文档库 最新最全的文档下载
当前位置:文档库 › 全国优质课--等比数列的前n项求和公式

全国优质课--等比数列的前n项求和公式

全国优质课--等比数列的前n项求和公式
全国优质课--等比数列的前n项求和公式

自选课题:等比数列的前n项和

一、教学设计

1.教学内容解析

本节内容为现行人教A版《必修5》的第二章的核心内容,它在《普通高中数学课程标准(2017年版)》中,被纳入“选择性必修课程”的函数主题之中.

数列作为一类特殊的函数,既是高中函数知识体系中的重要内容,又是用来刻画现实世界中一类具有递推规律的数学模型.在现行教材的编排中,等比数列的前n项和处于等比数列的单元内容之中,是等比数列的概念与通项公式的后继学习内容,它在完善数列单元的知识结构体系,感受数列与函数的共性与差异,体会数学的整体性等方面都是不可或缺,在提升学生探究、应用和实践能力等方面,有着不可替代的作用和价值.

课标要求:学生经历等比数列前n项和公式的探索过程,掌握等比数列前n项和公式及推导方法,并能进行简单应用.

等比数列前n项和公式的知识内容之所以被列为掌握层次,主要是因为它与函数、等差数列的内在联系,尤其是它在数学史上的历史印迹,以及探索过程中所蕴含的丰富的数学思想(如特殊到一般、类比、基本量、分类讨论、函数与方程、转化与化归等),所需要的数学抽象、逻辑推理、数学建模和数学运算素养,都能充分发挥数学的育人功能。

基于以上分析,本节课的教学重点为:等比数列前n项和公式的导出及其应用。

2.学生学情分析

本节课的授课对象为宜昌市夷陵中学高一年级实验班,夷陵中学是湖北省重点中学、省级示范高中,学生有较好的数学学科基础.从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的发现、特点等方面进行类比,这是积极因素,可因势利导.然而,本节公式的推导与等差数列前n项和公式的推导有着本质的不同,对学生的思维能力提出很高的要求.另外,对于q = 1这一特殊情况,运用公式计算时学生往往容易忽视.教学对象刚进入高一不久,虽然逻辑思维能也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,缺乏深刻的理性思考。

基于以上分析,本节课的教学难点为:等比数列前n项和公式的探究及其推导。

3. 教学目标设置

(1)学生通过课前自主查阅数学史料,课堂演绎历史短剧,了解等比数列前n项和公式的来龙去脉,感受前人严谨的治学精神,体验数学的魅力和数学文化的熏陶。

(2)学生通过研究性学习和小组合作探究的方式,掌握等比数列前n项和公式的不同推导方法,领悟公式的本质,并能运用公式解决简单问题。

(3)学生在经历等比数列前n项和公式的发生、发展、推导和证明的过程中,感悟特殊到一般、方程与函数、划归与转化等数学思想,形成基本活动经验,重点提升数学抽象、逻辑推理、数学建模、数学运算等核心素养。

4. 教学策略分析

等比数列前n 项和公式是高中数学的重要内容,普遍采用的推导方法是带有技巧性的“错位相减法”,求和公式及其推导方法都是教材和教师直接“告知”,并非自然产生。有鉴于此,本节课追寻历史足迹,借鉴历史规律,揭示知识之谐,展现方法之美,引发情感之悦,营造不一样的课堂.“让学习真正发生”,首先在于教师有“让”的意识,本节课为了做到 “教师在后、学生在前”,教师先给充分的资料和空间让学生自学和互学,营造积极的探究氛围,在课堂上展开小组谈论和交流,碰撞出思想与智慧的火花。

教学流程:

5.教学过程设计

环节一:演史剧,发现等比数列提出问题

学生表演国际象棋的传说(棋盘丢麦粒问题)并设计如下问题串:

问题1:故事里每格棋盘上的麦粒依次构成一个什么数列?

生1:首项为1,公比为2的等比数列

问题2:铺满这64格棋盘需要的麦粒总数是多少?

生1:可以看成是首项为1,公比为2的等比数列的前64项和即2631222++++ 师:2631222++++等于多少,逐项相加吗?

生2:项数多,不太现实,我觉得可以和等差数列求和一样,从特殊到一般,找规律 师:如何找规律?请大家尝试一下.

生3:我是这么想的,计算出123451371531S S S S S =====,,,,,发现它们都是21n -的形式,因而我猜想646421S =-.

【设计意图】通过学生表演国际象棋的传说激发学生的兴趣和探究欲望,通过一系列的问题将故事情节与相关知识点联系起来,从情景中看到数学问题.通过结论的探求让学生学会研究陌生问题,可采用特殊到一般的方法入手。

情境性“问题串”设计要体现情景性,一般来说要具备三个要素:(1)涉及未知领域,能启动学生思维;(2)具有真实性,让学生觉得亲切、自然;(3)基于学生已有的知识水平.这样的问题情境能激发学生学习新知识的好奇心和求知欲,引发学生自主探究,让学生在解决问题中顿悟,提高学习新知的能力.

环节二:试猜想,提炼等比求和公式

师:若将公比变为q ,项数变为n ,你觉得211n q q q -++++的结果是? 等比数列前n 项求和公式 猜公式 证公式 用公式

生4:1n q -

生5:我觉得生4不对,很明显如果3q =,2n =时,结果就不对.

师:说明我们仅由2q =的猜想太过片面,为了使得结果具有更加说服性,请大家完成以下表格?

211333n

X -=++++

11444

n Y -=++++ 师:根据大家所填的表格,你能够猜想出结论吗?

生6:21111

n n q q q q q --++++=- 师:大家都同意上述结果吗?有没有需要注意的地方?

生7:我觉得不能代表1q =时的求和公式,当1q =时,由于相同数的累加即为乘法,很容易得出结果为n .

师:若将首项改为1a ,你能计算出112111-++++=n n q a q a q a a S 的结果吗?

生8:可以观察发现每项都有1a 提取公因式1a 变为)1(121-++++=n n q q q a S 即可转

化为刚刚的问题.

师:那么等比数列求和公式是什么? 生9::1=q 时数列的每一项都相等,11111na a a a a S n =++++= ,当1≠q 时, 112111-++++=n n q a q a q a a S 1

)1()1(1121--=++++=-q q a q q q a n n 师:我们可以将这两种情况写成什么样的形式?

生10:分段函数,即??

???≠--==1,1)1(1,11q q q a q na S n n

【设计意图】本环节的目的是为了让学生合理的猜出数等比数列的前n 项和公式.通过对棋盘故事的深入探讨,从公比为2,到公比为3,4直至公比为q ,这样从具体到抽象,由特殊到一般符合教学的一般规律,让学生真正意义上参与到公式的猜想中去,感受知识的生成过程.

