文档库 最新最全的文档下载
当前位置:文档库 › 虢镇牵引变电所1_KX保护频繁跳闸问题的探讨

虢镇牵引变电所1_KX保护频繁跳闸问题的探讨

虢镇牵引变电所1_KX保护频繁跳闸问题的探讨
虢镇牵引变电所1_KX保护频繁跳闸问题的探讨

变电站继电保护培训

变电站、继电保护基础知识 培训资料 二零一二二月

第一章变电站基础知识 1. 电力系统概述: 1.1 电力系统定义: 电力系统是电能生产、变换、输送、分配、消费的各种设备按照一定的技术和经济要求有机组成的一个统一系统的总称。简言之,电力系统是由发电机、变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。 1.2 电力系统的构成 动力系统是由锅炉(反应堆)、汽轮机(水轮机)、发电机等生产电能的设备,变压器、输电线路等变换、输送、分配电能的设备,电动机、电热电炉、家用电器、照明等各种消耗电能的设备以及测量、保护、控制乃至能量管理系统所组成的统一整体。 煤

1.3电力系统的电压等级 1.3.1 额定电压等级 我国国家标准规定的部分标准电压(额定电压)如下表: T +5% -5% 通常取线路始末电压的算术平均值作为用电设备以及电力网的额定电压。 由于用电设备的允许电压偏移为±5%,而延线路的电压降落一般为10%,这就要求线路始端电压为额定值的105%,以保证末端电压不低于95%。发电机往往接于线路始端,因此发电机的额定电压为线路的105%。通常,6.3KV 多用于50MW 及以下的发电机;10.5KV

用于25~100MW的发电机;13.8KV用于125MW的汽轮发电机和72.5MW 的水轮发电机;15.75KV用于200MW的汽轮发电机和225MW的水轮发电机;18KV用于300MW的汽轮发电机。 变压器的一次额定电压:升压变压器一般与发电机直接相连,故与发电机相同,见表中有“*”降压变压器相当于用电设备,故与线路相同。 变压器的二次额定电压:考虑到变压器内部的电压降落一般为5%,故比线路高5%~10%。只有漏抗很小的、二次测线路较短和电压特别高的变压器,采用5%。 习惯上把1KV以上的电气设备称为高压设备反之为低压设备。 1.3.2 电压等级的使用范围: 500、330、220KV多半用于大电力系统的主干线;110KV既用于中小电力系统的主干线,也用于大电力系统的二次网络;35、10KV既用于大城市或大工业企业内部网络,也广泛用于农村网络。大功率电动机用3、6、10KV,小功率电动机用220、380V;照明用220、380V。 1.4电力系统中性点的运行方式 1.4.1 中性点非直接接地系统 小电流接地系统,也称小接地短路电流系统。 供电可靠性高,但对绝缘水平要求高。电压等级较高的系统,绝缘费用在设备总价格中占相当大比重,故多用于60KV级以下的系统。

(完整word版)漏电跳闸原因分析

0前言 漏电保护器在人身安全、设备保护和防止电气火灾等方面起着重要的作用。由于它使用安全方便得到广泛应用,而使用中也存在这样那样的问题、笔者从使用者的角度介绍它的相关知识和注意事项故障处理。 漏电保护器又叫漏电开关、它有电磁式、电子式等几种: 1漏电保护器的工作原理 1.1电磁式漏电保护器的工作原理 主要由高导磁材料(坡莫合金)制造的零序电流互感器、漏电脱扣器和常有过载及短路保护的断路器组成、全部另件安装在一个塑料外壳中。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值。零序电流互感器的二次绕组就输出一个信号,并通过漏电脱扣器使断路器在0.1秒内切断电源,从而起到漏电和触电保护作用。当被保护的线路或电动机发生过载或短路时,断路器中的电磁式液压延时脱扣器中热元件上的双金属片发热动作、使开关分闸,切断电源。 1.2电子式漏电保护器的工作原理 主要由零序电流互感器,集成电路放大器,漏电脱扣器及常有过载和短路保护的断路器组成。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值,零序电流互感器的二次绕组就输出一个信号,经过集成电路放大器放大后,使漏电脱扣器动作驱动断路器脱扣,从而切断电源起到漏电和触电保护作用。如果使用兼有过压保护是利用分压原理取得过电压信号,使可控硅导通,切断电源。 2漏电断路器的选用原则 2.1根据使用目的和电气设备所在的场所来选择 漏电断路器用于防止人身触电,应根据直接接触和间接接触两种触电防护的不同要求来选择。 2.1.1直接接触触电的防护 因直接接触触电的危害比较大,引起的后果严重,所以要选用灵敏度较高的漏电断路器,对电动工具、移动式电气设备和临时线路,应在回路中安装动作电流为30 mvA,动作时间在0.1 s之内的漏电断路器。对家用电器较多的居民住宅,最好安装在进户电能表后。 如果一旦触电容易引起二次伤害(比如高空作业),应在回路中安装动作电流为15 mA,动作时间在0.1 s之内的漏电断路器。对于医院中的电气医疗设备,应安装动作电流为6 mA,动作时间在0.1 s之内的漏电断路器。

