文档库 最新最全的文档下载
当前位置:文档库 › 音频信号光纤传输技术实验

音频信号光纤传输技术实验

音频信号光纤传输技术实验
音频信号光纤传输技术实验

音频信号光纤传输技术实验

[目的要求]

1.熟悉半导体电光/光电器件的基本性能及主要特性的测试方法。

2.了解音频信号光纤传输的结构及选配各主要部件的原则。

3.学习分析集成运放电路的基本方法。

4.训练音频信号光纤传输系统的测试技术。

[仪器设备]

1.YOF—B型音频信号光纤传输技术实验仪。

2.音频信号发生器。

3.示波器。

4.数字万用表。

[实验原理]

一.系统的组成

图(1)示给出了一个音频信号直接光强调制光纤传输系统的结构原理图,它主要包括由LED及其调制、驱动电路组成的光信号发送器、传输光纤和由光电转换、I—V变换及功放电路组成的光信号接收器的三个部分。

图1 音频信号光纤传输实验系统原理图

本实验采用中心波长0.85μm附近的GaAs半导体发光二极管(LED)作光源、峰值响应波长为0.8~0.9μm的硅光二极管(SPD)作光电检测元件。由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。

二. 光导纤维的结构及传光原理

光纤按其模式性质通常可以分成两大类①单模光纤②多模光纤。无论单模或多模光纤,其结构均由纤芯和包层两部分组成。纤芯的折射率较包层折射率大,对于单模光纤,纤芯直径只有5~10μm ,在一定的条件下,只允许一种电磁场形态的光波在纤芯内传播,多模光纤的纤芯直径为50μm 或62.5μm ,允许多种电磁场形态的光波传播;以上两种光纤的包层直径均为125μm 。按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤,对于阶跃型光纤,在纤芯和包层中折射率均为常数,但纤芯一包层界面处减到某一值后,在包层的范围内折射率保持这一值不变,根据光射线在非均匀介质中的传播理论分析可知:经光源耦合到渐变型光纤中的某些光射线,在纤芯内是沿周期性地弯向光纤轴线的曲线传播。

本实验采用阶跃型多模光纤作为信道,现应用几何光学理论进一步说明这种光纤的传光原理。阶跃型多模光纤结构如图所示,它由纤芯和包层两部分组成,芯子的半径为a ,折射率为1n ,包层的外径为b ,折射率为2n ,且1n >2n 。

图 2 阶型多模光纤的结构示意图

当一光束投射到光纤端面时,进入光纤内部的光射线在光纤入射端面处的入射面包含光纤轴线的称为子午射线,这类射线在光纤内部了行径,是一条与光纤轴线相交、呈“Z ”字型前进的平面折线;若藉合到光纤内部的光射线在光纤入射端面处的入射面不包含光纤轴线,称为偏射线,偏射线在光纤内部不与光纤轴线相交;其行径是一条空间折线。

三. 半导体发光二极管结构、工作原理、特性及驱动、调制电路

光纤通讯系统中,对光源器件在发光波长、电光效率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED )、半导体激光二极管(LD ),本实验采用LED 作光源器件。

图 3 半导体发光二极管及工作原理

光纤传输系统中常用的半导体发光二极管是一个如图所示的N-P-P三层结构的半导体器件,中间层通常是由GaAs(砷化镓)p型半导体材料组成,称有源层,其带隙宽度较窄,两侧分别由GaAlAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙。具有不同带隙宽度的两种半导体单晶之间的结构称为异结。在图(4)中,有源层与左侧的N层之间形成的是p-N异质结,而与右侧P层之间形成的是p-P异质结,故这种结构又称N-p-P双异质结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p-P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层与空穴复合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子:

hυ= E

1-E

2

= E

g

其中h上普朗克常数,υ是光波的频率,E

1是有源层内导电电子的能量,E

2

导电电子与空穴复合处于价健束缚状态时的能量。两者的差值E

g

与DH结构中各层材料及其组份的选取等多种因素有关,制做LED时只要这些选取和组份的控制适当,就可便得LED发光中心波长与传输光纤低损耗波长一致。

图 4 HFRB-1424型LED的正向伏安特性

本实验采用HFBR-1424型半导体发光二极管的正向特性如图5所示与普通的二极管相比,在正向电压大于1V以后,才开始导通,在正常使用情况下,正向压降为1.5V左右。半导体发光二极管输出的光功率与其驱动电流的关系称LED的电光特性。为了使传输系统的发送端能够产生一个无非线性失真、而峰-峰值又最大的光信号,使用LED时应先给它一个适当的偏置电流,其值等于这一特性曲线线性部分中点电流值,而调制电流的峰-峰值应尽可能大地处于这电光特性的线性范围内。

音频信号光纤传输系统发送端LED的驱动和调制电路如图5示,以BG1为主构成的电路是LED的驱动电路,调节这一电路中的W2可使LED的偏置电流在0-50mA的范围内变化。被传音频信号由IC1为主构成的音频放大电路放大后经电容器C4耦合到基极,对LED原工作电流进行调制,从而使LED发送出光强随音频信号变化的光信号,并经光导纤维把这一信号传至接收端。

图 5 LED的驱动和调制电路

根据理想运放电路开环电压增益大(可近似为无限大)、同相和反相输入阻抗大(也可近似为无限大)和虚地等三个基本性质,可以推导出图6所示音频广大闭环增益为:

G(jω) = v

0/v

1

= 1+Z

2

/Z

1

其中Z

1、Z

2

分别为放大器反馈阻抗和反相输入端的接地阻抗,只要C

3

选得足

够小,C

2选得足够大,则在要求带宽的中频范围内,C

3

阻抗很大,它所在

支路可视为开路,而C

2

的阻抗很小,它可视为短路。在此情况下,放大电路

的闭环增益G(jω)=1+ R

2/R

1

。C

3

的大小决定了高频端的截止频率f

2

,而

C

2的值决定着低频端的截止频率f

1

。故该电路中的R

1

、R

2

、R

3

和C

2

、C

3

决定音频放大电路增益和带宽的几个重要参数。

四.半导体光电二极管的结构、工作原理及特性

半导体光电二极管与普通的半导体二极管一样,都具有一个p-n结,但光电二极管在外形结构方面有它自身的特点,这主要表现在光电二极管的管壳上有一个能让光射入其光敏区的窗口,此外,与普通二极管不周,它经常工作在反向偏置电压状态(如图6a所示)或无偏压状态(如图6b所示)。在反偏电压下,p-n结的空间电荷区的垫垒增高、宽度加大、结电阻减小,所有这些均有利于提高光电二极管的高频响应性能。

