文档库 最新最全的文档下载
当前位置:文档库 › CaNb_2O_6掺杂系列荧光粉的制备和光致发光性能(精)

CaNb_2O_6掺杂系列荧光粉的制备和光致发光性能(精)

CaNb_2O_6掺杂系列荧光粉的制备和光致发光性能(精)
CaNb_2O_6掺杂系列荧光粉的制备和光致发光性能(精)

CaNb_2O_6掺杂系列荧光粉的制备和光致发光性能

几十年来,人们致力于灯用荧光粉发光强度的提高。本文通过铋离子的掺杂和钾离子的共掺,使铌酸钙掺杂系列发光材料的发光强度极大提高。其发光强度之高是同系列发光材料中少见的。同时,近年来,纳米发光材料成为人们研究热点,故本文又制备了同系列的纳米发光材料,并通过调整不同添加剂的量,合成了具有特殊形貌的纳米粒子。所以,本文主要在这两方面开展探索。一、采用传统高温固相法合成了CaNb2O6:Bi3+,A+(A代表碱金属K+,Na+,Li+离子)荧光粉。通过样品的XRD分析得知所制得的样品为正交晶系结构,Bi3+离子和K+离

子的加入使铌酸钙晶格扩大。通过场发射扫描电镜(FESEM)可以看出,氯化钾起了一定的助熔剂作用。从漫反射光谱可以看出,在CaNb2O6:1%Bi3+,1/n K+材料中可以发生从[Nb06]7-基团到Bi3+离子能量转移过程。通过调整钾离子的不同掺杂比例,使该系列材料的发光强度极大提高,发光效果最好的材料为

CaNb2O6:1%Bi3+,1/15K+,即钾离子掺杂比例为n Bi3+/K+=1:15.考察了Mg2+离子和Al3+离子对CaNb2O6:1%Bi3+,1/5 K+发光性能的影响情况,从激发光谱和发射光谱上可以看出,CaNb2O6:1%Bi3+,1/5 K+,1/2Mg2+和CaNb2O6:1%

Bi3+,1/5 K+,1/2 Al3+的峰形和位置与CaNb2O6:1%Bi3+,1/5 K+基本一样, Mg2+离子和Al3+离子提高了CaNb2O6:1%Bi3+,1/5 K+的发光强度,但提高程度小于K+离子对CaNb2O6:1%Bi3+的提高程度。但在315 nm紫外光的激发下,同样使白光的强度极大提高,使该材料的发光强度达到与上述制得的最好材料CaNb2O6:Bi3+,1/15 K+的发光强度相比美。其发光强度极高,也是同系列材料中少见的。最后,又分析了Bi3+离子、Mg2+离子和Al3+离子在铌酸钙中的发光情况的相似点和不同点。在254 nm紫外光激发下,Bi3+离子和Mg2+离子在铌酸钙中的发射带较宽,Al3+离子在铌酸钙中的发射带较窄。由此可看出核外电子排布、离子半径、晶格振动状态和声子振动能量对离子发光的不同影响情况。二.通过溶胶凝胶燃烧法合成了纳米CaNb2O6:1%Bi3+和纳米CaNb2O6:1%

Bi3+,2%K+,通过调整不同添加剂的量合成了具有不同形貌的纳米晶,如球形、花状和棒状。当Nb与CA的物质的量之比为1:3时,所合成的纳米CaNb2O6:1%

Bi3+呈球形或近球形,且形貌和尺寸均匀,平均粒径为43 nm。当增加CA的比例到n Nb/CA=1:4,微粒形貌和尺寸变化不大,但是微粒的聚集状态发生重大的

变化,大部分微粒像花一样聚集在一起。在Nb与CA的物质的量之比为1:3,另加KCl时合成了CaNb2O6:1%Bi3+,2%K+纳米棒。由此可见,K+在棒状纳米棒的形成过程中起了关键的作用。此外,在254 nm紫外光激发下,具有不同形貌的铌酸钙掺铋纳米晶的发射光谱有两部分组成:一个是中心约在360 nm的弱发射带,另一个是从410 nm到650 nm的强发射带。在315 nm紫外光激发下,发射区域在350 nm到650 nm之间。

同主题文章

[1].

任雪松. 纳米世纪' [J]. 中国新闻周刊. 2000.(21)

[2].

争分夺秒制定纳米标准我国估计在一两年内正式出台' [J]. 牙膏工业. 2002.(03)

[3].

马琨. 透视"纳米热"' [J]. 深圳特区科技. 2004.(Z4)

[4].

道松. 我国正着手制定第一个“纳米标准”' [J]. 粉末冶金工业. 2002.(06)

[5].

周寰. “纳米”梦幻' [J]. 语文世界(红A版). 2001.(01)

[6].

瓜田. “纳米水”呀浪打浪' [J]. 瞭望. 2002.(36)

[7].

吴斌,赵昕,马惠蕊. 纳米食品及其重要意义' [J]. 食品研究与开发. 2003.(02)

[8].

全国纳米材料标准化联合工作组. 纳米科普知识介绍' [J]. 中国标准化. 2005.(05)

[9].

袁宏明. 纳米风暴' [J]. 中国投资. 2001.(08)

[10].

陈哲豪

,谭砚耘. “轻重缓急”论纳米' [J]. 深圳特区科技. 2001.(04)

【关键词相关文档搜索】:无机化学; 光致发光; CaNb_2O_6掺杂; Bi~(3+); K~+; Na~+; Li~+; Mg~(2+); Al~(3+); 蓝白光; 纳米

【作者相关信息搜索】:上海师范大学;无机化学;彭子飞;师广丽;

上转换发光机理与发光材料整理

上转换发光机理与发光材料 一、背景 早在1959年就出现了上转换发光的报道,Bloemberge在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年,Auzel在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、H03+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。 二、上转换发光机理 上转换材料的发光机理是基于双光子或者多光子过程。发光中心相继吸收两个或多个光子,再经过无辐射弛豫达到发光能级,由此跃迁到基态放出一可见光子。为了有效实现双光子或者多光子效应,发光中心的亚稳态需要有较长的能及寿命。稀土离子能级之间的跃迁属于禁戒的f-f 跃迁,因此有长的寿命,符合此条件。迄今为止,所有上转换材料只限于稀土化合物。 三、上转换材料 上转换材料是一种红外光激发下能发出可见光的发光材料,即将红外光转换为可见光的材料。其特点是所吸收的光子能量低于发射的光子能量。这种现象违背了Stokes定律,因此又称反Stokes定律发光材料。 1、掺杂Yb3+和Er3+的材料Yb3+(2F7/2→2F5/2)吸收近红外辐射,并将其传