地铁直流牵引变电所的保护原理

浅析地铁直流牵引变电所的保护原理 2009年04月04日星期六 03:55 0 引言 在我国,地铁是城市公共交通的重点发展方向,设备国产化又是发展的主要原则。在地铁直流供电继电保护领域内,国产保护设备还处于起步阶段,目前,国内主要城市的地铁直流保护设备均来自国外,例如广州地铁二号线选用的是德国Siemens 公司的DPU96,武汉轻轨选用的是瑞士sechron公司的SEPCOS。通过对部分国外产品的研究,笔者认为,直流保护设备的原理并不是十分复杂,功能实现在理论上也没有任何障碍,希望通过本文的抛砖引玉,在将来的不久,能够看到国产的直流保护设备在我国甚至国际市场成为主流。 1 一次系统简介 图1显示了一个典型的牵引变电所的电气主接线图,该所将主变电所来的交流高电压(典型值:33kV)经整流机组(包括变压器及整流器)降压、整流为直流1500V,再经直流开关柜向接触网供电。我国上海和广州地铁的直流牵引供电系统均是如此,北京地铁采用的是第三轨受流器(上海和广州地铁则是架空接触网),其馈电电压为750V。由于750V馈电电压供电距离短、杂散电流大,现在多采用1500V。图2显示的是采用双边供电的上行接触网的分区段示意图(下行亦相同),一个供电区由相邻的2个牵引变电所同时供电,这种双边供电的方式提高了供电的可靠性,同时分区段的方式使故障被隔离在某个区段以内,而不致影响其它供电区段,因而被广

泛采用。本文中所讨论的保护原理均基于1500V架空接触网双边供电方式。 图1 典型牵引变电所电气主接线参考图 ?? 图2 双边供电接触网分区段示意图 图3 短路电流与列车运行电流示意图 2牵引变电所内直流保护的配置 牵引变电所内的直流保护系统必须在系统发生故障时快速、准确地切除故障,同时又要避免列车正常运行时一些电气参数的变化引起保护装置误跳闸。后备保护的存在增加了故障切除的可靠性,同时也增加了与主保护配合的难度,所以保护的配置也不宜过多。不同的牵引变电所其电气特性不同,运行要求不同,所以保护装置的整定值不同,甚至保护的配置亦不相同。通常,牵引变电所内的直流保护安装于开关柜中,其可能的配置如下: A.馈线柜(图1中对应211,212,213,214开关柜): a.大电流脱扣保护(over-current protection); b.电流上升率保护(di/dt protection); c.定时限过流保护(definite-time over-current protection); d.低电压保护(under-voltage protection);

牵引变电所安全工作规程及牵引变电所运行检修规程实施细则

牵引变电所安全工作规程及牵引变电所运行检修规程实施细则 一、总则 二、规范管理分级负责 三、运行管理 四、检修作业制度 五、修制 一、总则 牵引变电所(包括开闭所、分区所、AT所、开关站、分相所,分级投切所除特别指出外,以下皆同)是电气化铁路供电的重要组成部分,与行车密切相关。为搞好牵引变电所的运行和检修工作,确保人身、行车和设备安全,根据《牵引变电所安全工作规程》、《牵引变电所运行检修规程》(铁运〔1999 〕101 号)制订本实施细则。 2012年5月17日重新修订发布《牵引变电所安全工作规程和牵引变电所运行检修规程实施细则》(技术规章编号:CDG/GD106-2012)。 第1 条牵引供电各单位(包括牵引供电设备的管理、维修和施工单位,下同)要切实贯彻本细则的规定。鉴于各条线、各地区牵引变电所设备和运行条件存在差异,各供电段根据本细则要求可作相应补充规定。 第2 条本细则适用于成都铁路局管内牵引变电所的运行和检修,由铁路局供电处负责解释。第3 条本细则自发布之日起执行。 二、规范管理分级负责 第一节统一领导和分级管理第4 条电气设备运行和检修工作实行规范管理、分级负责的原则,充分发挥各级组织的作用。各级管理部门应充分利用计算机网络资源和先进的管理理念,不断完善检测手段,全面提高牵引供电设备的运行检修和技术管理水平。 第5 条铁道部:统一制定全路牵引变电所运行和检修工作有关规章及质量标准;调查研究,检查指导,总结和推广先进经验;按规定对铁路局进行监督和管理,为铁路局提供服务。 第6 条铁路局:贯彻执行铁道部有关规章、标准和命令,组织制定本局实施细则、办法;领导全局的牵引变电所运营管理工作,制定本局管内各供电段的管理和职责范围;审批牵引变电所大修、科研、更新、改造及局管的基建计划,组织验收和鉴定;并报部核备。 第7 条供电段:贯彻执行铁道部、路局有关规章、标准、命令、实施细则、办法和工艺,组织制定本段的实施细则、办法和工艺;负责本段的牵引变电所运营管理工作,制定本段科室、车间的管理和职责范围;提报牵引变电所大修、科研、更新、改造及局管的基建计划,参加验收和鉴定;并报局核备。 第8 条牵引变电所的增设、迁移、拆除由铁道部审批,封闭和启封由铁路局审批并报部备案。 第9 条因牵引变电所的设备改造、变化而降低列车牵引重量、速度或引起邻局牵引供电设备运行方式变更时,须经铁道部审批。 第10 条牵引变电所属于下列情况的技术改造,须经铁路局审批,并报部核备。 1.改变主变压器进线电源和牵引变电所主接线时。