图 6 光电二极管的结构及工作方式

无光照时,反向偏置的p-n结只有很小的反向漏电流,称为暗电流。当有光子能量大于p-n结半导体材料的带隙宽度E

g

的光波照射到光电二极管的管芯时,p-n结各区域中的价电子吸收光能后将挣脱价键的束缚而成为自由电子,与此同时也产生一个自由空穴,这些由光照产生的自由电子空穴对统称为光生载流子。在远离空间电荷区(亦称耗尽区)的p区和n区内,电场强度很弱,光生载流子只有扩散运动,它们在向空间电荷区扩散的途中因复合而被消失掉,故不能形成光电流。形成光电流的主要靠空间电荷区的光生载流子,因为在空间电荷区内电场很强,在此强电场作用下,光生自由电子空穴对将以很高的速度分别向n区和p区运动,并很快越过这些区域到达电极沿外电路闭合形成光电流,光电流的方向是从二极管的负极流向它的正极,并且在无偏压短路的情况下与入射的光功率成正比,因此在光电二极管的p-n 结中,增加空间电荷区的宽度对提高光电转换效率有着密切的关系。为此目的,若在p-n结的p区和n区之间再加一层杂质浓度很低以致可近似为本征半导体的I层,就形成了具有p-i-n三层结构的半导体光电二极管,简称PIN 光电二极管,PIN光电二极管的p-n结除具有较宽的空间电荷区外,还具有很大的结电阻和很小的结电容,这些特点使PIN管在光电转换效率和高频响应方面与普通光电二极管相比均得到了很大改善。

光电二极管的伏-安特性可用下式表示:

I = I

0[1 - exp(qv/kt)] + I

L

(6)

其中I

是无照的反向饱和电流,V是二极管的端电压(正向电压为正,反向电压为负),q为电子电荷,k为波耳兹曼常数,T是结温,单位为K,I L是无偏压状态下光照时的短路电流,它与光照时的光功率成正比。(6)式中的

I 0和I

L

均是反向电流,即从光电二极管负极流向正极的电流。根据(6)式,

光电二极管的伏安特性曲线如图(8)所示,对应7a所示的反偏工作状态,光电二极管的工作点由负载线与第三象限的伏安特性曲线交点确定,由图(8)所示可以看出:

1.光电二极管既使在无偏压的工作状态下,也有反向电流流过,这与普通二极管只具有单向导电性相比有本质的差别,认识和熟悉光电二极管的这一特点对于在光电转换技术中正确使用光电器件具有十分重要意义。

2.反向偏压工作状态下,在外加电压E和负载电阻R L的很大变化范围内,光电流与入照的光功率均具有很好的线性关系,无偏压工作状态下,只有R L较小时,光电流才与照光功率成正比,R L增大时,光电流与光功率呈非

线性关系。无偏压状态下,短路电流与入照光功率的关系称为光电二极管的光电特性,这一特性在I-P坐标中的斜率

R=ΔI/ΔP(μA/μW)

定义为光电二极管的响应度,这是宏观上表征光电二极管光电转换效率的一个重要参数。

图7 光电二极管的伏安特性曲线及工作点的确定

3.在光电二极管处于开路状态情况下,光照时产生的光生载流子不能形成闭合光电流,它们只能在p-n结空间电荷区的内电场作用下,分别堆积在p-n结空间电荷区两侧的n层和p层内,产生外电场,此时光电二极管表现出具有一定的开路电压。不周光照情况下的开路电压就是伏安特性曲线与横坐标交点所对应的电压值。由图(7)可见,光电二极管开路电压与入照光功率也是呈非线性关系。

4.反向偏压状态下的光电二极管,由于在很大的动态范围内其光电流与偏压的负载电阻几乎无关,故在入照光功率一定时可视为一个恒流源;而在无偏压工作状态下光电二极管的光电流随负载变化很大,此时它不具有恒流源性质,只起光电池作用。

光电二极管的响应度R值与入照光波的波塔有关。本实验中采用的硅光二极管,其光谱响应波长在0.4μm-1.1μm之间、峰值响应波长在0.8μm-0.9μm范围内。在峰值响应波长下,响应度R的典型值在0.25-0.5μA/μW的范围内。

[实验内容]

一.LED-传输光纤组件电光特性的测定

测量前首先将两端带电流插头的电缆一头插入光纤绕线盘上的电流插孔,另一端插入发送器前面板上的“LED”插孔,并将光电探头插入光纤绕线盘上引出传输光纤输出端的同轴插孔中,SPD的同条出线接至仪器前面板光功率批示器的相应插孔内,在以后实验过程中注意保持光电探头的这一位置。测量时调节W2使毫安表指示从零开始(此时光功率计的读数为零,若不为零记下读数,并在以后的以此为零点扣除),逐渐增加LED的驱动电流,每增加4mA读取一次光功率计示值,直到48mA为止。根据测量结晶描绘LED-传输光纤组件的电光特性曲线,并确定出其线性度较好的线段。

二.光电二极管反向伏安特性曲线的测定

测定光电二极管反向伏安特性的电路如图(8)所示。其中LED是发光中心波长与被测光电二极管的峰值响应波长很接近的GaAs半导体发光二极管,在这里它作光源使用,其光功率由光导纷纷输出。由IC1为主构成的电路是一个电流-电压变换电路,它的作用是把流过光电二极管的光电流I转换

成由IC1输出端C 点的输出电压V 0,它与光电流成正比。整个测试电路的工作原理依据如下:由于IC1的反相输入端具有很大的输入阻抗,光电二极管受光照时产生的光电流几乎全部渡过R f 并在其上产生电压降V cb = R f I 。另外,又因IC1具有很高的开环电压增益,反相输入端具有与同相输入端相同的地电位,故IC1的输出电压

V 0=I R f

已知R f 后,就可根据上式由V 0计算出相应的光电流I 。

图8 光电二极管反向伏安特性的测定 在图(8)中,为了使被测光电二极管能工作在不同的反向偏压状态下,设置了由W 1组成的分压电路。具体测量时首先把SPD 的插头接至接收器前面板左侧SPD 相应的插孔中,然后根据LED 的电光特征曲线在LED 工作电流从0-48mA 的变化范围内查出输出功率均分的5工作点对应的驱动电流值,为以后论述方便起见,对应这5个电流值分别标以I 1 I 2I 3I 4和I 5。

测量LED 工作电流为I 1-I 5时所对应的5种光照情况下光电二极管的反向伏安特性曲线。对于每条曲线,测量时,调节W 1使被测二极管的反偏电压逐渐增加,从0V 开始,每增加1V 用接收器前面板的数字毫伏表测量一次IC1输出电压V 0值,根据这一电压值由(8)式即可算出相应的光电流I 。