递给Er3+,因为Er3+的4I11/2能级上的离子被积累,在4I11/2能级的寿命为内,又一个光子被Yb3+吸收,并将其能量传递给Er3+,使Er3+离子从4I11/2能级跃迁到4F7/2能级。快速衰减,无辐射跃迁到4S3/2,然后由 4S 3/2能级产生绿色发射( 4S 3/2 → 4I 15/2 ) ,实现以近红外光激发得到绿 色发射。 2、掺杂Yb3+和Tm3+的材料 通过三光子上转换过程,可以将红外辐射转换为蓝光发射。第一步传递之后,Tm3+的3H5能级上的粒子数被积累,他又迅速衰减到3F4能级。在第二部传递过程中,Tm3+从3F4能级跃迁到3F2能级,并又快速衰减到3H4。紧接着,在第三步传递中,Tm3+从3H4能几月前到1G4能级,并最终由此产生蓝色发射。 3、掺杂Er3+或Tm3+的材料 仅掺杂有一种离子的材料,是通过两步或者更多不的光子吸收实现上转换过程。单掺Er3+的材料,吸收800nm的辐射,跃迁至可产生绿色发射的4S3/2能级。单掺Tm3+的材料吸收650nm的辐射,被激发到可产生蓝色发射的1D2能级和1G4能级。 四、优点 上转换发光具有如下优点:①可以有效降低光致电离作用引起基质材料的衰退;②不需要严格的相位匹配,对激发波长的稳定性要求不高;③输出波长具有一定的可调谐性。 五、稀土上转换材料的应用 随着频率上转换材料研究的深入和激光技术的发展,人们在考虑

化学实验基本内容

化学实验基本内容 一、目的 1、能力培养 (1) 熟练掌握基本操作,正确使用仪器,取得正确可靠的实验结果,获得用实验解决实际化学问题的动手能力。(2) 准确观察现象,分析判断,逻辑推理能力。 (3) 选择试剂,仪器,实验方法,获得初步设计实验的能力。 (4) 正确记录和处理数据,图谱解析,综合表达实验结果的能力。 (5) 使用手册,工具书,多媒体技术查阅资料获取信息的能力。 2、素质培养 (1) 培养学生严谨的科学方法、实事求是的科学态度、勤俭节约的优良作风、养成良好的实验素养。 (2) 培养学生相互协作和创新开拓精神。 (3) 培养学生环境保护意识。 二、操作及技术 玻璃仪器的洗涤及干燥 滴定管、移液管、容量瓶的使用、校正 台天平、分析天平、电子天平的使用 溶液的配制 滤纸和其它滤器的使用 加热方法的选择(直接加热水浴加热、油浴加热) 煤气灯、喷灯的使用(酒精或煤气喷灯) 冷却方法的选择(空气、水流水浴、冰盐浴、液氮) 搅拌方法的选择(机械搅拌、电磁搅拌) 固液分离选择(倾析法、常压过滤、减压过滤、离心分离) 沉淀转移、洗涤、烘干、灼烧 结晶、重结晶(水溶液体系和非水体系中的结晶、重结晶) 常压升华、减压升华 气体制备、净化、吸收、尾气处理 分离技术(液液分离、固液分离、气液分离) 溶剂萃取 试样的干燥(晾干、烘干、真空干燥、干燥剂) 玻璃仪器的选择安装和拆卸 回流装置及操作 分馏技术(简单蒸馏、分馏和精馏、减压蒸馏、水汽蒸馏) 共沸蒸馏装置及操作 分液漏斗、滴液漏斗使用 无水无氧操作 微波技术 超声技术 高压钢瓶的识别和使用

温度的控制与测量(低温、常温、高温) 压力的控制与测量(低真空、高真空的获得及检漏) 流动法操作(流体的加料、流体的稳压、稳流) 流量测量与校正 压力计的使用 各类温度计的选择与使用 常用电极的制备 盐桥的制备 热电偶温度计的焊接与标定 三、化合物的合成、分离、鉴定及表征 无机物的制备精制及鉴定:(一般无机氧化物、盐、单质的制备;热分解法、氯化法、氢还原法、无水无氧法制备化合物) 有机物的制备分离、纯化及表征:(常量、小量、半微量有机合成,多步有机合成,有机光化学、微波、超声及电化学合成;手性化合物合成及拆分) 配合物的合成及表征 四、基本物理量及有关参数的测定 基本物理量:浓度、pH值、摩尔气体常数、阿佛加德罗常数、熔点、沸点,蒸气压、密度、粘度、折射率、比旋光度、溶解度 热力学性质:温度、热效应、活度系数、平衡常数 电学性质:电导、电动势、离子迁移数、电位表面与胶体:表面张力、固体比表面积、胶体电泳速度 结构:磁化率、偶极矩、摩尔折射度、光谱性质 动力学性质:反应级数、反应速度常数、活化能 化工参数的测定:雷诺数、阻力系数、给热系数、传热系数、总传质系数、理论板当量高度、塔效率、反应器停留时间分布、阻力系数与雷诺数关系测定、管道阻力损失的因次分析法实验操作、一定转速下,离心泵的特性曲线 五、仪器与设备 常用仪器与设备:压力计(数显压力计)、温度计(玻璃、热敏电阻、热电偶)、天平(台天平、分析天平、电予天平)、pH计、电导率仪、旋光计、折射率仪、温差测量计、氧弹热量计、温度控制仪(常温高温)、真空泵、超级恒温槽、检流计、稳压电源(直流、交流)、安培表、马弗炉、管式炉、烘箱、大气压力计、搅拌器(电磁、机械)、记录仪、万用表、数字压力表、小电容仪、磁天平、差热分析仪、熔点测定仪、原予发射光谱仪 常用分析仪器:分光光度计、紫外可见分光光度计、红外光谱仪、原予吸收分光光度计、气相色谱仪、离子活度计、单扫描示波谱仪、微库仑计、示波器 化工仪器及设备:流量计、离心泵、吸收塔及结构流程、精馏塔及结构流程、气体输送机械、换热器、实验反应嚣