环节三:巧变形,证明等比求和公式

师:通过同学们的共同探索我们得到了等比数列前n 项和公式.(板书公式)

师:猜想是创新能力的一部分,同学们刚才的猜想思维活跃,灵活有序,表现太精彩了,这个猜想你们觉得可靠吗?(齐答:不可靠)数学是一门严谨的学科,任何公式的猜想都需要严格的推导和证明.下面请同学们结合课前的预习,将自主探究的成果在小组内分享和交流,和组内成员一起来揭示这个公式的证明过程.

(等待1-2分钟)

生11:通过预习课本,我知道了错位相减法,这种方法是18世纪瑞士大数学家欧拉在《代数学基础》中采用的.

具体做法如下11212111--+++++=n n n q a q a q a q a a S

两边同乘以q 得n n n q a q a q a q a q a qS 11131211+++++=- 往后错一位相减可得

)11)1(1≠--=q q

q a S n n (其他小组有没有需要补充的或者存在疑惑的? 生12:我有点困惑,为什么想到两边同乘以q 呢?

生11:因为根据等比数列的定义,后一项是前一项的q 倍,乘以q 后前一项就变成了后一项,那中间很多项相同了,这样就可以达到消项的目的,只剩下很少的几项,就可以运用累加法.

生13:根据等比数列定义,既然刚才能同乘以q ,那么我觉得两边同乘以

q

1. 师:大家觉得行吗?还可以乘以什么

生14:乘以q -也可以.

师:很好,往前错位和往后错位本质都是一样的利用了等比数列的定义,来消掉了中间的很多项,看来你们已经掌握了错位相减的本质,有没有其他不同的推导方法的?

生15:我用的是掐头去尾法,这种方法是18世纪法国数学家拉克洛瓦给出来的

具体做法如下:2111112111--+++=-+++=-n n n n n q a q a a a S q a q a q a a S , 发现)(1n n n a S q a S -=-化简可得)11)1(111≠--=--=q q

q a q q a a S n n n ( 师:也很好,其他小组有没有需要补充的?

学生16:我们小组成员也另外一种不同做法,提取因式法,这种方法的原理古埃及人和印度人早已掌握,但他们没有我们今天的代数符号,古埃及人未能获得求和公式.受古人原理的启发,我们的具体做法如下:

1121111112111)

(---+=++++=++++=n n n n qS a q a q a a q a q a q a q a a S

再利用n n n a S S +=-1相当于两个方程解两个未知数,可以得到)(1n n n a S q a S -+=从

而求出q

q a q q a a S n n n --=--=1)1(111 师:这个推导过程,有没有细节上的问题?

生17:第一个公比不能等于1,还有证明中用到了n n n a S S +=-1要强调n 大于等于2. 师:方法巧妙,补充也很正确,同学们以后在书写过程中一定要特别注意细节.还有没有不同的想法的?

生18:我们小组经过讨论用的是等比定理法具体做法如下: 根据等比数列的定义)21

2312≥====-n q a a a a a a n n ( ,再利用合比定理可以得到q a S a S q a a a a a a a a n

n n n n =--=++++++++-11321432可得 从而求出)11)1(111≠--=--=q q q a q q a a S n n n (我们惊喜的发现,这种方法古希腊数学家欧几里得在《几何原本》中用过.

师:很好,观察很仔细.同学们刚才展示了四种不同时期不同数学家的证明方法,请同学们相互之间再交流下,你们觉得这四种证法都用了哪些数学思想?

生19:我觉得第1种方法用到了方程的思想,得到关于1-n n S S 与的两个方程来求n S 生20:我觉得后三种方法都用了等比数列的定义.

师:同学总结的都很好,其实四种方法都用了等比数列的定义.在数学发展史上一些伟大的数学结论都来源一些经典的猜想和数学家呕心沥血,前仆后继的不断思考,探究和证明.今天同学们的精彩表现展示了这一艰辛的历程,所有数学发现都为我们实际应用带来了巨大的方便.

【设计意图】本环节的目的是让学生收集资料证明公式,深入挖掘公式背后的隐性价值.让学生质疑,提炼本质,重视细节.其中错位相减法这种消项的方法也是后面解决差比型数列求和的一种有效方法,而等比定理法也对合分比性质做了一个巩固,当然这其中还有很多的证明方法,如裂项等;并从中感受对公式变形的本源性思想。

环节四:适运用,解决等比求和问题

师:之前我们一起猜了公式,并且也证明了公式,下面我们一起来运用公式,让我们把目光回到课堂开始提出的问题1,体验一下求和公式的便利.

生21:64,2,11===n q a 带入公式可得122

1216464

-=--=n S . 师:64次方,同学们想知道这个值有多大吗?(齐答想)约为191.810?粒,约7000亿吨,用这么多粒小麦能从地球到太阳铺设一条宽10米、厚8米的大道,按2018年世界粮食总产量25.87亿吨来计算,是全世界粮食产量的270多倍. 显然国王兑现不了他的承诺.

师:要求出和,从公式分析来看,你们觉得需要明确哪几个量.

生22::明确首项、公比和项数.

师:这刚好也是等比数列的基本量.其实在中国古代就有能人智士思考过这样的一个问题.

“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?

师:请同学们计算看看塔尖究竟有几盏灯呢?

生23:这是一个数列求和的逆向问题,设塔尖有1a 盏灯,由题意各层宝塔的红灯数依次构成以1a 为首项,2为公比的等比数列.将q=2,n=7带入等比数列求和公式可得3812

1)21(71=--a 解得31=a ,所以塔尖顶上有3盏灯. 师:解答规范,结果准确.和同学们在一起学习交流是愉快的,收获也很多,下面请同学们对本节课做个小结可以从知识也可以从思想方法都行.

生24:本节课从知识上来讲我学习了等比数列的求和公式,运用公式时要注意公式的应用条件合理选择公式,还知道了公式的4种推导方法,还有公式可以正用和逆用.从研究方法上来看,可以从特殊到一般.并且感受到数学问题源于生活,数学知识服务于生活.

师:同学们的表现让我很激动,最后我有一段话送给大家.