根据实验数据,在直角坐标纸上描绘出被测光电二极管的以上5条反向伏安特性曲线及光电特性曲线,计算出被测光电二极管对于LED 发光中心波塔的响应度R 值。

三. LED 偏置电流与无非线性畸变最大光讯号幅度关系的测定

由于LED 的伏安特性及电光特性曲线均存在着非线性区域,所以在图(6)所示的驱动和调制电路中,对于LED 工作电流的不同偏置状态,能够获得的w 1

R b V 0

无非线性畸变的最大光信号(即LED-传输光纤组件输出光功率的交变部分)的幅值(或峰-峰值)也是具有不同值,在设计音频信号光纤传输系统时,应把LED的偏置电流选定在其电-光特性曲线线性范围最宽的线段中点电流值。在对音频信号光纤传输进行调试时,可通过实验的方法,测定LED偏置电流与无非线性畸变最大光信号幅度的关系,然后在LED允许的最大工作电流范围内,选择一个最佳偏置状态。

实验方法的具体操作如下:用音频信号发生器作信号源(频率为1kHZ 左右),SPD接到接收器前面板上的相应插孔并把示波器的输入电缆和接收器前面板的数字mv表接至接收器I-V变换电路的输出端,在LED偏置电流为5mA、10mA、15mA、20mA和25mA的各种情况下,从零开始,逐渐增加调制信号源的输出幅度,直到接至I-V变换电路输出端的直流mV表的读数有明显变化为止,记录下示波器上显示的I-V变换电路输出电压交变成份的峰-

峰值(mV),然后根据I-V变换电路中的R

f

值和SPD的响应度R值,便可算出以上不同偏置下最大光信号的峰-峰值(μW)。

四.接收器允许的最小信号幅值的测定

把发送器的调制输入插孔接入收音机信号,接收器功放输出端接入小音箱,在保持实验系统以上连接不变的情况下,首先把LED的偏置电流调为5mA,然后从零开始逐渐加大收音机的输出幅度,直到mV表批示有变化为止,考察接收器上的音响效果是否能清晰辨别出所接收的音频信号,若能,继续减小LED的偏置电流重复以上实验,直至不能清晰辨别出接收信号为止,记下

在这一状态之前对应的LED的偏置电流I

min

值,并由LED电光特性的曲线确

定出0-2 I

min 对应的光变化量ΔP

min

,则接收器允许的最小光信号的峰-峰值,

不会大于ΔP

min ,故ΔP

min

可以作为实验系统接收器允许的最小光信号幅值。

五.语言信号的传输

实验整个音频信号光纤传输系统的音响效果。实验时把示波器和数字毫伏表接至接收器I-V变换电路的输出端,适当调节发送器的LED偏置电流和调制输入信号幅度,使传输系统达到无非线性失真、光信号幅度为最大的最佳听觉效果。

[思考题]

1.利用SPD、I-V变换电路和数字毫伏表,设计一光功率计。

2.如何利用测定图(9)示SPD第四象限的正向伏安特性曲线?

3.在LED偏置电流一定情况下,当调制信号幅度较小时,批示LED偏置电

流的毫安表读数与调制信号幅度无关,当调制信号幅度增加到某一程度后,毫安表读数将随着调制信号的幅度而变化,为什么?

4.若传输光纤对于本实验所采用LED的中心波长的损耗系数α≤1dB/Km,

根据实验数据估算,本实验系统的传输距离还能延伸多远?

* 光纤损耗系数α的定义为:α=10lg(P

in /P

out

)/L (dB/Km)

其中:P

in -光纤输入功率P

out

-光纤输出功率L-光纤长度

音频信号光纤通信.

音频信号光纤传输实验 实验目的 1.了解音频信号光纤传输的方法、结构及选配各主要部件的原则。 2.熟悉半导体电光/光电器件的基本性能及其主要特性的测试方法。 3.学习分析音频信号集成运放电路的基本方法。 4.训练音频信号光纤传输系统的调试技术。 实验仪器 YOF-A音频信号光纤传输技术实验仪、光功率计、多波段收音机、音箱 实验原理 一、系统的组成 图1示出了一音频信号光纤传输系统的结构原理图,它由半导体发光二极管LED及其调制、驱动电路组成的光信号发送部分、传输光纤部分和由硅光电池、前置电路和功放电路组成的光信号接收三个部分组成。 图1 光纤传输系统原理图 塑料光纤很柔软,而且可以弯曲,加工很方便。在光信息处理技术、光学计量、短距离数据传输等方面已获得较好的应用。本系统中,我们采用的传输光纤是进口低损耗多模塑料光纤,它的纤维直径是lmm,芯径为990μm,包层厚度为5μm。半导体发光二极管是采用发光亮度很高的可见红色光发光二极管作为光源,光电转换采用高灵敏的硅光电池作为转换元件,整个传输过程一目了然。 为了避免或减少谐波失真,要求整个传输系统的频带宽度要能复盖被传信号的频谱范围,对于语音信号,其频谱在300--3400Hz的范围内。由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。

二、半导体发光二极管(LED)的结构及工作原理 光纤通讯系统中对光源器件在发光波长、电光功率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)和半导体激光器(LD)。光纤传输系统中常用的半导体发光二极管是一个如图2所示的N-p-P三层结构的半导体器件,中间层通常是由直接带隙的GaAs(砷化镓)p型半导体材料组成,称有源层,其带隙宽度较窄,两侧分别由AlGaAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙。具有不同带隙宽度的两种半导体单晶之间的结构称为异质结,在图2中,有源层与左侧的N层之间形成的是P-N异质结,而与右侧P层之间形成的是p-P异质结,敌这种结构又称N-p-P双异质结构,简称DH结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p-P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层内与空穴复合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子: (1) 其中h是普朗克常数,是光波的频率,E 1是有源层内导电电子的能量,E 2 是导电电子与空穴复合后处于价键束缚状态时的能量。两者的差值Eg与DH结构中各层材料及其组份的选取等多种因素有关,制做LED时只要这些材料的选取和组份的控制适当,就可使得LED的发光中心波长与传输光纤的低损耗波长一致。所以为了减少损耗,LED发光波长应与传输光纤的低损耗波长一致,在实际通讯系统中,LED发出的光介于可见光的边远区域。 图2 半导体发光二极管的结构及工作原理 光纤通讯系统中使用的半导体发光二极管的光功率为光导纤维的尾纤输出功率,出纤光功率与LED驱动电流的关系称LED的电光特性,为了避免和减少非线性失真,使用时应先给LED一个适当的偏置电流I,其修正等于这一特性曲线线性部分中点对应的电流值,而调制信号的峰一峰值应位于电光特性的直线范围内。对于非线性失真要求不高的情况,也可把偏置电流选为LED最大允许工作电