LED荧光粉

在制作白光LED的方法中,有两种方法都与荧光粉有关,因此在制作白光LED时,必须对荧光粉进行仔细研究。 荧光粉是一个非常关键的材料,它的性能直接影响白光LED的亮度、色坐标、色温及显色性等。 因而开发具有良好发光特性的荧光粉是得到高亮度、高发光效率、高显色性白光LED的关键所在。 所谓荧光粉是指那些可以吸收能量(这些所吸收的能量包括电磁波(含可见光、X射线、紫外线)、电子束或离子束、热、化学反应等),再经由能量转换后放出可见光的物质,也称之为荧光体或夜光粉。 目前发光材料的发光机理基本是用能带理论进行解释的。不论采用那一种形式的发光,都包含了: ?激发; ?能量传递; ?发光; 三个过程 一、激发与发光过程 ?激发过程: 发光体中可激系统(发光中心、基质和激子等)吸收能量以后,从基态跃迁到较高能量状态的过程称为激发过程。 ?发光过程: 受激系统从激发态跃回基态,而把激发时吸收的一部分能量以光辐射的形式发射出来的过程,称为发光过程。 一般有三种激发和发光过程 1. 发光中心直接激发与发光 (1). 自发发光 过程1:发光中心吸收能量后,电子从发光中心的基态A跃迁到激发态G 过程2:当电子从激发态G回到基态A,激发时吸收的一部分能量以光辐射的形式发射出来的过程。 发光只在发光中心内部进行。 (2). 受迫发光 若发光中心激发后,电子不能 从激发态G直接回到基态A(禁戒的跃迁),而是先经过亚稳态M(过程2),然后通过热激发从亚稳态M跃迁回激发态G(过程3),最后回到基态A(过程4)发射出光子

的过程,成为受迫发光。 受迫发光的余辉时间比自发发光长,发光衰减和温度有关。 2. 基质激发发光 基质吸收了能量以后, 电子从价带激发到导带 (过程1); 在价带中留下空穴,通 过热平衡过程,导带中的电子很快降到导带底(过程2); 价带中的空穴很快上升到价带顶(过程2’), 然后被发光中俘获(过程3’), 导带底部的电子又可 以经过三个过程产生发光。 (1). 直接落入发光中心激发 态的发光 导带底的电子直接落入发光中心的激发态G(过程3),然后又跃迁回基态A,与发光中上的空穴复合发光(过程4)

化学基础实验基本内容 - 中山大学化学学院

中山大学大学生化学实验竞赛基本要求 一、考试形式及命题 1、化学实验理论考试(30%) (1)考试内容 含无机化学实验、化学分析实验、有机化学实验内容,包括误差理论、数据处理、化学实验室基本知识、化学实验室安全知识、电和气的使用、重要常规化学品的安全使用、常规化学实验仪器的使用、基本的实验操作规范、化学实验基本知识等。 (2)考试形式:闭卷。 (3)考试时间:2小时。 (4)考题形式:1)单项选择题;2)填空题;3)实验设计题。 2、化学实验操作考试(70%) 每个组的实验操作题不同,但应考察基本的化学实验技能、基本化学计算、实验设计、实验操作、数据采集和分析处理能力,常规小型仪器的使用、图谱解习,实验总结与报告能力。 实验操作考试地点:珠海校区基础化学实验大楼。 二、实验竞赛分组 本次竞赛有8个队参加,每个队由若干名学生组成。竞赛分为三个大组,每大组做同一个实验。 三、获奖比例 综合实验笔试和实验操作竞赛成绩,每个大组评定一等奖1名,二等奖2名,三等奖3名。根据每个大组全部学生的竞赛总成绩(实验理论笔试和实验操作竞赛)排名,确定3个团体奖,即冠军、亚军和季军。 四、竞赛基本要求 见附件:基础化学实验内容。

附件: 基础化学实验内容 一、目的 1、能力培养 (1)熟练掌握基本操作,正确使用仪器,获得正确可靠的实验结果,以达到用实验解决实际化学问题的能力。 (2)准确观察现象,分析判断,逻辑推理能力。 (3)选择试剂,仪器,实验方法,获得初步设计实验的能力。 (4)正确记录和处理数据,图谱解析,综合表达实验结果的能力。 (5)使用手册,工具书,多媒体技术查阅资料获取信息的能力。 2、素质培养 (1)培养学生严谨的科学方法、实事求是的科学态度、勤俭节约的优良作风、养成良好的实验素养。 (2)培养学生相互协作和创新开拓精神。 (3)培养学生环境保护意识。 二、操作及技术 玻璃仪器的洗涤及干燥 滴定管、移液管、容量瓶的使用和校正 电子台秤、电子天平的使用 溶液的配制 滤纸和其它滤器的使用

LED光源的发光机理简介

LED光源的发光机理简介 现在随着LED产业供应连发展成熟,入门门槛低,大量小企业涌入,造成了LED产业过剩,并且由于企业产能利用率低,在市场上肯定竞争不过品牌大厂飞利浦(Philips)、欧司朗 (Osram)及GE,这些大厂通过垂直整合或策略联盟布局,积极占领LED主照明市场。无论是毛利率经过层层剥削或强敌环伺,因而小厂难逃巨大的市场压力。 中国具有丰富的有色金属资源,镓、铟储量丰富,占世界储量的70%-80%,这使我国发展半导体照明产业具有资源上的优势。到2010年,整个中国LED产业产值将超过1500亿元。日本则早在2002年耗费50亿日元推行白光照明,整个计划的财政预算为60亿日元。 随着LED的渗透急速增长速度,伴随着价格战将在2010年到来,因为LED不同于传统灯具与光源分开的销售模式,在这种压力下,有些企业无法兼顾产品品质与价格竞争力,可能会落入到并购或是被淘汰的命运。 2010年5月7日-12日,河南省照明学会组织照明专家及企业家一行赴日考察了日本照明现状,发现日本的LED照明现状并不尽如人意。 近年来,在照明领域最引人关注的事 件是半导体照明的兴起。20世纪90年代中期,日本日亚化学公司的Nakamura等人经过不懈努力,突破了制造蓝光发光二极管(LED)的关键技术,并由此开发出以荧光材料覆盖蓝光LED产生白光光源的技术。 led是LightEmittingDiode(发光二极管)的缩写。发光二极管是一种新型固态冷光源,LED的最显著特点是使用寿命长,光电转换效能高、抗震性能好、使用方便等优点,在照明系统中的应用越来越广泛。在同样照度下,LED灯的电能消耗和寿命比白炽灯和日光灯都有明显的优势。 各种白色发光方法的开发,以及新一代荧光粉的开发,已经使得LED的发光效率大幅提高,目前产业化产品已从45l m/w提高到100lm/w(到2009年,Cree公司的冷白光光效在350mA时已经超过100lm/W,而暖白光也超过75lm/W),研究水平160lm/w,目标最高水平期望达200lm/w以上。寿命4万小时至8万小时。 一、LED光源的发光机理 与白炽灯或者气体放电灯的发光原理迥然不同。LED自发性的发光是由于电子与空穴的复合而产生的。 LED是由P型半导体形成的P层和N型半导体形成的N层,以及中间的由双异质结构成的有源层组成。有源层是发光区,利用外电源向PN结注入电子,在正向偏压作用下,N区的电子将向正方向扩散,进入有源层,P区的空穴也将向负方向扩散,进入有源层,电子与空穴复合时,将产生自发辐射光。LED因其使用的材料不同,其二极管内中电子、空穴所占的能阶也有所不同,能阶的高低差影响结合后光子的能量而产生不同波长光,也就是不同颜色的光,如红、橙光、黄、绿、蓝或不可见光等。 二、白光LED 白光LED的出现为越来越多的室内室外照明工程提供了白光LED半导体照明。白光LED的光效等都有了长足的进步 ,白光LED甚至已经开始挑战传统光源的地位。 目前获得白光LED主要有两个途径:第一个是通过荧光粉转换得到白光;第二个是把不同颜色的LED芯片封装到一起,多芯片混合发出白光。对于上述两种途径,根据参与混合白光的基色光源的数目,又可分为二基色体系和多基色体系。 荧光粉转换白光LED (1)二基色荧光粉转换白光LED 二基色白光LED是利用蓝光LED芯片和YAG荧光粉制成的。一般使用的蓝光芯片是InGaN芯片,另外也可以使用AlI nGaN芯片。蓝光芯片LED配YAG荧光粉方法的优点是:结构简单,成本较低,制作工艺相对简单,不过该方法也存在若干缺点,比如蓝光LED效率不够高,致使白光LED效率较低;荧光粉自身存在能量损耗;荧光粉与封装材料随着