你从古埃及的文明中发端

在古希腊欧几里得的智慧中发展

穿越中世纪的欧洲

闪耀着古老的中华之光

把一个个奇妙的数列故事

演绎成符号公式的精灵

数学宝库中的明珠

为我们追求真理指引方向

大胆猜想 严谨求证 科学运用

文化在传承中发扬 思维在碰撞中解放

让我们在孜孜求索中勇敢摘取数学高峰之巅的王冠

【设计意图】本环节的目的是让学生巩固并运用等比数列求和公式.数学家波利亚说过“数学教学是解题的教学”,知识的呈现离不开问题,知识的巩固来自问题的解决;这一环节第一个问题和情景引入的问题遥相呼应,使得整个教学过程流畅自然.

6.课后作业与研究性学习

(研究性学习1)在棋盘的第一个格子里放上1颗麦粒,在第二个格子里放上格子序号的2倍的麦粒,在第三个格子里放上格子序号的4倍的麦粒,在第四个格子里放上格子序号的8倍的麦粒,依次类推,直到第六十四个格子.试给出足够的麦粒来实现上述要求.

(习题2)如图是瑞典数学家科赫在1906年构造的能够描述雪花形状的图案.图形的作法是:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边.反复进行这一过程,就得到雪花曲线.

设原正三角形(如图1)的边长为1,把图1,图2,图3,图4…,中图形的周长依次记为C 1,C 2,C 3,…,C n ,求数列{}n c 的前n 项和.

二、教学反思

本课注重数列教学的整体性,以系统观为指导,在数列“一般观念”的指引下,采取数列公式教学应有的 “猜想” “证明”“应用”的教学模式.除此之外,在新一轮课程改革中,力图突出教学过程中学生的主体地位,渗透数学学科的核心素养,达到数学育人的根本任务,提出了一种创新性设想,采取了研究性学习这一教学模式.让学生在数学的历史长河中自由徜徉与探索.

整个教学情景线上围绕等比数列求和的发展历史进行展开:以历史剧本为引,发现数学问题;以历史史实为例,提出等比数列求和问题;以历史名人为翼,分析并解决等比数列求和问题;教学流程上遵照三个基本的教学环节围绕“猜公式”,“证公式”,“用公式”进行展开,让学生在猜想中提炼,在证明中延伸,在应用中升华;教学策略上让学生课前收集材料,自主学习,课间展示成果,质疑互学,课下探索实例,师生交流,让学生真正意义上做课堂的主人.

可取之处:教学设计上打破常规的教学模式,采取研究性学习模式,以生为本,让学生在数学史实中不断探索前进,而教师始终扮演“引路人”的角色,通过问题驱动,历史线索完成本节课的教学目标,突出了数学源于生活,服务于生活,探索出公式课教学的一种新型有效的教学模式.让学生在以后的生活中,会用等比数列求和的眼光观察生活中数列问题(如银行中的存款的复利),用数列的语言表达生活中的数列问题,用所学到的等比数列知识分析生活中出现的等比数列求和知识.

改进之处:本节课在公式猜想,归纳,证明,运用等都做了力所能及的工作.但求和从一定程度上是一种代数变形,求和的理论基础是等比数列的定义,求和的本质是消项,让学生通过查史实忽略了对公式推导的过程,尤其是其中涉及到的一些如错位相减这一常用求和图1 图2 图3 图4

技巧认识不到位.教学环节中应增设公式推导的本源性思考,如为什么要这么变形,求和的本质是什么.当然万事万物都有两面性,教学是解决教与学的矛盾,而我们也只能尽力解决一些主要矛盾,不足之处需要在接下来的教学过程中逐步完善.路漫漫其修远兮,吾将上下而求索.

三、教学点评

本节课设计为“研究性学习课题”,突破了概念公式新授课的常规做法,通过数学文化的主线串通,配以诗歌或故事的动态画面,巧妙设置“猜、证、用”三个环节,采用立体化的方式呈现本节课三位一体的探究式教学活动,环环相扣,层层递进,实现了预期的教学目标,有效突破了本节课的重难点.数学文化和教学活动互为交融,相得益彰,多彩纷呈.(一)演绎经典,启发想象“猜”公式

引入的设计充分体现了数学的文化价值,采用学生课前演绎历史短剧的方式,再现奖赏国际象棋的发明者问题(以下简称“引例”),注意以情节化和悬念式相结合的形式展现探究问题.大胆放手让学生自主对公式的猜想探索,培养学生的想象力,激发学生的求知欲,磨练学生勇于探索、敢于创新思维品质,在探究活动中感受数学思维的奇异美、严谨美,数学公式结构的对称美、形式的简洁美.

(二)回望历史,激活思维“证”公式

巧妙引导学生的思维活动和自主探究.在分组讨论“证”公式的过程中给学生想的时间、说的机会以及展示思维过程的舞台;引导学生在证明公式的过程中学生从多角度、多侧面、多方向去思考,培养学生的创新思维能力;在探究活动中鼓励学生主动参与学习,使课堂教学真正做到让学生“动起来”,让课堂“活起来”,有效地提高了课堂教学的效率和容量.

利用多样化的学习方式激活学生的思维.运用了多种活动形式,如独立思考,同桌交流,小组合作,成果展示等,活动形式的多样性使本节课变得生动有趣;设计了分层探究方式,采用类比、开放、合作等多种探究方式,探究方式的多样化使学生的思维一直处于活跃状态,使本节课成为思维活动的有效课堂.

(三)品味文化,建构新知“用”公式

充分尊重学生的认知规律,学以致用合理构建知识.一是呼应前面的麦粒数总和问题;二是改编高考题逆向用公式;通过题目背景融入数学文化的方式,体现求和公式应用的史料性和层次性.

公式推出后,又通过对公式特征的分析帮助学生弄清公式形式和本质,明确其内涵和外延,为灵活运用公式打下基础.采用变式教学设计问题,深化学生对公式的认识和理解,通过直接用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,让全体学生都参与教学,以此培养学生的参与意识.总之,整节课采取了“情境——问题——猜想——论证”的教学模式,以实际问题作为背景创设教学情境,能深刻体会到数学是生动的、有趣的;在具体问题上,抽象出解决一般问题的方法,由“特殊到一般,再由一般到特殊”,大胆把课堂交给学生,带领学生经历知识的

形成、发生、发展的研究过程,顺势构建知识,激发学生的探索精神,培养数学核心素养.