变电所继电保护

目录工程概况1 第一章35KV变电所继电保护2 1.1继电保护的重要性2 1.2继电保护的基本原理2 1.3继电保护装置的任务2 1.4对继电保护的基本要求3 第二章35KV变电所继电保护设计3 2.1三段式电流保护原理3 2.2线路的保护整定计算4 第三章继电保护装置的选择7 3.1电流互感器的确定7 3.2电压互感器的选定7 3.3中间继电器8 3.4电流继电器8 3.5时间继电器8 3.6信号继电器9 3.7熔断器9 参考文献10 致谢词11

工程概况 目前国家正致力于打造强力的电网建设力度,以实现资源优化配置,使全国的电力供应得到更好的发展。我国是产电地区主要是在西部,而西部并不发达,所以要把电力送到东部地区,使全国经济能更好的发展。为了保证电力的输送更加的可靠,就要求一次系统的坚强、科学与合理,此外对一次系统的操控需要二次系统提出了更高的要求,这就促使了二次系统的技术发展与进步。 变电所二次系统主要是由继电保护和微机监控(远动技术)所形成,发电厂与变电所自动化技术获得了显著的发展与进步。变电所综合自动化技术将继电保护、测量系统、控制系统、调节系统、信号系统和远动系统等多个独立的功能系统配成的综合系统。对于本设计中,主要是针对35KV变电所继电保护的结构、运行的设计。 主变压器型号的选定为HKSSPZ-25000-35/10,额定电流为0.412/38.49KA,所用变压器额定电压为35/0.23KV(50-100KVA)。 本设计采用两台35KV的变压器并联供电方式,总共引出线两组线进入变电室内。通过电流、电压互感器再次取电源给其相应的电气元件回路。 继电保护的基本要求是可靠性、选择性、快速性、灵敏性,即通常所说的“四性”这些要求之间,有的相辅相成、有的相互制约,需要对不同的使用条件分别进行协调。 第一章35KV变电所继电保护 继电器是一种反应与传递信息的自动电气元件,是电力系统保护与生产自动化的自动、远动、遥控测和遥讯等自动装置的重要组成部分。 变电所继电保护能够在变电站运行过程中发生故障(三相短路、两相短路、单相接地等)和出现不正常现象时(过负荷、过电压、低电压、低周波、瓦斯保护、超温、控制与测量回路断线等),迅速有选择性发出跳闸命令将故障切除或发出报警,从而减少故障造成的停电范围和电气设备的损坏程度,保证电力系统稳定运行。 1.1 继电保护的重要性 电力规程规定:任何电力设备(线路、母线、变压器等)都不允许在无继电保护的状态下运行。所有运行设备都必须有两套交、直流输入和输出回路相互独立,并分别控制不同断路器的继电保护装置进行保护。当任一套继电保护装置或任一组断路器拒绝动作时,能有另一套继电保护装置操作另一组断路器切除故障。在所有情况下,要求这两套继电保护装置和断路器所取的直流电源都有不同的熔断器供电。可见,虽然继电保护不是电力系统的一次设备,但在保证一次设备安全运行方面担负着不可或缺的重要角色。 1.2 继电保护的基本原理 电力系统发生故障时,会引起电流的增加和电压的降低,以及电流、电压间相位角的变化。因此,利用故障时参数与正常运行时的差别,就可以构成各种不同原理和类型的继电保护。 变电所继电保护是根据变配电站运行过程中发生故障时,在整定时间内,有选择的发出跳闸命令或报警信号。 可靠系数为一个经验数据,计算继电器保护动作值时,要将计算结果再乘以可靠系数,

变频器频繁跳闸的解决方法

变频器频繁跳闸的解决 方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

变频器跳闸的解决方案瑞康钛业公司: 经多次到贵公司生产现场实地了解及对设备的检查情况,贵公司由于生产调速的需要,在公司各地使用变频器,其中一些变频器负荷较轻,一些负荷较重。贵公司经常发生锅炉房和煤气发生站变频器跳闸而其他变频器几乎不跳闸的情况。而贵公司这两处变频器设备又是非常关键的设备,该处设备的跳闸事故给公司的正常生产带来严重影响。 变频器跳闸时的情况:经检查安川变频器跳闸记录为欠电压跳闸;询问西门子变频器跳闸时的情况,据操作工反应显示为F003(欠电压)故障。同时据贵公司技术人员反应,当变频器跳闸时,伴随着明显的电压波动情况。 一、锅炉房和煤气发生站变频器频繁跳闸时的可能原因检查及分析: 1设备本身正常;经过对这两处变频器控制的电机检查、控制线路、按钮、电源线路的走向和绝缘检查,均正常,不存在偶然性故障的可能情况。 2变频器参数设置正常;参数为对正常风机常规设置,不存在有明显数据不属实的情况。 对变频器、电机、线路均进行了检测,设备均正常;因而排除了设备方面可能存在的问题引起变频器跳闸,在结合变频器跳闸时了解的情况综合判断,锅炉房和煤气发生站变频器跳闸的原因为电源电压波动引起的。因此对贵公司电源供电及配电情况进行了解和检查。 经检查,锅炉房和煤气发生站变频器电源均由锅炉房380V配电室供给,而该配电室电源由公司10KV高配室经变压器变为380后供给。公司10KV高配室电源由附近的110KV变电所变为10KV后供给;变电所10KV侧有多路出线,分别供给其他公

