文档库 最新最全的文档下载
当前位置:文档库 › 自动控制原理实验二报告

自动控制原理实验二报告

自动控制原理实验二报告
自动控制原理实验二报告

北京联合大学

《自动控制原理》实验报告

课程(项目)名称线性系统的稳定性研究

学院:自动化学院专业:物流工程

班级: 11100358110 学号: 2011100358112 组员:范杰卢甲东学号: 2011100358118 实验日期: 2013年10月9日

报告完成日期: 2013年10月21日

实验二 线性系统的稳定性研究

一.实验目的

1. 了解和掌握典型三阶系统模拟电路的构成方法及Ⅰ型三阶系统的传递函数表达

式。

2. 熟悉劳斯(Routh )判据使用方法。

3. 应用劳斯(Routh )判据,观察和分析Ⅰ型三阶系统在阶跃信号输入时,系统的稳

定、临界稳定及不稳定三种瞬态响应。

二.实验内容

本实验用于观察和分析三阶系统瞬态响应和稳定性。 典型Ⅰ型三阶单位反馈系统原理方块图见图2-1。

图2-1 典型三阶闭环系统的方块图

Ⅰ型三阶系统的开环传递函数:

)1)(1()(212

1++=

S T S T TiS K K S G (2-1) 闭环传递函数(单位反馈):

2

12121)1)(1()(1)

()(K K S T S T TiS K K S G S G S +++=

+=

φ (2-2) Ⅰ型三阶闭环系统模拟电路如图2-2所示。它由积分环节(A2)、惯性环节(A3和A5)构成。

图2-2 Ⅰ型三阶闭环系统模拟电路图

图2-2的Ⅰ型三阶闭环系统模拟电路的各环节参数及系统的传递函数:

积分环节(A2单元)的积分时间常数Ti=R 1*C 1=1S ,

惯性环节(A3单元)的惯性时间常数 T1=R 3*C 2=0.1S , K1=R3/R2=1 惯性环节(A5单元)的惯性时间常数 T2=R 4*C 3=0.5S ,K2=R4/R=500k/R 该系统在A5单元中改变输入电阻R 来调整增益K ,R 分别为 30K 、41.7K 、100K 。

三.实验内容及步骤

Ⅰ型三阶闭环系统模拟电路图见图2-2,分别将(A11)中的直读式可变电阻调整到30K 、

41.7K 、100K ,跨接到A5单元(H1)和(IN )之间,改变系统开环增益进行实验。

注:‘S-ST’不能用“短路套”短接!

(1)用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号(Ui ):

B1单元中电位器的左边K3开关拨下(GND ),右边K4开关拨下(0/+5V 阶跃)。阶跃信号输出(Y 测孔)调整为2V (调节方法:按下信号发生器(B1)阶跃信号按钮,L9灯亮,调节电位器,用万用表测量Y 测孔)。

(2)构造模拟电路:按图2-2安置短路套及测孔联线,表如下。

(a )安置短路套 (b )测孔联线

(3)虚拟示波器(B3)的联接:示波器输入端CH1接到A5单元信号输出端OUT (C(t))。

注:CH1选‘X1’档。 (4)运行、观察、记录:

① 运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的三阶典型系统瞬态响应和稳定性实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。也可选用普通示波器观测实验结果。

② 分别将(A11)中的直读式可变电阻调整到30K 、41.7K 、100K ,按下B1按钮,用示波器观察A5单元信号输出端C (t )的系统阶跃响应,并将参数及各项指标填入下表。 四、数据分析

R=30K K=500/30=16.67

R=41.7K K=500/41.7=11.99

R=100K K=500/100=5

五、实验结论

R=30K 系统振荡发散,不稳定

R=41.7K 系统等幅振荡,不稳定

R=100K 系统振荡衰减,稳定

六.实验思考

1. 在实验线路中如何确保系统实现负反馈?如果方框回路中有偶数个运算放大器,则构成什么反馈?