等比数列求和教案

课题:等比数列的前n项和(一课时) 教材:浙江省职业学校文化课教材《数学》下册 (人民教育出版社) 一、教材分析 ●教学内容 《等比数列的前n项和》是中职数学人教版(基础模块)(下)第六章《数列》第四节的内容。是数列这一章中的一个重要内容, 就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.就内容的人文价值来看,等比数列的前n项和公式的探究与推导需要学生观察、归纳、猜想、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体. 二、学情分析 ●知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用. ●认知水平与能力:高二学生具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有所不同,这对学生 q 这一特殊情况,学生也往往容易忽略,尤的思维是一个突破,另外,对于1 其是在后面使用的过程中容易出错. 三、目标分析 依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标: 1.教学目标

●知识与技能目标 理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题. ●过程与方法目标 通过对公式的研究过程,提高学生的建模意识及探究问题、培养学生观察、 分析的能力和协作、竞争意识。 ●情感、态度与价值目标 通过学生自主对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于 探索、敢于创新,磨练思维品质,培养学生主动探索的求知精神和团结协作精神, 感受数学的美。 2.教学重点、难点 ●重点:等比数列前n项和公式的推导及公式的简单应用. ●难点:错位相减法的生成和等比数列前n项和公式的运用. 突破难点的手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点, 激发他们的兴趣,鼓励学生大胆猜想、积极探索,并及时给予肯定;二抓知识的 切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予 适当的提示和指导. 四、教学模式与教法、学法 根据学生的认知特点,本着学生为主体教师为主导的原则采用多元教学法,让学生至于情景中。学生动手操作实践分组讨论探究,而教师重在启发,引导。基于教学平台和数学软件让学生可观,可感,可交流的环境中轻松的学习。 五、教学过程

数列前n项和的求和公式

数列求和的基本方法和技巧 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2) 1(2) (11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11) 1() 1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6 1 12++==∑=n n n k S n k n 5、 213)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:13 2)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列 ??????,22,,26,24,2232n n 前n 项的和. 三、倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+???+++-n a a a n ,… [例7] 求数列{n(n+1)(2n+1)}的前n 项和.

等比数列前n项和公式-教案

课时教案

一、复习提问 回顾等比数列定义,通项公式 (1)等比数列定义:(, (2)等比数列通项公式: (3)等差数列前n项和公式的推导方法:倒序相加法。二、问题引入: 阅读:课本“国王赏麦的故事”。 问题:如何计算 引出课题:等比数列的前n项和。 三、问题探讨: 问题:如何求等比数列的前n项和公式 回顾:等差数列的前n项和公式的推导方法。 倒序相加法。 等差数列它的前n项和是 根据等差数列的定义 (1) (2) (1)+(2)得:

探究:等比数列的前n项和公式是否能用倒序相加法推导? 学生讨论分析,得出等比数列的前n项和公式不能用倒序相加法推导。 回顾:等差数列前n项和公式的推导方法本质。 构造相同项,化繁为简。 探究:等比数列前n项和公式是否能用这种思想推导? 根据等比数列的定义: 变形: 具体: …… 学生分组讨论推导等比数列的前n项和公式,学生不难发现:由于等比数列中的每一项乘以公比都等于其后一项。 所以将这一特点应用在前n项和上。 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 (1) (2) 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。

当q=1时, 当时, 学生经过讨论还发现了其他的推导方法,让学生课后整合自己的思路,将各自的推导过程展示在班级学习园地,同学们共享探究。 由等比数列的通项公式推出求和公式的第二种形 式: 当时, 四.知识整合: 1.等比数列的前n项和公式: 当q=1时, 当时, 2.公式特征: ⑴等比数列求和时,应考虑与两种情况。 ⑵当时,等比数列前n项和公式有两种形式,分别都 涉及四个量,四个量中“知三求一”。 ⑶等比数列通项公式结合前n项和公式涉及五个量, , 五个量中“知三求二”(方程思想)。 3.等比数列前n项和公式推导方法:错位相减法。

等比数列求和公式

等比数列求和公式 万年历2013年3月6日星期三10:43 癸巳年正月廿五设置闹钟站内搜索支持本站公益活动等比数列 等比数列的通项公式 等比数列求和公式(1) 等比数列:a (n+1)/an=q (n∈N)。 (2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m); (3) 求和公式:Sn=n*a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1) (q为比值,n为项数) (4)性质: ①若m、n、p、q∈N,且m+n=p+q,则am*an=ap*aq; ②在等比数列中,依次每k项之和仍成等比数列. ③若m、n、q∈N,且m+n=2q,则am*an=aq^2 (5) "G是a、b的等比中项""G^2=ab(G ≠0)". (6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。 等比数列 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。

(1)等比数列的通项公式是:An=A1*q^(n-1)若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。 (2)等比数列求和公式:Sn=nA1(q=1) Sn=A1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =(a1-an*q)/(1-q) =a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n) (前提:q≠1) 任意两项am,an的关系为an=am·q^(n-m) (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n} (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。 记πn=a1·a2…an,则有π2n-1=(an)2n-1,π 2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义

求前n项和公式的常用方法

求数列前N项和的常用方法 核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。 一.用倒序相加法求数列的前n项和 如果一个数列{a n},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。 例题1:设等差数列{a n},公差为d,求证:{a n}的前n项和S n=n(a1+a n)/2 解:S n=a1+a2+a3+...+a n① 倒序得:S n=a n+a n-1+a n-2+…+a1② ①+②得:2S n=(a1+a n)+(a2+a n-1)+(a3+a n-2)+…+(a n+a1) 又∵a1+a n=a2+a n-1=a3+a n-2=…=a n+a1 ∴2S n=n(a2+a n) S n=n(a1+a n)/2 点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+a n=a2+a n-1=a3+a n-2=…=a n+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。 二.用公式法求数列的前n项和 对等差数列、等比数列,求前n项和S n可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 例题2:求数列的前n项和S n 解: 点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。 三.用裂项相消法求数列的前n项和 裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。 例题3:求数列(n∈N*)的和

数列.版块三.等比数列-等比数列的通项公式与求和.学生版

【例1】 在等比数列{}n a 中,22a =,5128a =,则它的公比q =_______,前n 项和n S =_______. 【例2】 等差数列{}n a 的前n 项和为n S ,且53655-=S S ,则4=a . 【例3】 设等比数列{}n a 的前n 项和为n S ,若 63 3S S =,则96=S S ( ) A .2 B . 7 3 C .83 D .3 【例4】 设{}n a 是公比为q 的等比数列,1>q ,令1(12)=+=L n n b a n , ,,若数列{}n b 有连续四项在集合{}5323193782--, ,,,中,则6=q . 【例5】 等比数列{}n a 的首项11a =-,前n 项和为n S ,公比1q ≠,若 105S S =31 32 ,则105a a 等于 . 【例6】 等比数列{}n a 中,1512a =,公比1 2 q =-,用n ∏表示它前n 项的积:12...n n a a a ∏=, 则1∏,2∏,…,n ∏中最大的是_______. 【例7】 已知数列{}n a 的前n 项和为n S ,1 (1)()3 N n n S a n *=-∈. ⑴求1a ,2a ,3a 的值; ⑵求n a 的通项公式及10S . 典例分析 等比数列的通项公式与求和