音频技术实验报告

实验编号:四川师大《声音媒体技术》实验报告 2017年11月5日计算机科学学院级班实验名称:声音信号的编辑处理 姓名:学号:指导老师:实验成绩: 实验录音系统的连接和使用 一.实验目的及要求 (1)掌握录音系统的连接方法; (2)熟悉录音系统相应设备的功能,并熟练使用; (3)掌握录音系统功率匹配、阻抗匹配的原理; 二.实验内容 (1)利用阻抗匹配、功率匹配原理,实现录音系统连接; (2)熟练掌握阻抗匹配、功率匹配实现录音系统连接的工作原理; (3)熟悉录音系统各类设备的操作使用; 三.实验主要流程、步骤(该部分如不够填写,请另加附页) 1.利用阻抗匹配、功率匹配原理,实现录音系统连接。 (1)老师介绍调音台的各输入与输出端子的功能,以及其控制按钮的名称和作用。 (2)用转换头将电容式话筒连接到调音台,电容式话筒的插头插在1和2路录音孔中,(遵循阻抗匹配原理,一定要注意传输线的特性阻抗与所接负载阻抗的大小相等且相位相同,即传输线的输入端或输出端处于阻抗匹配状态); (3)再把监听耳机的插头插在监听插口。 (4)把调音台的输出端用连接线与电脑的主机连接,给电脑传送音频信号,(遵循阻抗匹配原理,电脑的功率要和传输线的输出功率匹配); (5)最后连接电源线 (6)MONITOR是总监听音量旋钮,调节该通路在监听线路中的音量大小。.通过调节HIGH、MIDDLE、LOW三段均衡器旋钮来调节声音大小打开电脑进行调试,测试录音能否正常工作。 2.熟练掌握阻抗匹配、功率匹配实现录音系统连接的工作原理。 (1)阻抗匹配是指负载阻抗与激励源内部阻抗相适配,得到最大功率输出的一种工作状态,阻抗匹配则传输功率大,内阻等于负载时,输出功率最大,此时阻抗匹配。 (2)设备输出功率要与负载阻抗一致。 3.熟悉录音系统各类设备的操作使用。 (1)POWER ON是调音台开关,当 ON 的一边被按下时,调音台便接通电源; (2)MIC是麦克风输入接口,LINE是高电平输入接口,MONITOR是监听输出接口; (3)电容式话筒的敏感度及其高,在录制声音史应该对准说话的人; (4)在调音台每一路输入通道上都有一组均衡旋钮,HIGH是高频,MID是中频,LOW是低频,高中低频率旋钮向左(顺时针)旋时,对应的频段就会得到提升,反之衰减。 四.实验结果的分析与评价(该部分如不够填写,请另加附页 1.阻抗匹配的方法有两种,一种是改变阻抗力,另一种是调整传输线的长度。 2.调音台可对输入的不同电平不同阻抗的音源信号进行放大、衰减、动态调整等,用附 带的均衡器对信号各频段进行处理,调整各通道信号的混合比例后,对各通道进行分配并送至各个接收端,控制现场扩声信号及录制信号。 3.调音台的输入信号大体上分为低阻话筒信号输入和高阻线路信号输入两种。 4.调音台输入插口基本可以分为3种:TRS,XLR,RCA。

信号光纤传输技术实验.

音频信号光纤传输技术实验 预习要求 通过预习应理解以下几个问题: 1.音频信号光纤传输系统由那几个部分组成、主要器件(LED 、SPD 和光纤)的工作原理; 2.LED 调制、驱动电路工作原理 3.LED 偏置电流和调制信号的幅度应如何选择、; 4.测量SPD 光电流的I-V 变换电路的工作原理。 实验目的 1.熟悉半导体电光/光电器件基本性能及主要特性的测试方法; 2.了解音频信号光纤传输系统的结构及各主要部件的选配原则; 3.掌握半导体电光和光电器件在模拟信号光纤传输系统中的应用技术; 4.学习音频信号光纤传输系统的调试技术。 实验原理 一.系统的组成 音频信号光纤传输系统的原理图如图8-1-1所示。它主要包括由LED (光源)及其调制、驱动电路组成的光信号发送器、传输光纤和由光—电转换、I —V 变换及功放电路组成的光信号接收器三个部分。光源器件LED 的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近。本实验采用中心波长0.85μm的GaAs 半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管SPD 作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带

宽度能够覆盖被传信号的频谱范围。对于音频信号,其频谱在20Hz ~20KHz 的范围内。光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的频率特性。 二、光纤的结构及传光原理 衡量光纤信道性能好坏有两个重要指标:一是看它传输信息的距离有多远,二是看它单位时间内携带信息的容量有多大。前者决定于光纤的损耗特性,后者决定于光纤的频率特性。目前光纤的损耗容易做到每公里零点几dB 水平。光纤的损耗与工作波长有关,所以在工作波长的选用上,应尽量选用低损耗的工作波长。光纤通讯最早是用短波长0.85μm,近来发展到能用1.3~1.55μm范围的波长,在这一波长范围内光纤不仅损耗低,而且“色散”也小。 光纤的频率特性主要决定于光纤的模式性质。光纤按其模式性质通常可以分成单模光纤和多模光纤。无论单模或多模光纤,其结构均由纤芯和包层两部分组成。纤芯的折射率较包层折射率大。对于单模光纤,纤芯直径只有5~10μm,在一定条件下,只允许一种电磁场形态的光波在纤芯内传播。多模光纤的纤芯直径为50μm或62.5μm,允许多种电磁场形态的光波传播。以上两种光纤的包层直径均为125μm。按其折射率沿光纤截面的径向分布状况又分成阶跃型和渐变型两种光纤,对于阶跃型光纤,在纤芯和包层中折射率均为常图8-1-1 音频信号光纤传输系统原理图 数,但纤芯折射率n 1略大于包层折射率n 2。所以对于阶跃型多模光纤,可用几何光学的全反射理论解释它的导光原理。在渐变型光纤中,纤芯折射率随离开光纤轴线距离的增加而逐渐减小,直到在纤芯—包层界面处减到某一值后,在包层