答:实验中的运算放大器都为反向放大器,当回路中如果有奇数个运算放大器,该系统为负反馈,A6就是为了确保系统实现负反馈。当回路中有偶数个运算放大器时,则构成正反馈。

2. 有那些措施能增加系统的稳定度?它们对系统的性能还有什么影响?

答:减小系统的开环增益能增加系统的稳定性,由达到峰值所需要的时间可以看出,开环增益越小,达到峰值所需时间越长,降低了系统的初始快速性。

3. 实验中的阶跃输入信号的幅值范围应如何考虑?

答:若阶跃输入信号幅值过大,会使输出阶跃响应曲线的稳态值过大,如果系统有较大的超调量,则阶跃响应的幅值可能超出范围,不能测得完整的响应曲线。

4. 改变时间常数T1会怎样影响系统的稳定性?

答:增大时间常数T1对系统的稳定性不利,会导致系统的临界放大系数下降,减小系统的稳定裕量。

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

自动控制原理实验报告

实验报告 课程名称:自动控制原理 实验项目:典型环节的时域相应 实验地点:自动控制实验室 实验日期:2017 年 3 月22 日 指导教师:乔学工 实验一典型环节的时域特性 一、实验目的 1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。对比差异,分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。 三、实验原理及内容 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P) (1)方框图 (2)传递函数: K S Ui S Uo =) () ( (3)阶跃响应:) 0()(≥=t K t U O 其中 01/R R K = (4)模拟电路图: (5) 理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。 ② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图 (2)传递函数: TS S Ui S Uo 1 )()(= (3)阶跃响应: ) 0(1)(≥= t t T t Uo 其中 C R T 0= (4)模拟电路图 (5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。 ② 取R0 = 200K ;C = 2uF 。

1 Uo 0t Ui(t) Uo(t) 理想阶跃响应曲线 0.4s 1 Uo 0t Ui(t) Uo(t) 实测阶跃响应曲线 0.4s 10V 无穷 3.比例积分环节 (PI) (1)方框图: (2)传递函数: (3)阶跃响应: (4)模拟电路图: (5)理想与实际阶跃响应曲线对照: ①取 R0 = R1 = 200K;C = 1uF。 理想阶跃响应曲线实测阶跃响应曲线 ②取 R0=R1=200K;C=2uF。 K 1 + U i(S)+ U o(S) + Uo 10V U o(t) 2 U i(t ) 0 0 .2s t Uo 无穷 U o(t) 2 U i(t ) 0 0 .2s t

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

自动控制原理实验1-6

实验一MATLAB 仿真基础 一、实验目的: (1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3)掌握使用MATLAB 命令化简模型基本连接的方法。 (4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1.计算机;2. MATLAB 软件 三、实验原理 函数tf ( ) 来建立控制系统的传递函数模型,用函数printsys ( ) 来输出控制系统的函数,用函数命令zpk ( ) 来建立系统的零极点增益模型,其函数调用格式为:sys = zpk ( z, p, k )零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用feedback ( ) 函数求得。 则feedback ()函数调用格式为: sys = feedback (sys1, sys2, sign ) 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign =-1;正反馈时,sign =1;单位反馈时,sys2=1,且不能省略。 四、实验内容: 1.已知系统传递函数,建立传递函数模型 2.已知系统传递函数,建立零极点增益模型 3.将多项式模型转化为零极点模型 1 2s 2s s 3s (s)23++++=G )12()1()76()2(5)(332 2++++++= s s s s s s s s G 12s 2s s 3s (s)23++++= G )12()1()76()2(5)(3322++++++=s s s s s s s s G