【例8】 在等比数列{}n a 中,12327a a a ??=,2430a a += 试求:⑴1a 和公比q ;⑵前6项的和6S . 【例9】 在等比数列{}n a 中,已知对任意正整数n ,有21n n S =-,则22212 n a a a +++=L ________. 【例10】 求和:2(1)(2)(),(0)n a a a n a -+-++-≠L . 【例11】 在等比数列{}n a 中,423a = ,35209a a +=.若数列{}n a 的公比大于1,且3log 2 n n a b =,求数列{}n b 的前n 项和n S . 【例12】 在各项均为正数的等比数列{}n b 中,若783b b ?=,则3132log log b b ++……314log b +等于( ) A .5 B .6 C .7 D .8 【例13】 等比数列}{n a 中,已知对任意自然数n ,=+?+++n a a a a 32121n -, 则222 12n a a a ++???+=( ) A .()221n - B .()1213n - C .41n - D .()1 413 n -

数列求和公式证明

1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边 数学归纳法可以证 也可以如下做比较有技巧性 n^2=n(n+1)-n 1^2+2^2+3^2+......+n^2 =1*2-1+2*3-2+....+n(n+1)-n =1*2+2*3+...+n(n+1)-(1+2+...+n) 由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3 所以1*2+2*3+...+n(n+1) =[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3 [前后消项] =[n(n+1)(n+2)]/3 所以1^2+2^2+3^2+......+n^2 =[n(n+1)(n+2)]/3-[n(n+1)]/2 =n(n+1)[(n+2)/3-1/2] =n(n+1)[(2n+1)/6] =n(n+1)(2n+1)/6 2)1×2+2×3+3×4+...+n×(n+1)=? 设n为奇数, 1*2+2*3+3*4+...+n(n+1)= =(1*2+2*3)+(3*4+4*5)+...+n(n+1) =2(2^2+4^2+6^2+...(n-1)^2)+n(n+1) =8(1^2+2^2+3^2+...+[(n-1)/2]^2)+n(n+1) =8*[(n-1)/2][(n+1)/2]n/6+n(n+1) =n(n+1)(n+2)/3 设n为偶数, 请你自己证明一下! 所以, 1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3 设an=n×(n+1)=n^2+n Sn=1×2+2×3+3×4+...+n×(n+1) =(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n) =n(n+1)(2n+1)/6+n(n+1)/2 =n(n+1)(n+2)/3

教案-《等比数列的前n项和公式》

高二数学组集体备课教案(第七周10月17日) 课题:2.5等比数列的前n 项和(两个课时) 教学目标:(1)知识目标:理解等比数列的前n 项和公式的推导方法;掌握等比数列 的前n 项和公式并能运用公式解决一些简单问题; (2)能力目标:提高学生的建模意识,体会公式探求过程中从特殊到一 般的思维方法,渗透方程思想、分类讨论思想; (3)情感目标:培养学生将数学学习放眼生活,用生活眼光看数学的思 维品质; 教学重点:(1)等比数列的前n 项和公式; (2)等比数列的前n 项和公式的应用; 教学难点:等比数列的前n 项和公式的推导; 教学方法:问题探索法及启发式讲授法 教 具:多媒体 教学过程: 一、复习提问 回顾等比数列定义,通项公式 (1)等比数列定义:q a a n n =-1(2n ≥,)0≠q (2)等比数列通项公式: ) 0,(111≠=-q a q a a n n (3)等差数列前n 项和公式的推导方法:倒序相加法。 二、问题引入: 阅读:课本第55页“国王赏麦的故事”。 问题:如何计算 引出课题:等比数列的前n 项和。 三、问题探讨: 问题:如何求等比数列{}n a 的前n 项和公式 =n S 123n a a a a ++++ 22111111--=+++++ n n a a q a q a q a q 2363 6412222S =+++++

倒序相加法。 等差数列 n a a a a ,,321+它的前n 项和是=n S n a a a a +++321 根据等差数列的定义1+-=n n a a d []1111()(2)(n-1)=+++++++ n S a a d a d a d (1) []()(2)-(n-1)=+-+-++ n n n n n S a a d a d a d (2) (1)+(2)得:12()=+n n S n a a 1()2 += n n n a a S 探究:等比数列的前n 项和公式是否能用倒序相加法推导? =n S 123n a a a a ++++ 22111111--=+++++ n n a a q a q a q a q 221 --=+++++ n n n n n n n n a a a a S a q q q q 学生讨论分析,得出等比数列的前n 项和公式不能用倒序相加法推导。 回顾:等差数列前n 项和公式的推导方法本质。 构造相同项,化繁为简。 探究:等比数列前n 项和公式是否能用这种思想推导? 根据等比数列的定义: 1 )(++=∈n n a q n N a 变形:1+=n n a q a 具体:12=a q a 23=a q a 34=a q a …… 学生分组讨论推导等比数列的前n 项和公式,学生不难发现: 由于等比数列中的每一项乘以公比q 都等于其后一项。 所以将这一特点应用在前n 项和上。 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 22111111n n n S a a q a q a q a q --=+++++ (1) 23111111-= +++++ n n n qS a q a q a q a q a q (2) 由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。

最新数列前n项和的求和公式

数列求和的基本方法和技巧 1 一、利用常用求和公式求和 2 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 3 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+= 4 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 5 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6112++==∑=n n n k S n k n 6 5、 213)]1(21[+==∑=n n k S n k n 7 [例1] 已知3log 1log 23-=x ,求???++???+++n x x x x 32的前n 项和. 8 9 10 11 12 13 14 [例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n n S n S n f 的最大值. 15 16 17 18 19 20 21 22 23 二、错位相减法求和 24

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前 25 n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. 26 [例3] 求和:132)12(7531--+???++++=n n x n x x x S ………………………① 27 28 29 30 31 32 33 [例4] 求数列??????,2 2,,26,24,2232n n 前n 项的和. 34 35 36 37 38 39 40 41 42 43 44 45 三、倒序相加法求和 46 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原47 数列相加,就可以得到n 个)(1n a a +. 48 [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 49 50 51 52 53 54 55 四、分组法求和 56

等比数列的通项公式

等比数列的通项公式 例1 已知{a n}为等比数列, 求证:当m+n=p+l时 a m·a n=a p·a l 证明: 设等比数列的首项a1,公比为q, ∵m+n=p+l ∴a m·a n=a p·a l得证. 评注: 本题证明过程并不难,但结论:等比数列中,下标之和相等则对应项之积相等,这在解决有关等比数列的问题时常使解决的过程变得很简捷. 例2 在等比数列{a n}中 (1)已知:a1+a2+a3=6,a2+a3+a4=-3,求a3+a4+a5+a6+a7+a8的值; (2)已知a1+a2+a3+a4+a5=31,a2+a3+a4+a5+a6=62,求通项a n. 分析:利用等比数列的定义和性质整体观察. 解 (1)不难看出a1+a2+a3,a2+a3+a4,a3+a4+a5,a4+a5+a6,a5+a6+a7,a6+a7+a8成等比数列,且公比为q(即数列{a n}的公比).