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

光纤通信optisystem实验

光纤通信大作业 1.选择一个你认为合适的方案 供选方案:NRZ、RZ调制格式,直接调制或者外调制,APD管或者PIN管,low pass rectangular filter或者low pass gauss filter。请选择你认为实际中可实现的通信性能最好的一组方案。并给出相应的理由。 答:选择NRZ调制格式,直接调制,APD管,low pass gauss filter。选择这个方案的理由是:为了使得整个系统得到最好的信噪比,并且保证系统误码率在可接受的范围内。具体理由分析如下: 选择NRZ调制格式,因为经NRZ调制的光信号具有紧凑的频谱特性,调制和调解结构简单,在10G和一部分40G系统中得到广泛应用,一直被作为中短距离光纤通信系统中的主要调制格式,通过色散管理和终端可调色散补偿技术,NRZ调制格式在终端传输距离普通光纤获得良好的光传输性能。 选择直接调制,因为直接强度调制是用信号直接调制激光器的驱动电流,使其输出功率随信号变化.这种方式设备相对简单,研究较早,现已成熟并商品化.外调制则常用于要求较高的通信系统。 选择APD管,因为由书上的P264页的图8.3可知,PIN管接收灵敏度适用于低数据速率光纤通信,当系统通信数据速率为10G时,PIN灵敏度管不适于应用,我们优选ADP管。 选择low pass gauss filter(低通高斯响应滤波器),因为low pass rectangular filter(低通矩形响应滤波器)是理想的低通滤波器的模型,在幅频特性曲线上呈现矩形。在现实中,如此理想的特性是无法实现的,所有的设计只不过是力图逼近矩形滤波器的特性而已。而low pass gauss filter(低通高斯响应滤波器)采用时域法测量有效带宽,具有直观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。 实验过程: 本次实验中,由NRZ调制格式、直接调制、APD管和low pass gauss filter构成的光纤通信系统。 1).根据实验要求,连接实验电路。同时为了实时地观察系统的运行状态,必须在系统外围增加监测及显示装置,将系统运行结果显示出来,便于观察和分析。因此,在系统中加入了Eye Diagram Analyzer、BER Analyzer、Optical Time Domain Visualizer、Optical Power Meter、Optical Spectrum Analyzer、Oscilloscope Visualizer。通过这些监测及显示器件,可以较为直观地观察到入纤光功率、调制前后的光信号频谱与时域波形、解调后的信号波形、信号眼图及误码率等系统的运行状态和运行结果。整个光纤通信系统的架构如下图示:

实验一音频信号光纤传输技术实验

音频信号光纤传输技术实验 [目的要求] 1.熟悉半导体电光/光电器件的基本性能。 2.了解音频信号光纤传输的结构。 3.学习分析集成运放电路的基本方法。 4.了解音频信号在光纤通信的基本结构和原理 [仪器设备] 1.ZY120FCom13BG3型光纤通信原理实验箱。 2.20MHz双踪模拟示波器。 3.FC/PC-FC/PC 单模光跳线 4.数字万用表。 5.850nm光发端机和光收端机 6.连接导线 7.电话机 [实验原理] 一.半导体发光二极管结构、工作原理、特性及驱动、调制电路光纤通讯系统中,对光源器件在发光波长、电光效率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)、半导体激光二极管(LD),本实验采用LED作光源器件。 图 1 半导体发光二极管及工作原理 光纤传输系统中常用的半导体发光二极管是一个如图所示的N-P-P三层结构的半导体器件,中间层通常是由GaAs(砷化镓)p型半导体材料组成,称有源层,其带隙宽度较窄,两侧分别由GaAlAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙。具有不同带隙宽度的两种半导体单晶之间的结构称为异结。在图(1)中,有源层与左侧的N层之间形成的是p-N 异质结,而与右侧P层之间形成的是p-P异质结,故这种结构又称N-p-P双异质结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p-P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层与空穴复合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子:

光纤通信optisystem实验

光纤通信大作业 1、选择一个您认为合适的方案 供选方案:NRZ、RZ调制格式,直接调制或者外调制,APD管或者PIN管,low pass rectangular filter或者low pass gauss filter。请选择您认为实际中可实现的通信性能最好的一组方案。并给出相应的理由。 答:选择NRZ调制格式,直接调制,APD管,low pass gauss filter。选择这个方案的理由就是:为了使得整个系统得到最好的信噪比,并且保证系统误码率在可接受的范围内。具体理由分析如下: 选择NRZ调制格式,因为经NRZ调制的光信号具有紧凑的频谱特性,调制与调解结构简单,在10G与一部分40G系统中得到广泛应用,一直被作为中短距离光纤通信系统中的主要调制格式,通过色散管理与终端可调色散补偿技术,NRZ调制格式在终端传输距离普通光纤获得良好的光传输性能。 选择直接调制,因为直接强度调制就是用信号直接调制激光器的驱动电流,使其输出功率随信号变化、这种方式设备相对简单,研究较早,现已成熟并商品化、外调制则常用于要求较高的通信系统。 选择APD管,因为由书上的P264页的图8、3可知,PIN管接收灵敏度适用于低数据速率光纤通信,当系统通信数据速率为10G时,PIN灵敏度管不适于应用,我们优选ADP管。 选择low pass gauss filter(低通高斯响应滤波器),因为low pass rectangular filter(低通矩形响应滤波器)就是理想的低通滤波器的模型,在幅频特性曲线上呈现矩形。在现实中,如此理想的特性就是无法实现的,所有的设计只不过就是力图逼近矩形滤波器的特性而已。而low pass gauss filter(低通高斯响应滤波器)采用时域法测量有效带宽,具有直观、简便的优点,而采用时域法能够显著缩短有效带宽测量时间。 实验过程: 本次实验中,由NRZ调制格式、直接调制、APD管与low pass gauss filter构成的光纤通信系统。 1)、根据实验要求,连接实验电路。同时为了实时地观察系统的运行状态,必须在系统外围增加监测及显示装置,将系统运行结果显示出来,便于观察与分析。因此,在系统中加入了Eye Diagram Analyzer、BER Analyzer、Optical Time Domain Visualizer、Optical Power Meter、Optical Spectrum Analyzer、Oscilloscope Visualizer。通过这些监测及显示器件,可以较为直观地观察到入纤光功率、调制前后的光信号频谱与时域波形、解调后的信号波形、信号眼图及误码率等系统的运行状态与运行结果。整个光纤通信系统的架构如下图示: 完整的光纤通信系统