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

自动控制原理实验1-6

实验一 MATLAB 仿真基础 、实验目的: (1) 熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 (2) 掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 (3) 掌握使用MATLAB 命令化简模型基本连接的方法。 (4) 学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 二、实验设备和仪器 1 ?计算机;2. MATLAB 软件 三、实验原理 函数tf ()来建立控制系统的传递函数模型,用函数printsys ()来输出控制系 统的函数,用函数命令zpk ()来建立系统的零极点增益模型,其函数调用格式 为:sys = zpk ( z, p, k 零极点模型转换为多项式模型[num , den] = zp2tf ( z, p, k ) 多项式模型转化为零极点模型 [z , p , k] = tf2zp ( num, den ) 两个环节反馈连接后,其等效传递函数可用 feedback ()函数求得。 则 feedback ()函数调用格式为: sys = feedback (sysl, sys2, sigh 其中sign 是反馈极性,sign 缺省时,默认为负反馈,sign = -1;正反馈时, sig n = 1;单位反馈时,sys2= 1,且不能省略。 四、实验内容: 1. 已知系统传递函数,建立传递函数模型 2 2 5(s 2) (s 6s 7) 3 3 s(s 1) (s 2s 1) 2. 已知系统传递函数,建立零极点增益模型 s 3 飞 2~ s 2s 2s 1 3 ?将多项式模型转化为零极点模型 5(s 2)2(s 2 6s 7) G(s) s 3 s 3 2s 2 2s 1 G(s) G(s)

《自动控制原理及应用》

中国农业大学继续教育学院《自动控制原理及其应用》试卷 专业 姓名 成绩 一.填空题(每空0.5分,共25分) 1、反馈控制又称偏差控制,其控制作用是通过 与反馈量的差值进行的。 2、复合控制有两种基本形式:即按 的前馈复合控制和按 的前馈复合控制。 3、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s)为 。 4、根轨迹起始于 ,终止于 。 5、设某最小相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系统的开环传递函数为 。 6、PI 控制器的输入-输出关系的时域表达式是 ,其相应的传递函数为 ,由于积分环节的引入,可以改善系统的 性能。 7、在水箱水温控制系统中,受控对象为 ,被控量为 。 8、自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为 ;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为 ;含有测速发电机的电动机速度控制系统,属于 。 9、稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统 。判断一个闭环线性控制系统是否稳定,在时域分析中采用 ;在频域分析中采用 。 10、传递函数是指在 初始条件下、线性定常控制系统的 与 之比。 11、频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅值穿越频率c ω对应时域性能指标 ,它们反映了系统动态过程的 。 12、对自动控制系统的基本要求可以概括为三个方面,即: 、快速性和 。 13、控制系统的 称为传递函数。一阶系统传函标准是 ,二阶系统传函标准形式是 。 14、在经典控制理论中,可采用 、根轨迹法或 等方法判断线性控制系统稳定性。 15、控制系统的数学模型,取决于系统 和 , 与外作用及初始条件无关。 16、线性系统的对数幅频特性,纵坐标取值为 ,横坐标为 。 17、在二阶系统的单位阶跃响应图中,s t 定义为 。%σ是 。 18、PI 控制规律的时域表达式是 。P I D 控制规律的传递函数表达式是 。 19、对于自动控制系统的性能要求可以概括为三个方面,即: 、 和 ,其中最基本的要求是 。 20、若某单位负反馈控制系统的前向传递函数为()G s ,则该系统的开环传递函数为 。 21、能表达控制系统各变量之间关系的数学表达式或表示方法,叫系统的数学模型,在古典控制理论中系统数学模型有 、 等。 22、判断一个闭环线性控制系统是否稳定,可采用 、 、 等方法。 23、PID 控制器的输入-输出关系的时域表达式是 ,其相应的传递函数为 。 24、最小相位系统是指 。 二. 选择题(每题1分,共22分) 1、采用负反馈形式连接后,则 ( ) A 、一定能使闭环系统稳定; B 、系统动态性能一定会提高; C 、一定能使干扰引起的误差逐渐减小,最后完全消除; D 、需要调整系统的结构参数,才能改善系统性能。 2、下列哪种措施对提高系统的稳定性没有效果 ( )。 A 、增加开环极点; B 、在积分环节外加单位负反馈; C 、增加开环零点; D 、引入串联超前校正装置。 3、对于以下情况应绘制0°根轨迹的是( ) A 、主反馈口符号为“-” ; B 、除r K 外的其他参数变化时; C 、非单位反馈系统; D 、根轨迹方程(标准形式)为1)()(+=s H s G 。 4、开环频域性能指标中的相角裕度γ对应时域性能指标( ) 。 A 、超调%σ B 、稳态误差ss e C 、调整时间s t D 、峰值时间p t 5、已知开环幅频特性如图2所示, 则图中不稳定的系统是( )。 系统① 系统② 系统③ A 、系 统 ① B 、系统② C 、系统③ D 、都不稳定 6、若某最小相位系统的相角裕度 γ >,则下列说法正确的是 ( )。 A 、不稳定; B 、只有当幅值裕度 1 g k >时才稳定; C 、稳定; D 、不能判用相角裕度判断系统的稳定性。