设为{A n},即A1=6,A2=-3, (2)由已知可以看到 ∴a1(1+2+4+8+16)=31,a1=1 ∴a n=2n-1. 评注: 以上二题均可用列方程和方程组解决,但掌握等比数列有关性质整体考虑问题会使运算更简捷. 例3 在各项均为正数的等比数列{a n}中,若a5a6=9,则log3a1+log3a2+…+log3a10= [ ] A.12 B.10 C.8 D.2+log35 解: 根据等比中项的性质, a5a6=a1a10=a2a9=a3a8=a4a7=9.

∴a1a2…a9a10=(a5a6)5=95. ∴log3a1+log3a2+…+log3a10 =log3(a1a2 (10) =log395 =5log39 =10. 故正确答案为(B). 评注: (1)应用等比中项求解某些等比数列问题,简便快捷. (2)对等比数列{a n},有以下结论: 例4 若{a n}为等比数列,且a n>0,已知a5a6=128 则log2a1+log2a2+…+log2a10的值为 [ ] A.5 B.28 C.35 D.40

数列前n项和的求和公式

For personal use only in study and research; not for commercial use 数列求和的基本方法和技巧 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2) 1(2) (11-+=+= 2、等比数列求和公式:????? ≠--=--==) 1(11)1() 1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6 1 12++== ∑=n n n k S n k n 5、 213)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列 ??????,22,,26,24,2232n n 前n 项的和. 三、倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+???+++-n a a a n ,… [例7] 求数列{n(n+1)(2n+1)}的前n 项和.

等比数列的求和公式

等比数列的求和公式 一、 基本概念和公式 等比数列的求和公式: q q a n --1)1(1 (1≠q ) q q a a n --11(1≠q ) n S = 或 n S = 1na (q = 1) 即如果q 是否等于1不确定则需 要对q=1或1≠q 推导性质:如果等差数列由奇数项,则S 奇-S 偶=a 中 ;如果等差数列由奇数项,则S 偶-S 奇= d n 2 。 二、 例题精选: 例1:已知数列{n a }满足:43,911=+=+n n a a a ,求该数列的通项n a 。 例2:在等比数列{n a }中,36,463==S S ,则公比q = 。 - 例3:(1)等比数列{n a }中,91,762==S S ,则4S = ; (2)若126,128,66121===+-n n n S a a a a ,则n= 。

例4:正项的等比数列{n a }的前n 项和为80,其中数值最大的项为54,前2n 项的和为6560,求数列的首项1a 和公比q 。 例5:已知数列{n a }的前n 项和n S =1-n a ,(a 是不为0的常数),那么数列{n a }是? 例6:设等比数列{n a }的前n 项和为n S ,若9632S S S =+,求数列的公比q 。 例7:求和:)()3()2()1(32n a a a a n ----+-+-+-。 例8:在 n 1和n+1之间插入n 个正数,使这n+2个数成等比数列,求插入的n 个数的积。 例9:对于数列{n a },若----------,,,,,123121n n a a a a a a a 是首项为1,公比为31的等比数列,求:(1) n a ;(2) n a a a a +---+++321。

等比数列前n项和公式

数列 等比数列前n项和公式 ■(2015甘肃省白银市会宁二中高考数学模拟,等比数列前n项和公式,选择题,理3)公比不为1等比数列{a n}的前n项和为S n,且-3a1,-a2,a3成等差数列,若a1=1,则S4=() A.-20 B.0 C.7 D.40 解析:设数列的公比为q(q≠1),则∵-3a1,-a2,a3成等差数列, ∴-3a1+a3=-2a2,∵a1=1,∴-3+q2+2q=0, ∵q≠1,∴q=-3.∴S4=1-3+9-27=-20.故选A. 答案:A ■(2015甘肃省兰州市七里河区一中数学模拟,等比数列前n项和公式,选择题,理11)已知函数y=x3在x=a k时的切线和x轴交于a k+1,若a1=1,则数列{a n}的前n项和为() A.n B. - C.3- D.3- - 解析:∵函数y=x3,∴y'=3x2,∴- - =3, 即 - =3, 化简,得3a k+1=2a k,即, 又∵a1=1,∴S n=- - =3- - ,故选D. 答案:D ■(2015甘肃省白银市会宁二中高考数学模拟,数列与不等式相结合问题,填空题,理16)已知数列{a n}的前n项和为S n,且S n+1=2a n,则使不等式+…+<5×2n+1成立的n的最大值为.解析:当n=1时,a1+1=2a1,解得a1=1. 当n≥2时,∵S n+1=2a n,S n-1+1=2a n-1, ∴a n=2(a n-a n-1),∴ - =2. ∴数列{a n}是以1为首项,2为公比的等比数列. ∴a n=2n-1,∴=4n-1. ∴+…+ =1+4+42+…+4n-1=- - (4n-1). ∴(4n-1)<5×2n+1. ∴2n(2n-30)<1,可知使得此不等式成立的n的最大值为4. 答案:4 专题2数列与函数相结合 问题 1

等比数列通项公式教案

6.3 等比数列的通项公式 一、教学目标 1.知识目标: (1)理解等比数列的定义; (2)理解等比数列通项公式. 2.能力目标: (1)应用等比数列的通项公式,解决数列的相关计算,培养学生的计算技能; (2)应用等比数列知识,解决生活中实际问题,培养学生处理数据技能和分析解决问题的能力. 3.情感目标: (1)经历等比数列的通项公式的探索,增强学生的创新思维; (2)关注数学知识的应用,形成对数学的兴趣。 二、教学重难点 1.教学重点:等比数列的通项公式. 2.教学难点:等比数列通项公式的推导. 三、教学过程 (一)创设情境兴趣导入 做一做:将一张纸连续对折5次,列出每次对折纸的层数 (二)动脑思考探索新知 新知识: ?=(层); 第1次对折后纸的层次为122 ?=(层); 第2次对折后纸的层次为224 第3次对折后纸的层次为428 ?=(层); 第4次对折后纸的层次为8216 ?=(层); 第5次对折后纸的层次为16232 ?=(层). 各次对折后纸的层次组成数列 2,4,8,16,32. 这个数列的特点是,从第2项起,每一项与它前面一项的比都等于2.如果一个数列的首项不为零,且从第2项开始,每一项与它前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做这个等比数列的公比,一般用字母q来表示.