牵引变电所事故案例

牵引供电事故案例分析与预防

一、人身伤亡事故 人身伤亡事故分类 人身伤亡事故可以分为三种类型 ?人身触电伤亡事故 ?人身高坠伤亡事故 ?人身其他伤亡事故

人身触电事故 ?人身触电事故居于牵引供电各类人身事故首位。 牵引供电工作人员在设备运行、检修和事故处理中,要与停电或带电的高压设备打交道,稍有不慎,就会造成人身触电(停电作业时触及有电部位,带电作业时触及接地设备或与带电作业非等位的其他设备)伤害。人身触电事故还可能发生群体伤害,对牵引供电工作人员生命威胁极大。 ?如何防止人身触电事故的发生,做到杜绝漏洞,有效预防,特别是发生事故后,及时、正确地对触电者进行急救,将事故压缩到最小程度。

人身触电事故的原因 (1)误登有电设备。 变电所非全所停电作业或全所停电作业,但110kV母线 或110kV进线隔离开关有电,或接触网分相、分段、四跨及复线区段在车站之一线停电作业时,因工作票存在漏洞,或监护不到位等原因导致作业人员由无电区进入有电区。 (2)停电不彻底,作业区内仍有带电设备。 变电所两个系统或几个设备、接触网分相、四跨两端重合停电或接触网垂直停电,先停了部分设备或之一供电臂,未达到重合停电或垂直停电或两个系统或几个设备同时停电作业条件而开始进行的停电作业,又省略了验电接地程序或作业与验电接地同步进行导致人身触电伤亡事故。

人身触电事故的原因 (3)误送电、误停电。 误送电、误停电一般容易发生在分局电调端。 ①送错供电臂。应送甲供电臂而由于调度人员责任心不 强,违章操作或其他值班调度员代为消令,写错消令栏位置而误送为乙供电臂。误送电对作业组群体安全威胁极大。在非远动变电所、开闭所、分区所或虽远动但因故打向当地控制位后,值班员违章操作也容易发生误送电。 ②误或接触网操作人拉错四跨、隔离开关将电停错。电调命令发布正确,上述三所值班人员或接触网操作人由于责任心不强,也同样存在着误停问题。

变电站继电保护

景新公司变电站继电保护知识手册 编写人:唐俊 编写日期:2009年2月5号

目录 1.主变差动保护-----------------------------------(4) 2.主变气体保护-----------------------------------(5) 3.主变过流保护-----------------------------------(6) 4.中性点间隙接地保护------------------------------(6) 5.零序保护--------------------------------------(7) 6.母线差动保护-----------------------------------(9) 7.距离保护-------------------------------------(10) 8.备用电源自投----------------------------------(11) 9.重合闸---------------------------------------(13) 10.母线充电保护-------------------------------(15) 11.故障录波----------------------------------(15) 12.电流闭锁失压保护---------------------------(17) 13.低周减载----------------------------------(17) 14.过电流保护---------------------------------(17) 15.阶段式过电流保护---------------------------(18) 16.复合电压闭锁过电流保护----------------------(18) 17.过电压保护---------------------------------(19) 18.速断过流保护-------------------------------(19) 19.过负荷保护--------------------------------(19) 20.速断保护----------------------------------(19) 21.电流速断保护-------------------------------(20)