音频信号的光纤传输+实验报告

音频信号光纤传输实验 摘要: 实验通过对LED-传输光纤组件的电光特性的测量,得出了在合适的偏置电流下,其具有线性。验证了硅光电二极管可以把传输光纤出射端输出的信号转变成与之成正比的光电流。 Abstracf The experimental transmission through the LED-fiber components of the electro-optical properties Measuring obtained at the right bias current, with its linear. Verification of the silicon photodiode fiber can transmit a radio-signal output into with the current proportional to the light. 一.前言: 1.实验的历史地位: 光纤自20世纪60年代问世以来,其在远距离信息传输方面的应用得到了突飞猛进的发展,以光纤作为信息传输介质的“光纤通信”技术,是世界新技术革命的重要标志,也是未来信息社会各种信息网的主要传输工具。随着光纤通信技术的发展,一个以微电子技术,激光技术,计算机技术呵现代通信技术为基础的超高速宽带信息网将使远程教育.远程医疗.电子商务.智能居住小区越来越普及.光纤通信以其诸多优点将成为现代通信的主流,未来信息社会的一项基础技术和主要手段. 2.实验目的 了解音频信号光纤传输系统的结构 熟悉半导体电光/光电器件的基本性能及主要特性的测试方法 了解音频信号光纤传输系统的调试技能 3.待解决的几个主要问题: 声音是一种低频信号,你可能有这样的经历,当你说话的声音较低时,只有你旁边的人可以听见你的声音,要让声音传的远些你必须大声喊。这说明了低频信号的传播受周围环境的影响很大,传播的范围有限。为了解决上述的问题,在通信技术中一般是使用一个高频信号作为载波利用被传输的信号(如音频信号)对载波进行调制。当信号到达传输地点时需要对信号进行解调,也就是将高频载波滤掉,最终得到被传输的音频信号。随着通信容量的增加和信息传递速度的加快,上述传播过程的缺陷也暴露了出来,主要为以下几点: 1信号间的干扰; 2 对接手端和发射端阻抗匹配要求较高; 3 传播速度受到一定的限制。 专家们一致认为解决上述问题的关键是利用光作为信号的载体,也就是所说的光纤通信。本实验的目的就是去了解光纤传输系统的结构,以及半导体电光/光电器件的基本性能及主要特性的测试方法。 二. 实验介绍 1.实验原理

数字信号光纤通信技术实验报告

数字信号光纤通信技术实验的报告 预习要求 通过预习应理解以下几个问题: 1.数字信号光纤传输系统的基本结构及工作过程; 2.衡量数字通信系统有那两个指标?; 3.数字通信系统中误码是怎样产生的?; 4.为什么高速传输系统总是与宽带信道对应?; 5.引起光纤中码元加宽有那些因素?; 6.本实验系统数字信号光-电/电-光转换电路的工作原理; 7.为什么在数字信号通信系统中要对被传的数据进行编码和解码?; 8.时钟提取电路的工作原理。 目的要求 1.了解数字信号光纤通信技术的基本原理 2.掌握数字信号光纤通信技术实验系统的检测及调试技术 实验原理 一、数字信号光纤通信的基本原理 数字信号光纤通信的基本原理如图8-2-1示(图中仅画出一个方向的信道)。工作的基本过程如下:语音信号经模/数转换成8位二进制数码送至信号发送电路,加上起始位(低电平)和终止位(高电平)后,在发时钟TxC的作用下以串行方式从数据发送电路输出。此时输出的数码称为数据码,其码元结构是随机的。为了克服这些随机数据码出现长0或长1码元时,使接收端数字信号的时钟信息下降给时钟提取带来的困难,在对数据码进行电/光转换之前还需按一定规则进行编码,使传送至接收端的数字信号中的长1或长0码元个数在规定数目内。由编码电路输出的信号称为线路码信号。线路码数字信号在接收端经过光/电转换后形成的数字电信号一方面送到解码电路进行解码,与此同时也被送至一个高Q值的RLC谐振选频电路进行时钟提取. RLC谐振选频电路的谐振频率设计在线路码的时钟频率处。由时钟提取电路输出的时钟信号作为收时钟RxC,其作用有两个:1.为解码电路对接收端的线路码进行解码时提供时钟信号;2.为数字信号接收电路对由解码电路输出的再生数据码进行码值判别时提供时钟信号。接收端收到的最终数字信号,经过数/模转换恢复成原来的语音信号。 图8-2-1 数字信号光纤通信系统的结构框图 在单极性不归零码的数字信号表示中,用高电平表示1码元,低电平表示0码元。码元持续时间(亦称码元宽度)与发时钟TxC的周期相同。为了增大通信系统的传输容量,就要求提高收、发时钟的频率。发时钟频率愈高码元宽度愈窄。 由于光纤信道的带宽有限,数字信号经过光纤信道传输到接收端后,其码元宽度要加宽。加宽程度由光纤信道的频率特性和传输距离决定。单模光纤频带宽,多模光纤频带窄。因为按光波导理论[1]分析:光纤是一种圆柱形介质波导,光在其中传播时实际上是一群满足麦克斯韦方程和纤芯—包层界面处边界条件的电磁波,每个这样的电磁波称为一个模式。光纤中允许存在的模式的数量与纤芯半径和数字孔径有关。纤芯半径和数字孔径愈大,光纤中参与光信号传输的模式也愈多,这种光纤称为多模光纤(芯径50或62.5μm)。多模光纤中每个模式沿光纤轴线方向的传播速度都不相同。因此,在光纤信道的输入端同时激励起多个模式时,每个模式携带的光功率到达光纤信道终点的时间也不一样,从而引起了数字信号码元的加宽。码元加

音频分析仪agilent_hp_8903b

HP 8903B Audio Analyzer HP 8903E Distortion Analyzer 20 Hz to 100 kHz The Versatile Choice for Technical Specifications Audio Analysis

2 provides a scaled output of the input signal. In SINAD and distortion modes, the fundamental is removed. frequency response and swept distortion automatically . control detector response: rms,average (rms calibrated), and quasi-peak responses are available . the user to lock the notch filter at any measured input frequency . This is useful when measuring very noisy signals in distortion and SINAD modes.SINAD mode provides easier reading when measuring noisy .signals. rms or average (rms calibrated)detector response . Quasi-peak detector response available via HP-IB programming.HP 8903B Audio Analyzer Special function 47 switches source OUTPUT IMPEDANCE- (50 or 600 ohms) to 0.6 mV to 6 V open circuit,20 Hz to 100 kHz.HP 8903E Distortion Analyzer RA TIO key permits display in dB or percent relative to an entered LOG/LIN key allows results to be displayed in linear or log units.Low-noise input amplifier provides allows testing of bridged amplifiers and other devices with floating outputs. Maximum input voltage is a full 300 volts,differential or applied to either the high or low input RA TIO key permits display in dB or percent relative to an entered LOG/LIN key allows results to be displayed in linear or log units. Log mode Low-noise input amplifier provides superior analyzer maximum input voltage of 300 volts differentially or applied from the high input to ground, and 30 volts applied from the low input to ground. measurement flexibility to the HP 8903B and HP 8903E. Both instruments have two slots which can be filled with any combination of six optional filters. HP-IB Not just IEEE-488, but the hardware, documentation and support that delivers the shortest path to a measurement system. measurement flexibility to the HP 8903B and HP 8903E. Both instruments have two slots which can be filled with any combination of six optional filters.