由定义知,若{}n a 为等比数列,q 为公比,则1a 与q 均不为零,且有1n n a q a +=,即 1n n a a q +=? (6.5) (三)巩固知识 典型例题 例1 在等比数列{}n a 中,15a =,3q =,求2a 、3a 、4a 、5a . 解 213243545315, 15345, 453135, 1353405.a a q a a q a a q a a q =?=?==?=?==?=?==?=?= 试一试:你能很快地写出这个数列的第9项吗? 如何写出一个等比数列的通项公式呢? (四)动脑思考 探索新知 与等差数列相类似,我们通过观察等比数列各项之间的关系,分析、探求规律. 设等比数列{}n a 的公比为q ,则 ()()2123211234311, , ,a a q a a q a q q a q a a q a q q a q =?=?=??=?=?=??=? …… 依此类推,得到等比数列的通项公式: .11-?=n n q a a 知道了等比数列{}n a 中的1a 和q ,利用公式(6.6),可以直接计算出数列的任意一项. 想一想:等比数列的通项公式中,共有四个量:n a 、1a 、n 和q ,只要知道了其中的任意三个量,就可以求出另外的一个量. 针对不同情况,应该分别采用什么样的计算方法? (五)巩固知识 典型例题 例2求等比数列

等比数列的定义及其通项公式

等比数列的定义及其通项公式 【基础回顾】 1.等比数列的定义 1 n n a q a -=(q 为常数且0q ≠,n ∈N +且2n ≥) 2.等比数列的通项公式及其性质 11n n m n n m a a q a a q --???→==←???推广 特例 等比数列中没有零这个项且其中的项要么全部是正或全部是负或正负间隔出现,总之,等比..数列的奇数项符号相同..........,偶数项的符号相同.........等比数列的通项形式是指数式... . 3.等比中项 2211(2)(1)()n n n n n k n k m n p q a a a n a a a n k a a a a m n p q -+-+???→???→=≥=≥+=+=+←???←???推广推广特例特例 4.等比数列的证明 (1)定义法:1 (2n n a q n a -=≥,n ∈N +,q 是非零常数) (2)等比中项法:211n n n a a a -+=?(2n ≥,且0n a ≠) (3)通项公式法:n n a kq =(,k q 为常数,且0kq ≠) (4)求和法:n n S Aq B =+,且0A B +=,0AB ≠. 5.函数性质 【典型例题】 例1 已知无穷等比数列{}n a 的首项为1a ,公比为q . (1)数列n a ,1n a -, ,2a ,1a 也成等比数列吗?如果是,写出它的首项和公比; (2)依次取出{}n a 的所有奇数项,组成一个新数列,这个数列还是等比数列吗?如果是,写出它的首项和公比; (3)数列{}n ca (其中c 为常数且0c ≠)是等比数列吗?如果是,写出它的首项和公比. 例2 在等比数列{}n a 中. (1)已知13a =,2q =-,则6a = ;(2)已知32n n a =?,则1a = ,d = ; (3)它的首项和公比均为2,若它的末项为32,则这个数列共有 项; (4)已知12a =,7128a =,则q = ;(5)已知427a =,3q =-,则7a = ; (6)已知320a =,6160a =,则n a = ;(7)若4n n a a +=,则q = . 例3 (1)已知{}n a 为等比数列,且243546225a a a a a a ++=,那么35a a +的值等于 ; (2)已知等比数列{}n a 中,3833a a +=,4732a a =,且数列{}n a 是递增数列,则数列{}n a 的公比q 为 . 练习:(1)等比数列1a -,2a ,8a , 的第四项为 ; (2)已知各项均为正数的等比数列{}n a 中,1235a a a ??=,78910a a a =,则456a a a = . 例4 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数和第三个数的和是12,求这四个数.

高二数学 等比数列求和公式的推导过程及方法

等比数列求和公式的推导过程及方法 Sn=a1+a2+……+an q*Sn=a1*q+a2*q+……+an*q=a2+a3+……+a(n+1) Sn-q*Sn=a1-a(n+1)=a1-a1*q^n (1-q)*Sn=a1*(1-q^n) Sn=a1*(1-q^n)/(1-q) 等差数列 通项公式: an=a1+(n-1)d 前n项和: Sn=na1+n(n-1)d/2 或Sn=n(a1+an)/2 前n项积: Tn=a1^n + b1a1^(n-1)×d + ……+ bnd^n 其中b1…bn是另一个数列,表示1…n中1个数、2个数…n个数相乘后的积的和等比数列 通项公式: An=A1*q^(n-1) 前n项和: Sn=[A1(1-q^n)]/(1-q) 前n项积: Tn=A1^n*q^(n(n-1)/2) 设等比数列{an}的公比为q,前n项和为Sn Sn=a1+a2+a3+……+a(n-1)+an =a1+a1*q+a1*q^2+……+a1*q^(n-2)+a1*q^(n-1) 等式两边乘以公比q q*Sn=a1*q+a1*q^2+a1*q^3+……+a1*q^(n-1)+a1*q^n 两式相减 Sn-q*Sn =a1+(a1*q-a1*q)+(a1*q^2-a1*q^2)+……+[a1*q^(n-1)-a1*q^(n-1)]-a1*q^n =a1-a1*q^n 即(1-q)*Sn=a1*(1-q^n) 得Sn=a1*(1-q^n)/(1-q) F=100*[1+(1+0.06)^3+(1+0.06)^2+(1+0.06)] =100*[(1+0.06)^0+(1+0.06)^1+(1+0.06)^2+(1+0.06)^3] 可以看出中括号内是首项为1、公比为1+0.06的等比数列前4项求和 套用上面的公式,a1=1,q=1+0.06,n=4,可得 F=100*{1*[1-(1+0.06)^4]/[1-(1+0.06)]} =100*[(1+0.06)^4-1]/0.06 第1页共1页

§2.5等比数列前n项和公式教学设计

§2.5等比数列前n项和公式教学设计 一、教材分析 1、教学内容:《等比数列的前n项和》是高中数学人教版《必修5》第二章《数列》第5节的内容,教学大纲安排本节内容授课时间为两课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导过程并充分揭示公式的结构特征、内在联系及公式的简单应用. 2、教材分析:《等比数列的前n项和》是数列这一章中的一个重要内容,就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.就内容的人文价值来看,等比数列的前n项和公式的探究与推导需要学生观察、归纳、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体. 二、学情分析 1、知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用. 2、认知水平与能力:高一学生初步具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有所不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生也往往容易忽略,尤其是在后面使用的过程中容易出错. 3、任教班级学生特点:我班学生基础知识还行、思维较活跃,应该能在教师的引导下独立、合作地解决一些问题. 三、目标分析 教学目标 依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标: 1.知识与技能 理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能简单的应用公式. 2.过程与方法 在推导公式的过程中渗透类比,方程,特殊到一般的数学思想、方法,优化学生思维品质.