变电站常见故障分析及处理方法

变电站常见故障分析及处理方法 变电所常见故障的分析及处理方法一、仪用互感器的故障处理当互感器及其二次回路存在故障时,表针指示将不准确,值班员容易发生误判断甚至误操作,因而要及时处理。 1、电压互感器的故障处理。电压互感器常见的故障现象如下:(1)一次侧或二次侧的保险连续熔断两次。(2)冒烟、发出焦臭味。(3)内部有放电声,引线与外壳之间有火花放电。(4)外壳严重漏油。发现以上现象时,应立即停用,并进行检查处理。 1、电压互感器一次侧或二次侧保险熔断的现象与处理。(1)当一次侧或二次侧保险熔断一相时,熔断相的接地指示灯熄灭,其他两相的指示灯略暗。此时,熔断相的接地电压为零,其他两相正常略低;电压回路断线信号动作;功率表、电度表读数不准确;用电压切换开关切换时,三相电压不平衡;拉地信号动作(电压互感器的开口三角形线圈有电压33v)。当电压互感器一交侧保险熔断时,一般作如下处理:拉开电压互感器的隔离开关,详细检查其外部有元故障现象,同时检查二次保险。若无故障征象,则换好保险后再投入。如合上隔离开关后保险又熔断,则应拉开隔离开关进行详细检查,并报告上级机关。若切除故障的电压互感器后,影响电压速断电流闭锁及过流,方向低电压等保护装置的运行时,应汇报高度,并根据继电保护运行规程的要求,将该保护装置退出运行,待电压互感器检修好后再投入运行。当电压互感器一次侧保险熔断两相时,需经过内部测量检查,确定设备正常后,方可换好保险将其投入。(2)当二次保险熔断一相时,熔断相的接地电压表指示为零,接地指示灯熄灭;其他两相电压表的数值不变,灯泡亮度不变,电压断线信号回路动作;功率表,电度表读数不准确电压切换开关切换时,三相电压不平衡。当发现二次保险熔断时,必须经检查处理好后才可投入。如有击穿保险装置,而B相保险恢复不上,则说明击穿保险已击穿,应进行处理。 2、电流互感器的故障处理。电流互感器常见的故障现象有:(1)有过热现象(2)内部发出臭味或冒烟(3)内部有放电现象,声音异常或引线与外壳间有火花放电现象(4)主绝缘发生击穿,并造成单相接地故障(5)一次或二次线圈的匝间或层间发生短路(6)充油式电流互感器漏油(7)二次回路发生断线故障当发现上述故障时,应汇报上级,并切断电源进行处理。当发现电流互感器的二次回路接头发热或断开,应设法拧紧或用安全工具在电流互感器附近的端子上将其短路;如不能处理,则应汇报上级将电流互感器停用后进行处理。二、直流系统接地故障处理直流回路发生接地时,首先要检查是哪一极接地,并分析接地的性质,判断其发生原因,一般可按下列步骤进行处理:首先停止直流回路上的工作,并对其进行检查,检查时,应避开用电高峰时间,并根据气候、现场工作的实际情况进行回路的分、合试验,一般分、合顺如下:事故照明、信号回路、充电回路、户外合闸回路、户内合闸回路、载波备用电源6-10KV的控制回路,35KV以上的主要控制回路、直流母线、蓄电池以上顺应根据具体情况灵活掌握,凡分、合时涉及到调度管辖范围内的设备时,应先取得调度的同意。确定了接地回路应在这一路再分别分、合保险或拆线,逐步缩小范围。有条件时,凡能将直流系统分割成两部分运行的应尽量分开。在寻找直流接地时,应尽量不要使设备脱离保护。为保证个人身和设备的安全,在寻找直流接地时,必须由两人进行,一人寻找,另一人监护和看信号。如果是220V直流电源,则用试电笔最易判断接地是否消除。否认是哪极接地,在拔下运行设备的直流保险时,应先正极、后负极,恢复时应相反,以免由于寄生回路的影响而造成误动作。三、避雷器的故障处理发现避雷器有下列征象时,

LED显示屏频繁跳闸原因分析及解决方法v

漏电保护器布局不合理 由于LED显示屏安装现场所具有的特殊性,如接线错误、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱等原因,以及漏电保护器本身不可避免的误动和拒动,再加上没有按照实际用电情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸。 对于这种情况除了加强管理外,还需要从技术的角度,根据实际情况对漏电保护器进行合理布置。进线总电源上的漏电保护器,可主要做为防止电气火灾隐患和电气短路的总保护,兼做每个小的漏电保护范围的后备保护,它的额定漏电动作电流可在200~500mA 之间选择,额定漏电动作时间可选择0.2~0.3s。这样,可极大地减少浪涌电压、浪涌电流、电磁干扰对总漏电保护器的影响,提高总漏电保护器动作的选择性和可靠性。如果能使每个漏电保护范围内的二级漏电保护处于有效保护状态,就可以大大地减少工地总漏电保护器的频繁跳闸机率。 在保护范围内没有形成有效的二级或三级漏电保护 开关箱内的末级漏电保护器是用电设备的主保护,如果末级漏电保护器不装、损坏或选型不当,将可能导致上级漏电保护器频繁跳闸。由于LED显示屏内金属导体很多,电线接头较多,如果导线绝缘不是很好,就会导致经常漏电的状况;有的还加了一些插座,在很多时候都不装漏电保护器,经常造成漏电。只有在每个保护范围内形成有效的二级或三级漏电保护模式,才能有效地减少漏电保护器的频繁跳闸。

漏电保护器本身有一定的局限性 (1)目前的漏电保护器,不论是电磁型还是电子型均采用磁感应电压互感器拾取用电设备主回路中的漏电流,三相或三相四线在磁环中不可能布置完全均衡。LED显示屏的三相用电负荷也不可能完全平衡,在大电流下或较高的过电压下,会在有很高导磁率的磁环中感应出一定的电动势,这个电动势大到一定程度,就会导致漏电保护器跳闸。由于额定电流越大的漏电保护器采用相对较大的磁环,产生的漏磁通也相对较大,且漏电流要克服磁环本身的磁化力,导致实际使用的漏电保护器额定电流越大,灵敏度越低,拒动率也越大。 (2)漏电保护器在额定漏电动作电流和额定漏电不动作电流之间有一段动作不确定区域,漏电保护器的漏电流在此区域内波动时,可能导致漏电保护器无规律跳闸。 漏电保护器选型不合理 (1)开关箱内使用的额定漏电动作电流超过了30mA或者是超过用电设备额定电流两倍以上的漏电保护器,或是选用了带延时型的漏电保护器,由于额定漏电动作电流的提高或保护灵敏度的下降,发生漏电故障时,末级漏电保护器没有动作,上级漏电保护器就可能动作 (2)给LED显示屏通电时的启动电流往往都比较大,此大电流可能会使漏电保护器跳闸。因此,应尽可能分批次地给显示屏的箱体上电。另外,一般应选用对浪涌过电压、过