光纤音频信号传输技术实验

TKGT-1型音信号传输仪器 评 价 报 告 学院:工业制造学院 专业:测控技术与仪器 班级:2010级2班 报告人:邱兆芳 学号:201010114201

光纤音频信号传输技术实验 1.引言 随着Internet网络时代的到来,人们对数据通讯的带宽、速度的要求越来越高,光纤通讯具有频带宽、高速、不受电磁干扰影响等一系列优点,正在得到不断发展和应用。通过使用THKGT-1型光纤音频信号传输实验仪做音频信号光纤传输实验,让学生熟悉了解信号光纤传输的基本原理。同时学生可以了解光纤传输系统的基本结构及各部件选配原则,初步认识光发送器件LED的电光特性及使用方法,光检测器件光电二极管的光电特性及使用方法,基本的信号调制与解调方法,完成光纤通讯原理基本实验。 光纤即为光导纤维的简称。光纤通信是以光波为载波,以光导纤维为传输媒质的一种通信方式,由发送电端机将待传送的模拟信号转换成数字信号,再由发送光端机将电信号转换成相应的光信号,并将它送入光纤中传输至接收端。接收光端机将传来的光信号转换成相应的电信号并进行放大,然后通过接收电端机恢复成原来的模拟信号。 光纤广泛应用于各种工业控制、分布式数据采集等场合,特别适合电力系统自动化、交通控制等部门。 通过本实验的学习,在了解光导纤维的基本结构和光在其中传播规律的基础上,要建立起光导纤维的数值孔径、光纤色散、光纤损耗、集光本领等基本概念。 [实验目的] 1.学习音频信号光纤传输系统的基本结构及各部件选配原则。 2.熟悉光纤传输系统中电光/光电转换器件的基本性能。 3.训练如何在音频光纤传输系统中获得较好信号传输质量。 [实验仪器] THKGT-1型光纤音频信号传输实验仪,函数信号发生器,双踪示波器。 [实验原理] 光纤传输系统如图1所示,一般由三部分组成:光信号发送端;用于传送光信号的光纤;光信号接收端。光信号发送端的功能是将待传输的电信号经电光转换器件转换为光信号,目前,发送端电光转换器件一般采用发光二极管或半导体激光管。发光二极管的输出光功率较小,信号调制速率相对低,但价格便宜,其输出光功率与驱动电流在一定范围内基本上呈线性关系,比较适宜于短距离、低速、模拟信号的传输;激光二极管输出功率大,信号调制速率高,但价格较高,适宜于远距离、高速、数字信号的传输。光纤的功能是将发送端光信号以尽可能小的衰减和失真传送到光信号接收端,目前光纤一般采用在近红外波段0.84μm、1.31μm、1.55μm有良好透过率的多模或单模石英光纤。光信号接收端的功能是将光信号经光电转换器件还原为相应的电信号,光电转换器件一般采用半导体光电二极管或雪崩光电二极管。组成光纤传输系统光源的发光波长必须与传输光纤呈现低损耗窗口的波段、光电检测器件的峰值响应波段匹配。本实验发送端电光转换器件采用中心发光波长为0.84μm的高亮度近红外半导体发光二极管,传输光纤采用多模石英光纤,接收端光电转换器件采用峰值响应波长为0.8~0.9μm的硅光电二极管。下面对各部分作进一步介绍。

音频性能测试指引

音频性能测试用例 一、仪器设备: VA-2230音频分析仪;负载(4欧或8欧);32欧耳机负载 二、准备工作: 2.1、对即将测试的机器升级最新软件,并确认喇叭和耳机均可以正常输出。 2.2、将测试用音频文件拷贝到机器中, 2.3、接线:左声道的两个红线分别接喇叭(或耳机)的左声道输出,其余两根黑线接 主板上的地。右声道的两个红线分别接喇叭(或耳机)的右声道输出的,其余两 根黑线接主板上的地。以上测试需保证喇叭和耳机均已连接标准的负载。 三、初始设置: 3.1、打开 VA-2230 音频分析仪,待仪器预热 15 分钟后进行以下测试 3.2、按 VA-2230 音频分析仪的←↑按钮或→↓按钮,选中 Input 将输入耦合阻抗设定为: 10KΩ, 耦合方式设定为: balance(即平衡模式)如下图: 注意:数字功放选择balance(即平衡模式),模拟功放选择unbalance(即非平衡模式)。 3.3、按 VA-2230 音频分析仪的←↑按钮或→↓按钮, 选中 SP,并将其设定为 Slow, 将 SS 设定为 1.5s; 四、各测试项测试方法及步骤: 3.1、最大输出功率 A、按 VA-2230 音频分析仪的←↑按钮或→↓按钮,将 HPF,PSO 设置为 OFF,LPF 设置为20KHz(模拟功放LPF要设置为OFF)。

B、播放机器中的《08-1KHz-0dB》音频文件,并将音量调到最大。按音频分析仪(中部上端)的AC-V按钮,音频分析仪屏幕左上方若出现ACV,表明已经选中,调节按钮选中UNIT 项,按钮F3 切换为V。此时屏幕上显示的为左右声道输出的有效值。最大输出功率必须满足总谐波失真的指标,如果总谐波失真超标,需将音量调小重新确 认最大输出幅值。总谐波失真测试方法见3.4。 注:屏幕左上方会显示Freq=1000Hz,或者频率很接近1000Hz。如果此处未显示出数字,说明设置有误。 C、输出功率=输出幅值 /负载阻抗。 D、标准:不要超过喇叭或耳机的额定功率

精编音频分析仪使用简易图解

精编音频分析仪使用简 易图解 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-9018)

A P X测试简易手册 信号路径的设置 蓝牙播放器测试 1.在信号源路径中选择bluetooth. 2.点击settings 进行配对连接。 3.选择 A2DP Source HSP 4.点击Scan for devices 搜索被测产品 5.点击 pair 进行配对 6.连接 A2DP 协议 7.开始测试相关测试项目 蓝牙主机 (Audio Gateway)的测试 1.Input Configuraton 路径设置为 bluetooth 2.点击settings 进行配对连接。 3.选择 A2DP link ( Hand-free 或者headset) 4.点击Scan for devices 搜索被测产品

5.点击 pair 进行配对 6.连接 A2DP 协议 7.开始测试相关测试项目 功放测试 1.根据实际接线,设置信号源的输出信号方式 2.根据实际接线,设置分析仪的输入信号方式 DVD、CD的测试 1.信号源设为none 2.分析仪接口设置与实际接线方式一致。 选择测试项目根据测试需求增加项目 电平测试 1.设置信号源输出波形 2.设置信号源大小 3.设置信号源频率

4.打开信号源开关 5.读取测量值 失真测试1设置信号源输出波形, 2设置信号源大小 3设置信号源频率 4打开信号源开关 5按需求设置滤波器 6读取测量值 信噪比测试1设置信号源输出波形 2设置信号源大小 3设置信号源频率 4打开信号源开关 5按需求设置滤波器