《基础化学实验》

《基础化学实验》教学大纲

目录 《无机化学实验》(基础一)教学大纲 (1) 《分析化学实验》(基础二)教学大纲 (7) 《物理化学实验》(基础三)教学大纲 (11) 《有机化学实验》(基础四)教学大纲 (16)

《无机化学实验》教学大纲 ——基础化学实验一 一、有实验的课程名称:无机化学实验(Experimental Inorganic Chemistry) 二、课程编码:(以培养计划为准) 三、课程性质:必修 四、学时学分 课程总学时:64 总学分:4 实验学时:64 五、适用专业:应用化学等专业 六、本实验课的配套教材、讲义与指导书 周井炎主编,《基础化学实验》(上),华中科技大学出版社,武汉,2004。 七、实验课的任务、性质与目的 无机化学实验是应用化学专业第一门必修实验课,与无机化学理论课密切相关。通过实验教学,加深对无机化学的基本概念与基本理论的理解,了解无机物的一般分离、提纯和制备方法,掌握无机化学实验的基本操作技能和常见元素及化合物的性质,学会正确使用基本仪器,培养动手、观察、思维和表达等方面的能力以及严谨的科学态度。 八、实验课的基本理论 无机化学中的“解离平衡”、“氧化还原”“配位化合物”“d区元素的重要性质”以及常见的无机基本操作。 九、实验方式和基本要求 1.本课程以实验为主。开课后,任课教师需向学生讲清课程的性质、任务、要求、课程安排和进度、考核内容及办法、实验守则及实验室安全制度等。 2.学生在实验前必须进行预习,预习报告或设计实验方案经老师批阅后,方可进入实验室进行实验 3.老师课堂只讲解实验中所涉及的基本操作和部分难点 4.实验1人1组。每个实验要求在规定时间内由学生独立完成。碰到疑难问题,学生要善

阐述LED荧光粉的用途和工作原理

阐述LED荧光粉的用途和工作原理 近年来,在照明领域最引人关注的事件是半导体照明的兴起。20世纪90年代中期,日本日亚化学公司的Nakamura等人经过不懈努力,突破了制造蓝光发光二极管(LED)的关键技术,并由此开发出以荧光材料覆盖蓝光LED产生白光光源的技术。半导体照明具有绿色环保、寿命超长、高效节能、抗恶劣环境、结构简单、体积小、重量轻、响应快、工作电压低及安全性好的特点,因此被誉为继白炽灯、日光灯和节能灯之后的第四代照明电光源,或称为21世纪绿色光源。美国、日本及欧洲均注入大量人力和财力,设立专门的机构推动半导体照明技术的发展。 LED实现白光有多种方式,而开发较早、已实现产业化的方式是在LED芯片上涂敷荧光粉而实现白光发射。 LED采用荧光粉实现白光主要有三种方法,但它们并没有完全成熟,由此严重地影响白光LED在照明领域的应用。 第一种方法是在蓝色LED芯片上涂敷能被蓝光激发的(YAG)黄色荧光粉,芯片发出的蓝光与荧光粉发出的黄光互补形成白光。该技术被日本Nichia公司垄断,而且这种方案的一个原理性的缺点就是该荧光体中Ce3+离子的发射光谱不具连续光谱特性,显色性较差,难以满足低色温照明的要求,同时发光效率还不够高,需要通过开发新型的高效荧光粉来改善。 第二种实现方法是蓝色LED芯片上涂覆绿色和红色荧光粉,通过芯片发出的蓝光与荧光粉发出的绿光和红光复合得到白光,显色性较好。但是,这种方法所用荧光粉有效转换效率较低,尤其是红色荧光粉的效率需要较大幅度的提高。

第三种实现方法是在紫光或紫外光LED芯片上涂敷三基色或多种颜色的荧光粉,利用该芯片发射的长波紫外光(370nm-380nm)或紫光(380nm -410nm)来激发荧光粉而实现白光发射,该方法显色性更好,但同样存在和第二种方法相似的问题,且目前转换效率较高的红色和绿色荧光粉多为硫化物体系,这类荧光粉发光稳定性差、光衰较大,因此开发高效的、低光衰的白光LED用荧光粉已成为一项迫在眉睫的工作。 我们是国内率先进行LED用高效低光衰荧光粉研究的研究机构。最近,通过与我国台湾合作伙伴的联合攻关,多种采用荧光粉的彩色LED被开发出来了。 采用荧光粉来制作彩色LED有以下优点: 首先,虽然不使用荧光粉,就能制备出红、黄、绿、蓝、紫等不同颜色的彩色LED,但由于这些不同颜色LED的发光效率相差很大,采用荧光粉以后,可以利用某些波段LED发光效率高的优点来制备其他波段的LED,以提高该波段的发光效率。例如有些绿色波段的LED效率较低,台湾厂商利用我们提供的荧光粉制备出一种效率较高,被其称为"苹果绿"的LED用于手机背光源,取得了较好的经济效益。 其次,LED的发光波长现在还很难精确控制,因而会造成有些波长的LED得不到应用而出现浪费,例如需要制备470nm的LED时,可能制备出来的是从455nm到480nm范围很宽的LED,发光波长在两端的LED只能以较低廉的价格处理掉或者废弃,而采用荧光粉可以将这些所谓的"废品"转化成我们所需要的颜色而得到利用。 第三,采用荧光粉以后,有些LED的光色会变得更加柔和或鲜艳,以适应不同的应用需要。当然,荧光粉在LED上最广泛的应用还是在白光领域,但由于其特殊的优点,在彩色LED 中也能得到一定的应用,但荧光粉在彩色LED上的应用还刚刚起步,需要进一步进行深入的研究和开发。