牵引变电所运行检修安全规程实用版

YF-ED-J4766 可按资料类型定义编号 牵引变电所运行检修安全 规程实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

牵引变电所运行检修安全规程实 用版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 检查金具 金具应无锈蚀,固定、连接牢靠,接触良 好。 第103条大修范围和标准。除小修的全部 要求外,还要进行下列工作: 一、更换不合标准的绝缘子。 二、更换不合标准的导线、金具、杆塔。 电力电缆 第104条小修范围和标准: 一、检查电缆头、套管、引线和接线盒。

电缆头、套管不渗油,引线相间和距接地物的距离符合规定。 二、检查电缆。排列整齐、固定牢靠且不受张力,铠装无松散、无严重锈蚀和断裂,弯曲半径符合规定,接地良好,涂刷防腐剂;电缆外露部分应有保护管,管口应密封,保护管应完整无损,且固定牢靠,其锈蚀面积不得超过总面积的5%。 三、清扫电缆沟。沟内应无积水、杂物;支架完好、固定牢靠不锈蚀;盖板齐全无严重破损。电缆沟通向室内的入口处应有完好的防止小动物的措施。 四、检查电缆的埋设。复盖的泥土无下陷和被水冲刷等异状。 五、检查电缆桩及标示牌,齐全、正确、

一起越级跳闸事件的原因分析及改进方案

一起越级跳闸事件的原因分析及改进方案 摘要:本文结合某核电站常规岛发生的一起低压潜水泵出现单相接地故障导致 上游配电系统发生越级跳闸事件的案例,分析越级跳闸的原因是由于上下游开关 保护配置不合理而导致的,并提出将上游零序保护由“定时限”改为“定时限+反时限”和在下游增加零序保护两种改进措施,为后续改进及同类系统保护配置避免类似问题发生提供借鉴。 关键词:核电站;配电系统;单相接地;越级跳闸 前言 2014年9月,某核电站常规岛低压潜水泵发生单相接地故障,其所在电源回 路短路保护开关未及时动作,而该回路所在的低压配电盘的零序电流超过整定值,触发该1LKT001TB上游的中压馈线回路开关动作,导致整个低压配电盘断电。 该事件是典型的配电盘越级跳闸问题,由于单一回路故障而导致整个配电盘 失电,影响核电站内其他设备的正常运行。本文通过对该事件发生的原因进行详 细的分析,并提出可行的解决方案,对避免类似事件的发生和后续配电系统的设 计具有一定的借鉴作用。 1.系统配置分析 1.1回路配置 发生越级跳闸故障回路的用电设备为非含油废水冷却池泵(1SEK008PO), 其额定功率为22kW,额定电流44A。详细配置如图1所示。 图1 1SEK008PO电源保护配置 非含油废水冷却池泵1SEK008PO由380V低压配电盘(1LKT001TB)低压馈线(1LKT0403)供电,配置有断路器(NZMN1-S63),接触器(3TF47),热继电器(3RB2046-1UB0),低压配电盘接自低压厂用变压器(1LKT001TR),上游电源 接自6.6kV配电盘(1LGD001TB)中压馈线(1LGD502)。 1.2保护定值 非含油废水冷却池泵1SEK008PO电源回路设置有过载和短路保护。过载保护 由热继电器实现,过载保护整定值为53A,短路保护由断路器实现,短路保护整 定值为616A。 低压配电盘(1LKT001TB)设置有过载保护和零序保护。过载保护由变压器上游中压馈线1LGD502回路开关实现,整定值为7350A,延时1.5s动作,零序保护 由零序保护继电器实现,整定值为365A,延时0.4s动作。 1.31LKT001TB配电盘零序保护介绍 1LKT001TB配电盘零序保护配置接线图如图2所示。 图2 1LKT001TB零序保护接线图 由上图可知,1LKT零序保护单元由857TI、850XI、850XT、851XZ、850XK组成,各元件功能和定值分别为: 857TI:电流互感器,变比:500/1A; 850XI:电流继电器,定值:0.73A,经857TI变比换算可得出一次侧零序电流 动作值为365A; 850XT:延时继电器,定值:0.4S; 851XZ:接地检测继电器,向DCS发送报警信号;

施工现场漏电保护器频繁跳闸原因分析标准范本

安全管理编号:LX-FS-A70052 施工现场漏电保护器频繁跳闸原因 分析标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

施工现场漏电保护器频繁跳闸原因 分析标准范本 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1 引言 施工现场的用电环境一般比较差,使用的设备、线路本身安全隐患比较多,流动性、重复性、临时性较强,参加施工的用电人员甚至管理人员的素质参差不齐,在施工现场强制采用TN—S三相五线式供电方式的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成各级漏电保护器的频繁跳闸。这不仅严重影响了施工现场的正常施工,而且使