自动控制原理实验书(DOC)

目录 实验装置介绍 (1) 实验一一、二阶系统阶跃响应 (2) 实验二控制系统稳定性分析 (5) 实验三系统频率特性分析 (7) 实验四线性系统串联校正 (9) 实验五 MATLAB及仿真实验 (12)

实验装置介绍 自动控制原理实验是自动控制理论课程的一部分,它的任务是:一方面,通过实验使学生进一步了解和掌握自动控制理论的基本概念、控制系统的分析方法和设计方法;另一方面,帮助学生学习和提高系统模拟电路的构成和测试技术。 TAP-2型自动控制原理实验系统的基本结构 TAP-2型控制理论模拟实验装置是一个控制理论的计算机辅助实验系统。如上图所示,TAP-2型控制理论模拟实验由计算机、A/D/A 接口板、模拟实验台和打印机组成。计算机负责实验的控制、实验数据的采集、分析、显示、储存和恢复功能,还可以根据不同的实验产生各种输出信号;模拟实验台是被控对象,台上共有运算放大器12个,与台上的其他电阻电容等元器件配合,可组成各种具有不同系统特性的实验对象,台上还有正弦、三角、方波等信号源作为备用信号发生器用;A/D/A 板安装在模拟实验台下面的实验箱底板上,它起着模拟与数字信号之间的转换作用,是计算机与实验台之间必不可少的桥梁;打印机可根据需要进行连接,对实验数据、图形作硬拷贝。 实验台由12个运算放大器和一些电阻、电容元件组成,可完成自动控制原理的典型环节阶跃响应、二阶系统阶跃响应、控制系统稳定性分析、系统频率特性测量、连续系统串联校正、数字PID 、状态反馈与状态观测器等相应实验。 显示器 计算机 打印机 模拟实验台 AD/DA 卡

实验一一、二阶系统阶跃响应 一、实验目的 1.学习构成一、二阶系统的模拟电路,了解电路参数对系统特性的影响;研究二阶系统的两个重要参数:阻尼比ζ和无阻尼自然频率ωn对动态性能的影响。 2.学习一、二阶系统阶跃响应的测量方法,并学会由阶跃响应曲线计算一、二阶系统的传递函数。 二、实验仪器 1.自动控制系统实验箱一台 2.计算机一台 三、实验原理 模拟实验的基本原理: 控制系统模拟实验采用复合网络法来模拟一、二阶系统,即利用运算放大器不同的输入网络和反馈网络模拟一、二阶系统,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。 若改变系统的参数,还可进一步分析研究参数对系统性能的影响。 四、实验内容 构成下述系统的模拟电路,并测量其阶跃响应: 1.一阶系统的模拟电路如图

自动控制原理实验报告73809

-150-100 -50 50 实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=15 20

惯性环节传递函数为: K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值 较为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大 K 理论值为2,实验值4.30/2.28, 1 TS K )s (R )s (C +-=

自动控制原理实验报告

自动控制原理 实验报告 实验一典型系统的时域响应和稳定性分析 (2) 一、实验目的 (3) 二、实验原理及内容 (3) 三、实验现象分析 (5) 方法一:matlab程序 (5) 方法二:multism仿真 (12)