音频信号光纤传输技术

音频信号光纤传输技术实验 实验目的 1.熟悉半导体电光/光电器件的基本性能及主要特性的测试方法 2.了解音频信号光纤传输系统的结构及选配各主要部件的原则 3.学习分析集成运放电路的基本方法 4.训练音频信号光纤传输系统的调试技术 实验仪器 YOF—B型音频信号光纤传输技术实验仪(由四川大学物理系研制); 音频信号发生器; 示波器; 数字万用表 实验原理 一.系统的组成 图(1)给出了一个音频信号直接光强调制光纤传输系统的结构原理图,它主要包括由LED及其调制、驱动电 路组成的光信号发送器、传输光纤和由光电转换、I—V变换及功放电路组成的光信号接收器三个部分。光源器件L ED的发光中心波长必须在传输光纤呈现低损耗的0.85μm、1.3μm或1.5μm附近,本实验采用中心波长0.85μm附近的GaAs半导体发光二极管作光源、峰值响应波长为0.8~0.9μm的硅光二极管(SPD)作光电检测元件。为了避免或减少谐波失真,要求整个传输系统的频带宽度能够覆盖被传信号的频谱范围,对于语音信号,其频谱在300~3400Hz的范围内。由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。 此电路的工作原理如下: 音频信号经IC1放大电路传到LED调制电路。W2调节发光管LED工作(偏置)电流,音频电流调制此工作电流,并经LED转换成音频调制的光信号,经光纤传至光电二极管SPD 再复原成原始音频电流信号,经由IC2构成的I—V变换电路转换成电压信号,最后通过功率放大电路输出声音功率信号,推动扬声器发出声音。这样就完成了音频信号通过光纤的传输过程。 二、半导体发光二极管的驱动、调制电路

四路视频和音频信号的光纤传输系统设计

第32卷 第1期华侨大学学报(自然科学版)Vol.32 No.1 2011年1月Journal of Huaqiao University(Natural Science)Jan.2011   文章编号: 1000-5013(2011)01-0035-04 四路视频和音频信号的光纤传输系统设计 林琳,王加贤,凌朝东 (华侨大学信息科学与工程学院,福建泉州362021) 摘要: 利用可编程式逻辑器件、并串转换器和串并转换器及光收发器,设计一个专用的数字光纤传输系统.将多路模拟基带信号的视频和音频进行数字化,形成高速数字流;然后,在现场可编程门阵列(FPGA)上对高速数字流进行时分复用,并通过并串转换器转换为串行数字流,送到光发射器;最后,通过光发射器发射耦合进入光纤传输.接收端则进行相反的操作,还原出原来的模拟基带信号.实验证明,系统工作性能稳定可靠,实时传输效果好. 关键词: 光纤传输;模/数转换;数/模转换;时分复用;视频信号;音频信号 中图分类号: TN 919.6+4;TN 818文献标识码: A 随着数字化技术的飞速发展,传统的模拟光传输技术已经不能满足人们对传输质量和传输容量的要求.传统的视频、音频信号是利用电缆传输的,传输抗干扰能力差,在传输和存储过程中会受到各种干扰和引入各种噪声,并且经多次传输后,会不断积累噪声[1].相比较于传统的电缆传输,光纤传输数字信号具有损耗极低、中继距离长、频带极宽、传输容量很大和抗电磁干扰性能好等优点.本文将现场可编程门阵列(Field-Programmable Gate Array,FPGA)、数字技术和光纤传输技术相结合,研制一种基于光纤传输的无压缩四路数字视音频传输系统. 1 设计原理 数字光纤传输系统是基于时分复用技术,在一根光纤中实现四路视频、四路音频传输,其框图如图1所示. 图1 数字光纤传输系统框图 Fig.1 Diagram of digital optical fiber transmit system 在发送端,发送机将摄像机采集到的模拟视频信号经过视频放大、钳位、滤波、模/数(A/D)转换成数字信号;同时,将麦克风采集到的音频信号经过放大、滤波、模/数转换为数字信号.在采样时钟的控  收稿日期: 2010-05-13  通信作者: 王加贤(1955-),男,教授,主要从事激光技术与固体激光器件的研究.E-mail:wangjx@hqu.edu.cn.  基金项目: 福建省厦门市科技计划项目(3502Z20080010,3502Z20093032)

音频信号光纤传输技术实验

音频信号光纤传输技术实验上课请带手机和耳机 [目的要求] 1.熟悉半导体电光/光电器件的基本性能及主要特性的测试方法2.了解音频信号光纤传输系统的结构及选配各主要部件的原则 3. 掌握半导体电光/光电器件在模拟信号光纤传输系统中的应用技术4.训练音频信号光纤传输系统的调试技术 [仪器设备] 1.OFE—A型光纤传输及光电技术综合实验仪一套;

[实验原理] 一、半导体发光二极管LED结构、工作原理、特性及驱动、调制电路 LED把电信号转为光信号。光纤通讯系统中对光源器件在发光波长、电光效率、工作寿命、光谱宽度和调制性能等许多方面均有特殊要求。所以不是随便哪种光源器件都能胜任光纤通讯任务,目前在以上各个方面都能较好满足要求的光源器件主要有半导体发光二极管(LED)和半导体激光二极管(LD),本实验采用LED作光源器件.光纤传输系统中常用的半导体发光二极管是一个如图(1)所示的N—p—P三层结构的半导体 器件,中间层通常是由GaAs(砷化镓)p型半导体材料组成,称有源S层,其带隙宽度较窄,两侧分别由GaAlAs的N型和P型半导体材料组成,与有源层相比,它们都具有较宽的带隙. 具有不同带隙宽度的两种半导体单晶之间的结构称为异质结. 在图(3)中,有源层与左侧的N层之间形成的是p—N异质结,而与右侧P层之间形成的是p—P异质结,故这种结构又称N—p—P双异质结构。当给这种结构加上正向偏压时,就能使N层向有源层注入导电电子,这些导电电子一旦进入有源层后,因受到右边p—P异质结的阻挡作用不能再进入右侧的P层,它们只能被限制在有源层与空穴符合,导电电子在有源层与空穴复合的过程中,其中有不少电子要释放出能量满足以下关系的光子: hυ=E 1—E 2 =E g 其中h是普郎克常数,υ是光波的频率,E 1是有源层内导电电子的能量,E 2 是 导电电子与空穴复合后处于价健束缚状态时的能量。 本实验采用的半导体发光二极管的正向伏安特性如图3所示,与普通的二极管相比,在正向电压大于1V以后,才开始导通,在正常使用情况下,正向压降为

相关文档
相关文档 最新文档