粉色荧光翡翠的呈色机理

粉色荧光翡翠的呈色机理 摘要:近年来,随着国家经济的日益发展,翡翠珠宝市场也逐渐走向繁荣,翡 翠的价格日益高涨,翡翠原石的开采亦日益加剧。自2012年以来,翡翠市场中 逐渐出现了一种在紫外荧光灯下通体呈现粉色荧光的翡翠。这种翡翠的普遍特点 是价值不是很高,颗粒较粗,在40倍显微镜下明显可见颗粒,红外光谱图谱显 示为天然翡翠,仅含有轻微蜡峰,电子探针射线显微分析显示主要元素为Na、Al、Si、O,少量杂质元素Ca、Fe、Mg。研究显示,这种翡翠为天然翡翠,发荧光部 分极有可能为翡翠本身的成分,是一种紫外荧光可以发出粉色荧光的天然翡翠。 关键词:粉色荧光;翡翠;红外光谱;电子探针 The coloration mechanism of pink fluorescent jadeite Yang xiaorong1,Pan jian2 (China Cloud Union Gem & Jade Quality Inspection Research Institute,Kunming 650000) Abstract:In recent years,with the increasing development of the national economy,the jadeite jewelry market has gradually become prosperous,the price of jadeite is increasing,and the exploitation of jadeite is also increasing. Since 2012,a kind of light-colored jadeite has gradually appeared in the jadeite market,which shows pink fluorescence under ultraviolet fluorescent lamp. The common characteristic of this kind of jadeite is that its value is not very high,and its particles are relatively coarse. The coarse particles can be seen clearly under 40 time microscope. Infrared spectrum shows that it is natural jadeite with only slight wax peaks. Electron probe X-ray microanalysis shows that this kind of jadeite has the main elements Na,Al,Si,O,and a small amount of impurity elements Ca,Fe and Mg. Research shows that this kind of jadeite is natural jadeite,and the fluorescent part is very likely to be the component of jadeite itself,which is a kind of natural jadeite that can emit pink fluorescence by ultraviolet fluorescence. Key words:pink fluorescent;jadeite;infrared spectrum;electron probe X-ray. 1背景 近10年来,翡翠原料的持续开发导致翡翠资源日益减少,随着缅甸政府控制原料出口,翡翠矿石资源在市面上更加稀缺,最近市场上出现了一种在紫外荧光灯下发强粉色荧光的翡翠,初步研究应该是一种比较新型的翡翠原料。 2 样品 2.1 样品的外观特征 此次用来做测试的翡翠原料是一只翡翠手镯(如图1),此种手镯颗粒较粗,透明度不高。翡翠手镯在紫外荧光照射时通体呈现粉色荧光,由于深色部分的体色较深,粉色荧光呈 现的不明显,因此,笔者选取翡翠样品的浅色部位,经紫外荧光笔照射呈现强粉色荧光(如 图2)。

光致发光高分子材料

光致发光高分子材料 摘要:稀土高分子发光材料由于兼具稀土离子发光强度高、色纯度高和高分子材料优良的加工成型性能等优点而倍受瞩目。本文就稀土光致发光材料进行了分类,对其发光特性作了简要介绍,综述了其开发与应用的历史与现状,并介绍了其目前在各个领域的应用产品。 关键词:稀土;高分子;光致发光材料;长余辉材料 1前言 光致发光材料又称超余辉的蓄光材料。长余辉光致发光材料是吸收光能后进行蓄光而后发光的物质。它是一种性能优良,无需任何电源就能自行发光的材料。可利用其制成各种危险标识、警告牌;做成各种安全、逃生标志;在应付突发事件、事故中可发挥巨大的作用。在发生突发事故时,电源往往被切断,这使得许多依靠电源发光照明的安全标志失去了作用,而采用长余辉发光材料的安全标志此时将发挥其特殊的作用。因此长余辉光致发光材料的研究,具有重要的科学意义和实用性[1]。现在我们已开发出很多实用的发光材料。在这些发光材料中,稀土元素起的作用非常大[2,3]根据激发源的不同,稀土发光材料可分为光致发光材料、阴极射线(CRT)发光材料、X射线发光材料以及电致发光材料[4]。本文主要介绍光致发光材料. 2光致发光材料的发光原理[5] 发光材料被外加能量(光能)照射激发后,能量可以直接被发光中心吸收(激活剂或杂质),也可被发光材料的基质吸收。在第一种情况下,吸收或伴有激活剂电子壳层内的电子向较高能级的跃迁或电子与激活剂完全脱离及激活剂跃迁到离化态(形成“空穴”)。在第二种情况下,基质吸收能量时,在基质中形成空穴和电子,空穴可能沿晶体移动,并被束缚在各个发光中心上,辐射是由于电子返回到较低(初始)能量级或电子和离子中心(空穴)再结合(复合)所致。即当外加能量(光能)的粒子与发光基质的原子发生碰撞而引起它们激发电离。电离出来的自由电子具有一定的能量,又可引起其他原子的激发电离,当激发态或电离态的原子重新回到稳定态时,就引起发光[6]。发光基质将所吸收的能量转换为光辐射,这

《化学实验技术基础》滴定管的准备及使用

滴定管的准备及使用 【你知道吗】 1、在实验室中经常用到的滴定分析仪器该如何使用? 2、你知道滴定管使用前应如何处理吗?为什么? 3、用来滴定的锥形瓶是否需要干燥,是否需要用被滴定溶液润洗?为什么?【学习目标】 知识目标:1、认识常用的滴定分析仪器。 2、了解滴定操作的基本原理,掌握滴定管的使用方法。 3、学会正确读数及分析数据。 能力目标:1、掌握常用滴定分析仪器使用方法。 2、通过学习熟练规范操作各种滴定分析仪器,减少测量误差,提高 准确度。 3、掌握滴定管的滴定操作技术,学会观察与判断滴定终点。 情感目标:1、通过分组实验培养学生小组合作探究精神。 2、通过实验操作,培养学生实事求是,严谨认真的科学态度、方法 和精神。 【阅读教材】 一、滴定管的分类 滴定管是滴定时用来准确测量滴定时流出溶液体积的量器。按其容量及刻度值的不同,可分为常量滴定管、半微量滴定管和微量滴定管,常量滴定管的容积一般为25mL或50mL,最小刻度为 0.1mL,读数可估计到0.01mL。 根据其用途不同分为酸式滴定管和碱式滴定管,如图2-1。 资料卡片: 聚四氟乙烯酸碱两用滴定管 和酸式滴定管类似,其旋塞是用聚四氟乙烯材料制成的,耐腐蚀,密封性好。通过调节旋塞尾部的螺帽旋塞与旋塞套间的紧密度,不用涂油。