方法三:simulink仿真 (17) 实验二线性系统的根轨迹分析 (21) 一、确定图3系统的根轨迹的全部特征点和特征线,并绘出根轨迹 (21) 二、根据根轨迹图分析系统的闭环稳定性 (22) 三、如何通过改造根轨迹来改善系统的品质? (25) 实验三线性系统的频率响应分析 (33) 一、绘制图1. 图3系统的奈氏图和伯德图 (33) 二、分别根据奈氏图和伯德图分析系统的稳定性 (37) 三、在图4中,任取一可使系统稳定的R值,通过实验法得到对应的伯德图,并据此导 出系统的传递函数 (38) 实验四、磁盘驱动器的读取控制 (41) 一、实验原理 (41) 二、实验内容及步骤 (41) (一)系统的阶跃响应 (41) (二) 系统动态响应、稳态误差以及扰动能力讨论 (45) 1、动态响应 (46) 2、稳态误差和扰动能力 (48) (三)引入速度传感器 (51) 1. 未加速度传感器时系统性能分析 (51) 2、加入速度传感器后的系统性能分析 (59) 五、实验总结 (64) 实验一典型系统的时域响应和稳定性分 析

一、 实验目的 1.研究二阶系统的特征参量(ξ、ωn )对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。 二、 实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:见图1 图1 (2) 对应的模拟电路图 图2 (3) 理论分析 导出系统开环传递函数,开环增益0 1 T K K = 。 (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图2), s 1T 0=, s T 2.01=,R 200 K 1= R 200 K =?

自动控制原理实验报告2

自动控制原理课程实验 2010-2011学年第一学期 02020801班 张驰2008300566

? 课本实验内容 6-26 热轧厂的主要工序是将炽热的钢坯轧成具有预定厚度和尺度的钢板,所得到的最终产品之一是宽为3300mm 、厚为180mm 的标准板材。他有两台主要的辊轧台:1号台与2号台。辊轧台上装有直径为508mm 的大型辊轧台,由4470km 大功率电机驱动,并通过大型液压缸来调节轧制宽度和力度。 热轧机的典型工作流程是:钢坯首先在熔炉中加热,加热后的钢坯通过1号台,被辊轧机轧制成具有预期宽度的钢坯,然后通过2号台,由辊轧机轧制成具有与其厚度的钢板,最后再由热整平设备加以整平成型。 热轧机系统控制的关键技术是通过调整热轧机的间隙来控制钢板的厚度。热轧机控制系统框图如下: 扰动)(s N )(s R (1)已知)54(/)(20++=s s s s s G ,而)(s G c 为具有两个相同实零点的PID 控制器。要求:选择PID 控制器的零点和增益,使闭环系统有两对对等的特征根; (2)考察(1)中得到的闭环系统,给出不考虑前置滤波器)(s G P 与配置适当)(s G P 时,系统的单位阶跃响应; (3)当)(s R =0,)(s N =1/s 时,计算系统对单位阶跃扰动的响应。 ? 求解过程 解:(1)已知 )54(/)(20++=s s s s s G )(s G P )(s G C )(0s G

选择 s z s K s G c /)()(2+= 当取K=4,Z=1.25时,有 s s s s s G c 4/25.610/)25.1(4)(2++=+= 系统开环传递函数 )54(/)25.1(4)()(2220+++=s s s s s G s G c 闭环传递函数:)25.61094/()5625.15.2(4))()(1/()()()(2 34200++++++=+=s s s s s s s G s G s G s G s c c φ (2) 当不考虑前置滤波器时,单位阶跃输入作用下的系统输出 )25.61094(/)5625.15.2(4)()()(2342++++++==s s s s s s s s R s s C φ 系统单位阶跃响应如图1中(1)中实线所示。 当考虑前置滤波器时,选 2)25.1/(5625.1)(+=s s G p 则系统在单位阶跃输入作用下的系统输出 )25.61094(/25.6)()()()(234++++==s s s s s s R s s G s C p φ 系统单位阶跃曲线如图1中(1)虚线所示。 (3)当)(s R =0,)(s N =1/s 时,扰动作用下的闭环传递函数 )25.61094/())()(1/()()(23400++++-=+-=s s s s s s G s G s G s c n φ 系统输出 )25.61094/(1)()()(2 34++++-==s s s s s N s s C n n φ 单位阶跃响应曲线如图1中(2)所示。 MATLAB 程序代码: MA TLAB 程序:exe626.m K=4;z=1.25; G0=tf(1,conv([1,0],[1,4,5])); Gc=tf(K*conv([1,z],[1,z]),[1,0]); Gp=tf(1.5625,conv([1,z],[1,z])); G1=feedback(Gc*G0,1); G2=series(Gp,G1); G3=-feedback(G0,Gc); t=0:0.01:10; [x,y]=step(G1,t);[x1,y1]=step(G2,t); figure(1);plot(t,x,'-',t,x1,':');grid