等比数列的概念和通项公式(教学设计)

《等比数列》(第1课时)教学设计 授课地点:武威八中 授课时间:2015年4月22日 授课人:武威六中杨志隆 一、教学目标 知识与技能 1.理解等比数列的概念; 2.掌握等比数列的通项公式; 3.会应用定义及通项公式解决一些实际问题。 过程与方法 培养运用归纳类比的方法去发现并解决问题的能力。通过实例,归纳并理解等比数列的概念,探索并掌握等比数列的通项公式,培养学生严密的思维习惯。 情感态度与价值观 充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。 二、教学重点、难点 教学重点: 等比数列的概念及通项公式; 教学难点: 通项公式的推导及初步应用。 三、教学方法 发现式教学法,类比分析法 四、教学过程 (一)旧知回顾,情境导入 1. 回顾等差数列的相关性质 设计意图:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点,为等比数列的学习做铺垫。 2.情境展示 情境1:“一尺之棰,日取其半,万世不竭。” 情境2:一张纸的折叠问题 把以上实例表示为数学问题,并引导学生通过观察、联想,得到两个数列: ① ②1,2,4,8,16,32,64 设计意图:让学生通过观察,得到两个数列的共同特点:从第二项起,每一项与它前面一项的比都等于同一个常数.由此引入等比数列。 (二)概念探究 1.引导学生通过联想并类比等差数列给出该数列的名称:等比数列 2.归纳总结,形成等比数列的概念. 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫等比数列,这个常数叫做等比数列的公比(引导学生经过类比等差数列的定义得出)。同时给出等比中项的定义,并和等差中项做比较,加深学生对概念的理解。 3.对等比数列概念的深化理解

常用的一些求和公式

下面是常用的一些求和公式:

a1, a1+d, a1+2d, a1+3d, .... (d为常数) 称为公差为d的等差数列.与等差数列相应的级数称为等差级数,又称算术级数. 通项公式 前n项和 等差中项 a1, a1q, a1q2, a1q3....,(q为常数) 称为公比为q的等比数列.与等比数列相应的级数称为等比级数,又称几何级数. 通项公式 前n项和 等比中项

无穷递减等比级数的和 更多地了解数列与级数:等差数列与等差级数(算术级数) 等比数列 等比数列的通项公式 等比数列求和公式 (1) 等比数列:a (n+1)/an=q (n∈N)。 (2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m); (3) 求和公式:Sn=n*a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1) (q为比值,n为项数) (4)性质: ①若m、n、p、q∈N,且m+n=p+q,则am*an=ap*aq; ②在等比数列中,依次每k项之和仍成等比数列. ③若m、n、q∈N,且m+n=2q,则am*an=aq^2 (5) "G是a、b的等比中项""G^2=ab(G ≠ 0)". (6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。 等比数列 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。 (1)等比数列的通项公式是:An=A1*q^(n-1) 若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

构造等比数列求通项公式

构造等比等差数列求通项公式 一. 预备知识: 问题:已知数列{}n a 的首项为14a =. (1)若12n n a a -=+,求n a ; (2)若12n n a a -=,求n a (3)若1(3)2(3)n n a a --=-; (4)若1(1)3(1)n n a a --=- (5)若1()()n n a A B a A --=-(A ,B 为常数且n a A ≠,B 0≠),求n a 上述2,3,4,5题从结构形式上看有何共同特点?_______________________ 公比与哪项的系数有关? _____________________________________ 二. 典例分析: 例1:已知111,22(2,)n n a a a n n N -+==+≥∈,求n a 反思:(1)确认什么类型可以化归成等比数列?如何化? 巩固练习:1.已知数列{}n a 的首项为16a =. (1) 若131(1)n n a a n +=+≥,求n a ;(2)1124(2),n n a a n +-=+≥求n a 2.已知数列{}n a 中,13a =,1323n n a a +=-,求n a 例2. 设数列{}n a 的前n 项和为n S ,11,a =当2n ≥时,1.n n a tS n -+=求{}n a 的通项公式

一:预备知识:(1)已知数列{}n a 中,11a =,12(2),n n a a n -=+≥求n a (2)已知数列{}n a 中,11a =,1 112,n n a a --=求n a (3)已知数列{}n a 中,11a =,1130n n n n a a a a -+--=,求n a (4)已知数列{}n a 中,11a =,112250n n n n a a a a -+--=,求n a 上述2,3,4题形式有何共同特点? 你能出一道类似的题目吗? 推广:110n n n n Aa Aa Ba a ---+=(AB 0≠),且1a c =,求n a 二. 典例分析: 例:3:已知数列{}n a 的前n 项和为n S 满足1120n n n n S S S S +++-=且11a =,求n a 变式练习:已知数列{}n a 的前n 项和为n S 满足113n n n a S S ++=,且12a =,求n a 练习1:设(),(2) x f x a x =+()x f x =有唯一解,111(),()()1003n n f x f x x n N ++==∈,求2004x 的值及n x 2.已知函数()(0)3 ax f x b bx = ≠+的图像经过点()3,1,且方程()f x x =有两个相等的实数根.(1)求实数,a b 的值;(2)若正项数列{}n a 满足:113,()2n n a a f a +==,求通项n a 3.已知数列{}n a ,1121,43 n n n a a a a +==+,求{}n a 的通项公式 4.已知数列{}n a 满足:11,1,21n n n a a a a +==+求数列11n n a a +?????? 的前n 项和 5.已知数列{}n a 的前n 项和为n S ,且满足111(2), 2.21 n n n S S n a S --=≥=+ (1)求证:1n S ??????是等差数列;(2)求n a 的表达式.

相关文档