛋白(cellular RA binding protein,CRABP)形成复合物,然后复合物进入细胞核内,与染色质上的受体结合,从而调控一系列基因的表达,使细胞的表型发生转变。二甲基亚砜(DMSO)是一种含硫的有机化合物,不仅能用于细胞的常规冻存,而且还是一种常用的细胞分化诱导剂,能够诱导ES细胞分化为骨骼肌细胞、心肌细胞等,其作用机制主要是影响c-myc基因表达,降低细胞的内源性聚腺苷二磷酸核苷表达水平。也有研究证明,DMSO能使细胞内储存的钙释放出来,而细胞内钙离子浓度升高在诱导细胞分化中可能起着重要作用。除了RA、DMSO外,还有β-磷酸甘油、维生素C(VC)、地塞米松、维生素K3(VK3)以及2,5-羟基维生素D3等化学试剂,也能诱导ES细胞定向分化为特定类型细

相关文档