浅析地铁直流牵引变电所的保护原理

浅析地铁直流牵引变电所地保护原理 2009年04月04日星期六03:55 0引言在我国,地铁是城市公共交通地重点发展方向,设备国产化又是发展地主要原则? 在地铁直流供电继电保护领域内,国产保护设备还处于起步阶段,目前,国内主要城市地地铁直流保护设备均来自国外,例如广州地铁二号线选用地是德国Siemens公司地DPU96武汉轻轨选用地是瑞士 sechron公司地SEPCOS通过对部分国外产品地研究,笔者认为,直流保护设备地原理并不是十分复杂,功能实现在理论上也没有任何障碍,希望通过本文地抛砖引玉,在将来地不久,能够看到国产地直流保护设备在我国甚至国际市场成为主流? 1 一次系统简介 图1显示了一个典型地牵引变电所地电气主接线图,该所将主变电所来地交流高电压<典型值:33kV)经整流机组<包括变压器及整流器)降压、整流为直流 1500V,再经直流开关柜向接触网供电.我国上海和广州地铁地直流牵引供电系统均是如此,北京地铁采用地是第三轨受流器<上海和广州地铁则是架空接触网),其馈电电压为750V.由于750V馈电电压供电距离短、杂散电流大,现在多采用 1500V.图2显示地是采用双边供电地上行接触网地分区段示意图<下行亦相同),一个供电区由相邻地2个牵引变电所同时供电,这种双边供电地方式提高了供电地可靠性,同时分区段地方式使故障被隔离在某个区段以内,而不致影响其它供电区段,因而被广泛采用.本文中所讨论地保护原理均基于1500V架空接触网双边供电方式? 图1典型牵引变电所电气主接线参考图

图2双边供电接触网分区段示意图 图3短路电流与列车运行电流示意图 2牵引变电所内直流保护地配置 牵引变电所内地直流保护系统必须在系统发生故障时快速、准确地切除故障,同 时又要避免列车正常运行时一些电气参数地变化引起保护装置误跳闸.后备保护地存在增加了故障切除地可靠性,同时也增加了与主保护配合地难度,所以保护地配置也不宜过多.不同地牵引变电所其电气特性不同,运行要求不同,所以保护装置地整定值不同,甚至保护地配置亦不相同.通常,牵引变电所内地直流保护安装于开关柜中,其可能地配置如下: A.馈线柜 <图1中对应211,212,213,214开关柜): a.大电流脱扣保护 vover-current protection ); b.电流上升率保护

变电站及线路继电保护设计和整定计算

继电保护科学和技术是随电力系统的发展而发展起来的。电力系统发生短路是不可避免的,为避免发电机被烧坏发明了断开短路的设备,保护发电机。由于电力系统的发展,熔断器已不能满足选择性和快速性的要求,于1890年后出现了直接装于断路器上反应一次电流的电磁型过电流继电器。19世纪初,继电器才广泛用于电力系统保护,被认为是继电保护技术发展的开端。1901年出线了感应型过电流继电器。1908年提出了比较被保护元件两端电流的电流差动保护原理。1910年方向性电流保护开始应用,并出现了将电流与电压相比较的保护原理。1920年后距离保护装置的出现。1927年前后,出现了利用高压输电线载波传送输电线路两端功率方向或电流相位的高频保护装置。1950稍后,提出了利用故障点产生的行波实现快速保护的设想。1975年前后诞生了行波保护装置。1980年左右工频突变量原理的保护被大量研究。1990年后该原理的保护装置被广泛应用。与此同时,继电保护装置经历了机电式保护装置、静态继电保护装置和数字式继电保护装置三个发展阶段。20世界50年代,出现了晶体管式继电保护装置。20世纪70年代,晶体管式保护在我国被大量采用。20世纪80年代后期,静态继电保护由晶体管式向集成电路式过度,成为静态继电保护的主要形式。20世纪60年代末,有了用小型计算机实现继电保护的设想。20世纪70年代后期,出现了性能比较完善的微机保护样机并投入系统试运行。80年代,微机保护在硬件结构和软件技术方面已趋成熟。进入90年代,微机保护以在我国大量应用。20世纪90年代后半期,继电保护技术与其他学科的交叉、渗透日益深入。为满足电网对继电保护提出的可靠性、选择性、灵敏性、速动性的要求,充分发挥继电保护装置的效能,必须合理的选择保护的定值,以保持各保护之间的相互配合关系。做好电网继电保护定值的整定计算工作是保证电力系统安全运行的必要条件。 电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新活力。未来继电保护的发展趋势是向计算机化、网络化保护、控制、测量、数据通信一体化智能化发展。 随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,发展到一个新的水平。这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

施工现场漏电保护器频繁跳闸原因分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 施工现场漏电保护器频繁跳闸原因分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4487-40 施工现场漏电保护器频繁跳闸原因 分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1 引言 施工现场的用电环境一般比较差,使用的设备、线路本身安全隐患比较多,流动性、重复性、临时性较强,参加施工的用电人员甚至管理人员的素质参差不齐,在施工现场强制采用TN—S三相五线式供电方式的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成各级漏电保护器的频繁跳闸。这不仅严重影响了施工现场的正常施工,而且使施工现场用电的安全无法得到有效的保障。通过在施工现场对施工用电的管理和体验,对施工现场漏电保护器频繁跳闸的原因进行了以下的分析。