自动控制原理实验报告 (1)

实验1 控制系统典型环节的模拟实验(一) 实验目的: 1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。 2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。 实验原理: 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。 实验内容及步骤 实验内容: 观测比例、惯性和积分环节的阶跃响应曲线。 实验步骤: 分别按比例,惯性和积分实验电路原理图连线,完成相关参数设置,运行。 ①按各典型环节的模拟电路图将线接好(先接比例)。(PID先不接) ②将模拟电路输入端(U i)与阶跃信号的输出端Y相连接;模拟电路的输出端(Uo)接至示波器。 ③按下按钮(或松开按钮)SP时,用示波器观测输出端的实际响应曲线Uo(t),且将结果记下。改变比例参数,重新观测结果。 ④同理得积分和惯性环节的实际响应曲线,它们的理想曲线和实际响应曲线。 实验数据

实验二控制系统典型环节的模拟实验(二) 实验目的 1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。 2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。 实验仪器 1.自动控制系统实验箱一台 2.计算机一台 实验原理 控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。 实验内容及步骤 内容: 观测PI,PD和PID环节的阶跃响应曲线。 步骤: 分别按PI,PD和PID实验电路原理图连线,完成相关参数设置,运行 ①按各典型环节的模拟电路图将线接好。 ②将模拟电路输入端(U i)与方波信号的输出端Y相连接;模拟电路的输出端(Uo)接至示波器。 ③用示波器观测输出端的实际响应曲线Uo(t),且将结果记下。改变参数,重新观测结果。 实验数据 实验结论及分析

自动控制原理实验(全面)

自动控制原理实验 实验一 典型环节的电模拟及其阶跃响应分析 一、实验目的 ⑴ 熟悉典型环节的电模拟方法。 ⑵ 掌握参数变化对动态性能的影响。 二、实验设备 ⑴ CAE2000系统(主要使用模拟机,模/数转换,微机,打印机等)。 ⑵ 数字万用表。 三、实验内容 1.比例环节的模拟及其阶跃响应 微分方程 )()(t Kr t c -= 传递函数 = )(s G ) () (s R s C K -= 负号表示比例器的反相作用。模拟机排题图如图9-1所示,分别求取K=1,K=2时的阶跃响应曲线,并打印曲线。 图9-1 比例环节排题图 图9-2 积分环节排题图 2.积分环节的模拟及其阶跃响应 微分方程 )() (t r dt t dc T = 传递函数 s K Ts s G ==1)( 模拟机排题图如图9-2所示,分别求取K=1,K=0.5时的阶跃响应曲线,并打印曲线。 3.一阶惯性环节的模拟及其阶跃响应 微分方程 )()() (t Kr t c dt t dc T =+ 传递函数 1 )(+=TS K S G 模拟机排题图如图3所示,分别求取K=1, T=1; K=1, T=2; K=2, T=2 时的阶跃