二、滴定管使用前的准备 1、酸式滴定管 (1)洗涤。通常滴定管可用自来水或管刷蘸洗涤剂(不能用去污粉)洗刷,而后用自来水冲洗干浄,去离子水润洗3次,有油污的滴定管要用5-10ml 铬酸洗液洗涤。 (2)涂油。给旋塞涂凡士林(起密封和润滑的作用)。将管中的水倒掉,平放在台上,把旋塞取出,用滤纸将旋塞和塞槽内的水吸干。用手指蘸少许凡士林,在旋塞芯两头薄薄地涂上一层(导管处不涂凡士林), 然后把旋塞插入塞槽内,旋转几次,使油膜在旋塞内均匀透明,且旋塞转动灵活。 (3)试漏。将旋塞关闭,滴定管冲水至零刻度,将其固定在滴定管架上,放置2分钟,观察滴定管口及旋塞两端是否有水渗出,.然后旋转180°,再静置2分钟,若前后两次均无漏水现象,即可使用,否则应重新处理。 (4)装标准溶液。应先用标准液(5-6ml)润洗滴定管3次,洗去管内壁的水膜,以确保标准溶液浓度不变。方法是两手平端滴定管同时慢慢转动使标准溶液接触整个内壁,并使溶液从滴定管下端流出。装液时要将标准溶液摇匀,然后不借 助任何器皿直接注入滴定管内,如图2-2。 (5)排气泡。滴定管内装入标准溶 酸式滴定管;下端带玻璃 旋塞, 用于盛放酸性溶液、中性溶液或氧化性溶液,不能用来盛放碱性溶液如NaOH 溶液。 碱式滴定管:下端连接一段橡胶管,内放一玻璃珠,以控制溶液的流速,橡胶管下端再连接一个尖嘴玻璃管,用于盛放碱类溶液,不能盛放氧化性溶液。 想一想:酸式滴定管涂抹凡士林 时,为什么要避开出口管孔? 图2-2 装溶液 图2-1 滴定管

荧光粉发光原理

荧光粉发光的原理是什么 一、"荧光粉"发光的启示 为了弄清荧光粉的化学成分,我们首先想到了荧火虫的发光,荧火虫的发光原理主要有以下一系列过程。 成光蛋白质+成光酵素含氧成光蛋白质(发出绿光) 含氧成光蛋白质+H2O成光蛋白质 这就是荧火虫为何能持续发光,并且光亮一闪一闪的原因,值得注意的是,荧火虫所发出的绿光是一种"冷光",其结果转化率竟达97%。 其次,我们又注意了发光塑料的发光,发光塑料主要是在普通塑料中掺进一些放射性物质,如14C、35Sr、90Sr及Na、Th和发光材料ZnS、CaS这些硫化物在放射光线的照射下,被激发而射出可见光(冷光)。 荧光粉的化学成份由模糊的硅酸盐、钨酸盐,单一的元素Ba、Sr最后深化到标准的化学式,其化学组成为: 类别 化学式 颜色 密度 红粉 Y2O3:Eu 白 5.1±0.2 绿粉 CeMgL11O19:Tb 白 4.2±0.2 蓝粉 BaMgAl10O17:Eu 白 3.7±0.2 双峰蓝粉 BaMgA10O17:(Eu、Mn) 白 3.8±0.2 上转化荧光粉,即红外线激发荧光粉的成分为: 化学组成:YErYbF3 外观:白色无机粉末 晶粒尺寸:30nm 激发波长:980nm 发光颜色:绿光 特性:透光率较高,有较高的耐溶剂、耐酸碱性能

应对荧光粉危害的几种方法 由于荧光粉在充入日光灯管过程中,含有较多量的Hg,因此其危害的主要来源就是其散发的Hg蒸气,权威资料显示: 汞蒸气达0.04至3毫克时,会使人在2至3月内慢性中毒;达1.2至8.5毫克量,会诱发急性汞中毒,如若其量达到20毫克,会直接导致动物死亡。 汞一旦进入人体内,可很快弥散,并积累到肾、胸等组织和器官中,慢性汞中毒会导致精神失常,植物神经紊乱,急性症状常头痛、乏力、发热、口腔及消化道齿龈红肿酸痛,靡烂出血,牙齿松动等,部分皮肤红色斑、丘疹,少数肾损害,个别肾疼、胸痛,呼吸困难,紫绀等急性间质性肺炎。 汞如若保管和处置不当,还会对生态环境造成巨大危害,它以各种形态进入环境中,直接污染土壤、空气和水源,再通过食物链进入人体,危害着人们的健康生活,因此绝对不能将日光灯管碎片随处丢弃。 如果室内日光灯管碎裂了,可用碘1克/立方米加酒精后薰蒸或直接用1克/立方米碘分散于地面置8-12小时,这样挥发或升华的碘与空气中的汞生成难挥发的碘化汞(Hg+I2=HgI2)。用以降低汞蒸气的浓度,还可用5%-10%的三氯化铁或10%的漂白粉冲洗被污染的地面。 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在反回到基态的过程中,以光的形式放出能量。以稀土化合物为基质和以稀土元素为激活剂的发光材料多属于后一类,即稀土荧光粉。稀土元素原子具有丰富的电子能级,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,从而获得多种发光性能。稀土是一个巨大的发光材料宝库,在人类开发的各种发光材料中,稀土元素发挥着非常重要的作用。 自1973年世界发生能源危机以来,各国纷纷致力于研制节能发光材料,于是利用稀土三基色荧光材料制作荧光灯的研究应运而生。1979年荷兰菲利浦公司首先研制成功,随后投放市场,从此,各种品种规格的稀土三基色荧光灯先后问世。随着人类生活水平的不断提高,彩电已开始向大屏幕和高清晰度方向发展。稀土荧光粉在这些方面显示自己十分优越的性能,从而为人类实现彩电的大屏幕化和高清晰度提供了理想的发光材料。 稀土荧光材料与相应的非稀土荧光材料相比,其发光效率及光色等性能都更胜一筹。因此近几年稀土荧光材料的用途越来越广泛,年用量增长较快。 根据激发源的不同,稀土发光材料可分为光致发光(以紫外光或可见光激发)、阴极射线发光(以电子束激发)、X射线发光(以X射线激发)以及电致发光(以电场激发)材料等。 阴极射线发光材料—显示用荧光粉 主要用于电视机、示波器、雷达和计算机等各类荧光屏和显示器。稀土红色荧光粉(Y2O3∶Eu和Y2O2S∶Eu)用于彩色电视机荧光屏,使彩电的亮度达到了更高水平。蓝色和绿色荧光粉仍使用非稀土的荧光粉,但La2O2S∶Tb绿色荧光粉发光特性较好,有开发前景。最近彩色电视机统一使用EBU(欧州广播联盟)色,红粉为Y2O2S∶Eu。计算机不象电视机那样重视颜色的再现性,而优先考虑亮度,因而采用橙色更强的红色,Y2O2S中Eu的含量通常为5~7wt%。而彩色电视机红粉中Eu的含量约为计算机的1.5倍。