2 施工现场漏电保护器频繁跳闸的原因 2.1 漏电保护器布局不合理 根据《施工现场临时用电安全技术规范》JCJ46—88,在临时用电总配电箱和开关箱中应装设漏电保护器,形成三级配电二级漏电保护的模式。由于施工现场所具有的特殊性,如电工素质差、接线错误、非电工接线、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱及施工现场管理不善等原因,以及漏电保护器本身不可避免的误动和拒动,再加上在实际施工中没有按照工地的实际情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸,停电范围较大。在施工高峰期,总漏电保护器的频繁跳闸不仅严重影响了工地的正常施工,而且让处理故障的电工疲于奔命,甚至束手无策。对于这种情况除了加强施工现场的管理外,需要从技术的角度,根据施工现场实际情况对漏电保护器进行合理布置。在一些住宅楼工地、工业项目等比较大的施工现场,需要将整个工地按专业或不同的施工队划分为若干个小的漏电保护

牵引变电所各种保护范围说明知识交流

变电所各种保护范围说明 一、主变各种保护: 1、重瓦斯:保护说明:为主变主保护,保护无延时。 保护范围:主变本体;反映的故障类型:反映主变本体内部短路故障(含相间短路、匝间短路)、主变漏油故障;保护动作后跳闸断路器:系统三台断路器跳闸; 保护动作后应巡视的设备:主变、系统三台断路器状态。 (取自瓦斯继电器) 2、差动(含差动速断):保护说明:为主变主保护,保护无延时。 保护范围:为该系统从110KV 流互到27.5KV 母线断路器上套装流互之间所有高压设备; 反映的故障类型:反映一个主变系统从110KV 流互到27.5KV 母线断路器上套装流互之间所有高压设备的短路、接地故障; 保护动作后跳闸断路器:系统三台断路器跳闸; 保护动作后应巡视的设备:包含设备为110KV 断路器、主变、27.5KV 母线断路器、27.5KV 室外 A 、B 相避雷器及之间所有母线。 (电流取自110KV 流互至27.5KV 小车流互之间) 3、失压保护:保护说明:为进线主保护,保护延时一般为4S。 保护范围:为进线电源;反映的故障类型:反映进线电源失压故障;保护动作后跳闸断路器:系统三台断路器跳闸;保护动作后应巡视的设备:110KV 压互二次空开(或保险)、用验电器验明进线是否无电。 (电压取自 5 个压互同时失压。110KV3 个、27.5KV2 个) 4、110KV 低压启动过电流保护:保护说明:为主变差动、重瓦斯、27.5KV 侧A 、B 相低电压启动过电流保护的后备保护,同时作为馈线的后备保护,保护延时一般为 1.2S。 保护范围:该系统从110KV 流互到接触网末端;反映的故障类型:保护范围内高压设备的接地、短路故障;保护动作后跳闸断路器:系统三台断路器跳闸;保护动作后应巡视的设备:因该保护为主变、馈线的后备保护,该保护动作,则说明有主变保护或馈线保护拒动,因此除检查系统、高压室、馈线高压设备外,重点检查主变保护和馈线保护是否正常。 (电流取自110KV 流互至27.5KV 流互) 5、零序过流保护:保护说明:为主变后备保护,保护延时一般为3.5S。 保护范围:从进线电源到主变;反映的故障类型:反映主变进线侧母线(含高压侧引出线)、主变线圈接地故障;保护动作后跳闸断路器:系统三台断路器跳闸; 保护动作后应巡视的设备:进线隔离开关、110KV 压互隔离开关、110KV 压互、110KV 流互隔离开关、110KV 流互、110KV 避雷器、110KV 断路器、主变及之间所有母线,主要检查是否有接地情况。 (电流取自主变中性点流互) 6、27.5KV A、B 相低电压启动过电流保护: 保护说明:为接在高压室A、B 相公共母线上所有高压设备的主保护,同时作为电容、馈线、动力变、所用变、压互等高压设备的后备保护,保护延时一般为 1.0S。 保护范围:从27.5KV 母线断路器小车流互到接触网末端;反映的故障类型:反映高压室内公共母线上的所有设备接地、短路、绝缘击穿等故障;保护动作后跳闸断路器: A 相母线故障跳 A 相母线断路器, B 相母线故障跳 B 相母线断路器;保护动作后应巡视的设备: A 相母线断路器跳闸时巡视高压室 A 相公共母线上挂接的电容、馈线、动力变、所用变、压互、备用系统母线断路器等高压设备, B 相母线断路器跳闸时巡视高压室 B 相公共母线上挂接的电容、馈线、动力变、所用变、压互、备用系统母线断路器等高压设备。 (电流取自母线断路器小车流互至馈线断路器小车流互) 7、过负荷:保护说明:为主变后备保护,保护延时一般为9S。 保护范围:无;反映的故障类型:反映主变高压侧因接触网负荷电流过大的不正常运行情况;保护动作后跳闸断路器:无,

相关文档
相关文档 最新文档