响应曲线,并打印曲线。 4.二阶系统的模拟及其阶跃响应 微分方程 )()() (2)(2 22 t r t c dt t dc T dt t c d T =++ξ 传递函数 121 )(22++=Ts s T s G ξ2 2 2 2n n n s s ωξωω++= 画出二阶环节模拟机排题图,并分别求取打印: ⑴ T=1,ξ=0.1、0.5、1时的阶跃响应曲线。 ⑵ T=2,ξ=0.5 时的阶跃响应曲线。 四、实验步骤 ⑴ 接通电源,用万用表将输入阶跃信号调整为2V 。 ⑵ 调整相应系数器;按排题图接线,不用的放大器切勿断开反馈回路(接线时,阶跃开关处于关断状态);将输出信号接至数/模转换通道。 ⑶ 检查接线无误后,开启微机、打印机电源;进入CAE2000软件,组态A/D ,运行实时仿真;开启阶跃输入信号开关,显示、打印曲线。 五.实验预习 ⑴ 一、二阶系统的瞬态响应分析;模拟机的原理及使用方法(见本章附录)。 ⑵ 写出预习报告;画出二阶系统的模拟机排题图;在理论上估计各响应曲线。 六.实验报告 ⑴ 将每个环节的实验曲线分别整理在一个坐标系上,曲线起点在坐标原点上。分析各参数变化对其阶跃响应的影响,与估计的理论曲线进行比较,不符请分析原因。 ⑵ 由二阶环节的实验曲线求得σ﹪、t s 、t p ,与理论值进行比较,并分析σ﹪、t s 、t p 等和T 、ξ的关系。 实验二 随动系统的开环控制、闭环控制及稳定性 一.实验目的 了解开环控制系统、闭环控制系统的实际结构及工作状态;控制系统稳定的概念以及系统开环比例系数与系统稳定性的关系。 二.实验要求 能按实验内容正确连接实验线路,正确使用实验所用测试仪器,在教师指导下独立

自控实验报告5

实验报告(5) 实验名 称 实验五线性系统串联校正 实验日期2014-6-6 指导教 师 于海春

一、实验目的 1.熟练掌握用MATLAB 语句绘制频域曲线。 2.掌握控制系统频域范围内的分析校正方法。 3.掌握用频率特性法进行串联校正设计的思路和步骤。 二、预习要求 1.熟悉基于频率法的串联校正装置的校正设计过程。 2.熟练利用MATLAB 绘制系统频域特性的语句。 三、实验内容 1.某单位负反馈控制系统的开环传递函数为4 ()(1) G s s s = +,试设计一超前校正装置,使校正后系统的静态速度误差系数120v K s -=,相位裕量050γ=,增益裕量20lg 10g K dB =。 2.某单位负反馈控制系统的开环传递函数为3 ()(1)k G s s = +,试设计一个合适的滞后校正网络,使系统阶跃响应的稳态误差约为0.04,相角裕量约为045。 3.某单位负反馈控制系统的开环传递函数为()(1)(2) K G s s s s = ++,试设计一滞后-超前校正 装置,使校正后系统的静态速度误差系数110-=s K v ,相位裕量0 50=γ,增益裕量 dB K g 10lg 20≥。 三、实验结果分析 1.开环传递函数为的系统的分析及其串联超前校正: (1)取K=20,绘制原系统的Bode 图: ①源程序代码: num0=20; den0=[1,1,0]; w=0.1:1000; [gm1,pm1,wcg1,wcp1]=margin(num0,den0); [mag1,phase1]=bode(num0,den0,w); [gm1,pm1,wcg1,wcp1] margin(num0,den0)