发光银纳米团簇的合成及发光机理研究

发光银纳米团簇的合成及发光机理研究 发光金属纳米团簇是近几年才发展起来的一类新物质。近年来,科研工作者发现化学合成的金、银、铜、铂等纳米结构小于一定尺寸(一般为2 nnm)可能具有强烈的发光特性。 由于发光金属纳米团簇在生物探针、细胞成像、化学催化等多个方面具有广泛的应用前景,所以吸引了广大科研工作者的兴趣。但是到目前为止,此方面的研究主要集中在新型发光金属纳米团簇的合成及应用,对其发光机理方面的研究相对较少。 目前已有的理论并不能完全解释发光金属纳米团簇荧光发射的原因。针对此问题,在本论文中我们首先使用紫外光照还原法制备了尺寸介于2-5nnm之间,粒径分布均匀,发光波长位于650nm附近的发光银纳米团簇。 并采用此模型研究了银纳米团簇的发光机理。通过实验,我们发现制备过程中COO-:Ag+比例、pH值等参数的变化会对样品435nm以及505nnm两吸收峰的强度产生影响,但对两吸收峰位置没有影响。 所以,我们认为纳米团簇的吸收峰位置并不是由于银核中原子数目决定的。我们建议435nm的吸收峰是由于形成的Ag(0)核中的等离子共振引起的。 这与直径为几十到几百纳米量级的Ag纳米颗粒在400nm左右的表面等离子共振吸收峰非常接近。而505nmm处吸收峰则是由于配体上的COO-中氧原子上的电子转移到银离子后再转移到中心银原子上引起的(Ligand-Metal-Metal Charge Transfer: LMMCT).因为其发光波长一直位于650nm附近并不随制备参数的改变而改变,所以我们认为团簇中原子数目的变化对其发光波长的影响较小。 同时,我们还研究了模板剂类型对银纳米团簇的生成以及荧光发射性质的影

(完整word版)化学实验技术基础试卷 B及答案

中卫职业技术学校机械化工部2013----2014学年 第二学期《化学实验技术基础》期末考试(12级)试卷(B) 命题人宫静 班级姓名得分 一、单项选择题(每小题2分,共30分) 1、下列实验操作中错误的是 ( ) A、分液时,分液漏斗中下层液体从下口放出,上层液体从上口倒出 B、蒸馏时,温度计水银球靠近蒸馏烧瓶支管口。 C、滴定时,左手控制滴定管活塞,右手握持锥形瓶,边滴边振荡,眼睛注视滴定管中的液面 D、称量时,称量物放在称量纸上,置于托盘天平的左盘,砝码放在称量纸上置于托盘天平的右盘 2、下列哪些物质可以用敞开容器盛放() A、乙醇 B、乙醚 C、食盐水 D、NaOH 3、下列哪些试纸可用来检验AsH3 ( ) A、酸碱试纸 B、淀粉—碘化钾 C、硝酸盐试纸 D、醋酸试纸 4、下列哪一个仪器是精密量器() A、烧杯 B、烧瓶 C、容量瓶 D、试管 5、银镜反应后沾在试管上固体应用()清洗。 A、稀盐酸 B、浓盐酸 C、稀硝酸 D、浓硝酸 6、要分离两种沸点分别为380℃和394℃的混合液体,应使用()方法进行分离。 A、重结晶 B、普通蒸馏 C、简单分馏 D、萃取 7、以下除哪项外均能提高分析结果的准确度() A、对照实验 B、增加样品量 C、空白实验 D、增加平行测定次数8、pH变色范围为8.0~9.8的指示剂是() A、甲基橙 B、甲基红 C、石蕊 D、酚酞 9、分析天平使用的称量器皿是() A、锥形瓶 B、碘量瓶 C、称量瓶 D、托盘 10、现有三组溶液:(1)汽油和氯化钠溶液(2)酒精和水的混合溶液(3)氯化钠和单质溴的溶液,以上混合溶液分离的正确方法依次是() A、分液、萃取、蒸馏 B、萃取、蒸馏、分液 C、分液、蒸馏、萃取 D、蒸馏、萃取、分液 11、工业上所谓的"三酸两碱"中的两碱通常是指()。 A、氢氧化钠和氢氧化钾 B、碳酸钠和碳酸氢钠 C、氢氧化钠和碳酸氢钠 D、氢氧化钠和碳酸钠 12、0.1mol· L-1的HCl滴定0.1mol· L-1的NaOH时,应选择的指示剂为() A、甲基橙 B、甲基黄 C、中性红 D、百里酚酞 13、高锰酸钾法中使用的指示剂为() A、专属指示剂 B、自身指示剂 C、酸碱指示剂 D、金属指示剂 14、由于天平砝码被腐蚀而造成的称量误差属于() A、仪器误差 B、系统误差 C、随机误差 D、技术误差 15、能使用分液漏斗分离的是() A、酒精和水 B、苯和水 C、硫酸钡和水 D、乙醛和水 二、填空题(每空1分,共19分) 1、普通蒸馏装置包括、、三部分。 2、硫酸亚铁铵,俗名,色透明晶体。 3、重结晶法是利用被提纯物质与杂质在某种溶剂中的不同而将它们分离开来,适用于被提纯杂质含量在的固体物质。 4、萃取是利用不同物质在选定溶剂中的不同进行分离和提纯混合物的操作。