自动控制原理及其应用试卷与答案

自动控制原理试卷与答案 (A/B 卷 闭卷) 、填空题(每空1分,共15分) 1、 反馈控制又称偏差控制,其控制作用是通过 _______________ 与反馈量的差值进行的。 2、 复合控制有两种基本形式:即按 _________ 的前馈复合控制和按 __________ 的前馈复合控制。 3、 两个传递函数分别为 G(s)与G(s)的环节,以并联方式连接,其等效传递函数为 G(s),则G(s) 为 _______ (用G(s)与G(s)表示)。 4、 典型二阶系统极点分布如图 1所示,则无阻尼自然频率 「n = 阻尼比.二 ______________ ,该系统的特征方程为 __________________________________ ,该系统的单位阶 跃响应曲线为 _________________________ 。 5、 若某系统的单位脉冲响应为g(t^10e~.2t 5e".5t ,则该系统的传递函数G(s) 为 ____________________ 。 6、 根轨迹起始于 ______________________ ,终止于 _______________________ 。 7、 设某最小相位系统的相频特性为 =tg 」(—)-90° -tg 」(「,),则该系统的开环传递函数 为 _____________________ 。 8 PI 控制器的输入一输出关系的时域表达式是 , 其相应的传递函数为 能。 ,由于积分环节的引入, 可以改善系统的 性 二、选择题(每题2分,共20分) 1、采用负反馈形式连接后,贝U () A 、一定能使闭环系统稳定; B 、系统动态性能一定会提高; C 一定能使干扰引起的误差逐渐减小,最后完全消除; D 需要调整系统的结构参数,才能改善系统性能。 2、下列哪种措施对提高系统的稳定性没有效果 () 2 4、系统在r(t) = t 作用下的稳态误差 e ss = : ■,说明( A 型别 v ::: 2; B C 输入幅值过大; D 5、对于以下情况应绘制 0°根轨迹的是( A 、增加开环极点; B 、在积分环节外加单位负反馈; C 增加开环零点; D 、引入串联超前校正装置。 3、系统特征方程为 D(s)二 s 3 2s 2 3s 6 = 0,则系统() A 、稳定; B 、单位阶跃响应曲线为单调指数上升; C 临界稳定; D 、右半平面闭环极点数 Z=2。

自动控制原理_实验2(1)

实验二 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在 单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、基础知识及MATLAB 函数 (一)基础知识 时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部 信息,具有直观、准确的特点。为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。 用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分 别以s 的降幂排列写为两个数组num 、den 。由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。 1.用MATLAB 求控制系统的瞬态响应 1) 阶跃响应 求系统阶跃响应的指令有: step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随 即绘出 step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10) [y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量 在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位 阶跃输入信号下的阶跃响应曲线图。 考虑下列系统: 25 425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s 的降幂排列。则MATLAB 的调用语句:

自动控制实验报告.

成绩 北京航空航天大学 自动控制原理实验报告 学院机械工程及自动化学 专业方向工业工程与制造 班级110715 学号11071113 学生姓名吕龙 指导教师 自动控制与测试教学实验中心

实验一一、二阶系统的电子模拟及时域响应的动态测试 实验时间2013.10.30 实验编号同组同学无 一、实验目的 1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2.学习在电子模拟机上建立典型环节系统模型的方法。 3.学习阶跃响应的测试方法。 二、实验内容 1.建立一阶系统的电子模型,观测并记录不同时间常数T时的跃响应曲线,测定其过渡过程时间Ts。 2.建立二阶系统的电子模型,观测并记录不同阻尼比ζ时的跃响应曲线,测定其超调量σ%及过渡过程时间Ts。 三、实验原理 1.一阶系统: 系统传递函数为: 模拟运算电路如图1-1所示: 图1-1 由图得: 在实验当中始终取, 则, 取不同的时间常数T分别为: 0.25、 0.5、1。 记录不同时间常数下阶跃响应曲线,测量纪录其过渡过程时 ts。(取误差带)2.二阶系统: 其传递函数为:

令,则系统结构如图1-2所示: 图1-2 根据结构图,建立的二阶系统模拟线路如图1-3所示: 图1-3 取,,则及 取不同的值, , ,观察并记录阶跃响应曲线,测量超调量σ%(取误差带),计算过渡过程时间Ts。 四、实验设备 1.HHMN-1型电子模拟机一台。 2.PC 机一台。 3.数字式万用表一块。 4.导线若干。 五、实验步骤 1. 熟悉HHMN-1 型电子模拟机的使用方法,将各运算放大器接成比例器,通电调零。 2. 断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。 3. 将与系统输入端连接,将与系统输出端连接。线路接好后, 经教师检查后再通电。 4.运行软件,分别获得理论和实际仿真的曲线。 5. 观察实验结果,记录实验数据,绘制实验结果图形,填写实验数据表格,完成

相关文档