荧光粉合成方法研究

荧光粉合成方法研究 1 研究背景 (1) 2 荧光粉合成方法 (1) 3 稀土元素及其发光性质 (3) 4荧光粉发光机理 (3) 1 研究背景 白光LED因其具有工作电压低、发光响应快、耗电量少、体积小、寿命长、性能稳定、耐震性强等优点,目前以广泛应用于显示屏、灯饰、光源及检测、医学、化学、生物等领域。此外,随着全球环境的恶化、能源的枯竭、资源的紧缺,这种兼备诸多优点的白光LED更引起了各国政府和众多公司的高度重视。 白光是一种复合光,人眼可视范围的白光需要至少两种波长以上光组合而成。白光LED一般可以分为以下三类:荧光转换型、多芯片组合型,单芯片多量子阱型。从目前的发展趋势、可行性、使用性和商品化方面考虑,荧光转换型更具有一定的优势。至今,采用蓝光、紫光或UV-LED配合荧光粉的技术已经相对成熟。但用于LED的红色荧光粉仍然存在发光强度低、不稳定、光衰大等缺点,从而导致显色指数不高、寿命短等问题,一种更为理想的红色荧光粉还有待研发。 2 荧光粉合成方法 目前工业上荧光粉的制备大多采用高温固相法,但该方法反应温度高、反应时间长,团聚现象严重,难以获得粒径较小、分散性好的荧光粉体。此外,煅烧后产物结团块严重,需机械研磨,从而导致荧光粉晶粒产生晶型缺陷,增加无辐射发光中心,也可能在晶体表面形成一层无定型不发光薄膜,很大程度上降低了荧光粉的发光效率。所以,这些问题的解决还需要更做更多的研究。众所周知,合成方法对荧光粉的理化性能影响很大,目前人们常用的制备方法有:高温固相法、溶胶凝胶法、微波辐射法、燃烧法、水热合成法、喷雾热解法和化学共沉淀法等。 ①高温固相法:目前为止,荧光粉的合成使用最多的方法就是高温固相法。它是将合成物质的原料按一定化学计量比进行称量,往往一并加入定量的助溶剂、电荷补偿剂充分混合研磨均匀,然后在一定的条件(如温度、时间等)下进行焙烧而得的产品,再经粉碎、过筛等处理即可得所需产物。此方法在原料配比、条件控制、助溶剂选择等诸多方面已日趋成熟,容易实现粉体的批量生产,也因此得到广泛的应用。但是,高温固相法制备的荧光粉团聚严重、颗粒粗大,机械研磨时容易引入杂质、破坏晶型,以致降低发光效率。

led荧光粉

LED荧光粉是制造白色LED的必须材料。 首先,我们要了解白色LED的发光原理。白色LED芯片是不存在的。我们见到的白色LED 一般是蓝光芯片激发黄色荧光粉发出白色光的。好比:蓝色涂料和黄色涂料混在一起就变成了白色。 其次,不同波长的LED蓝光芯片需要配合不同波长的黄色荧光粉能够最大化的发出白光。 所以说,LED荧光粉是制造白色LED必须的东西(白色LED也有另外几种发光方式,但是市面上白色LED95%都是蓝光芯片激发黄色荧光粉的原理)。 黑体(热力学) 任何物体都具有不断辐射、吸收、发射电磁波的本领。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。 所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射)。显然自然界不存在真正的黑体,但许多地物是较好的黑体近似( 在某些波段上)。黑体辐射情况只与其温度有关,与组成材料无关. 基尔霍夫辐射定律(Kirchhoff),在热平衡状态的物体所辐射的能量与吸收的能量之比与物体本身物性无关,只与波长和温度有关。按照基尔霍夫辐射定律,在一定温度下,黑体必然是辐射本领最大的物体,可叫作完全辐射体。用公式表达如下: Er =α*Eo Er——物体在单位面积和单位时间内发射出来的辐射能; α——该物体对辐射能的吸收系数; Eo——等价于黑体在相同温度下发射的能量,它是常数。 普朗克辐射定律(Planck)则给出了黑体辐射的具体谱分布,在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为 B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1 B(λ,T)—黑体的光谱辐射亮度(W,m-2 ,Sr-1 ,μm-1 ) λ—辐射波长(μm) T—黑体绝对温度(K、T=t+273k) C—光速(2.998×108 m·s-1 ) h—普朗克常数,6.626×10-34 J·S K—波尔兹曼常数(Bolfzmann),1.380×10-23 J·K-1 基本物理常数 由图2.2可以看出: ①在一定温度下,黑体的谱辐射亮度存在一个极值,这个极值的位置与温度有关,这就是维恩位移定律(Wien) λm T=2.898×103 (μm·K) λm —最大黑体谱辐射亮度处的波长(μm) T—黑体的绝对温度(K) 根据维恩定律,我们可以估算,当T~6000K时,λm ~0.48μm(绿色)。这就是太阳辐射中大致的最大谱辐射亮度处。 当T~300K,λm~9.6μm,这就是地球物体辐射中大致最大谱辐射亮度处。 ②在任一波长处,高温黑体的谱辐射亮度绝对大于低温黑体的谱辐射亮度,不论这个波长是

大学化学实验基本知识

本篇由无机制备、称量和滴定操作练习组成。通过初步的基本操作、基本技术的训练,要求学生能规范的学会以下的操作和方法:仪器的洗涤和干燥,试剂的取用,试纸的取用,煤气灯的使用,台天平、分析天平的使用,量筒、吸管、滴定管的使用,离心机的使用;直接加热和水浴加热,溶解和结晶,溶液的蒸发、浓缩,固液分离(倾滗法、吸滤法和少量沉淀的离心分离),直接称量、相减法称量,数据处理、误差表示等。要求学生自觉地重视能力与非智力因素诸方面的培养,并将此贯穿于整个实验课程的始终。 无机化合物的种类极多,不同类型的无机物制备方法有所不同,差别也很大。同一无机物也可有多种制备方法。在本篇中只介绍常见无机物常用的制备和提纯方法。 1.无机物常用的制备方法 ⑴利用氧化还原反应制备 ①活泼金属和酸直接反应,经蒸发、浓缩、结晶、分离即可得到产品。如由铁和硫酸制备硫酸亚铁。 ②不活泼金属不能直接和非氧化性酸反应,必须加入氧化剂,反应后要有分离、除杂质的步骤。如硫酸铜的制备,不能由铜和稀硫酸直接反应制备,必须加入氧化剂(如硝酸),反应后有杂质硝酸铜,所以要用重结晶法来提纯制得的硫酸铜。 ⑵利用复分解反应制备 利用复分解反应制备无机物,如产物是难溶物或气体,则只需通过分离或收集气体即可得产物。若产物是可溶的,就要经蒸发、浓缩、结晶、分离等步骤后才能得到产物。如由硝酸钠和氯化钾制备硝酸钾,这两种盐溶解、混合后,在溶液中有4种离子-K+、Na+、NO3-、Cl-,由它们可组成四种盐。当温度改变时,它们的溶解度变化不同。利用这种差别,可在高温时除去氯化钠,滤液冷却后则得到硝酸钾。再用重结晶法提纯,可得到纯度较高的硝酸钾。 2. 结晶与重结晶 ⑴结晶 在一定条件下,物质从溶液中析出的过程称结晶。结晶过程分为两个阶段,第一个阶段是晶核的形成,第二阶段是晶核的成长。溶液的过饱和程度和温度都能影响晶体颗粒的大小,其中温度的影响更大些。有时会出现过饱和现象,即当温度降低后仍不析出晶体。此时可慢慢摇动结晶容器,或用玻璃棒轻轻磨擦器壁,也可加入小粒晶种,促使晶体析出。

相关文档