文档库 最新最全的文档下载
当前位置:文档库 › 学长福利——电动汽车电机驱动控制技术的研究现状及其发展趋势

学长福利——电动汽车电机驱动控制技术的研究现状及其发展趋势

学长福利——电动汽车电机驱动控制技术的研究现状及其发展趋势
学长福利——电动汽车电机驱动控制技术的研究现状及其发展趋势

编号:35

《电动汽车》课程论文

电动车电机驱动控制技术的研究现状及

其发展趋势

Study Status and DeveIopment Trend of

EIectric VehicIe

ControI TechnoIogy of Motor Driving

班级:车辆1103

姓名(及手机):李朗

学号:1101504321

任课教师:郑建祥

2013年5月14号

电动车电机驱动控制技术的研究现状及其发

展趋势

摘要:当今世界上节能和环保日益受到重视,因此电动车技术的发展步伐正在加快。本文综合评述了电动车的关键技术—电机驱动技术,并对未来的发展趋势作了展望。

关键词:电动汽车;电机;驱动系统

Study Status and DeveIopment Trend of

EIectric VehicIe

ControI TechnoIogy of Motor Driving Abstract:The development of the technology for electric vehicle is speeding up,as more attentions have been paid to the world energy saving and environment protection.This article described the key technology to electric vehicle———the motor driving control system,and made a prospect for the future technology.

Key words:electric vehicle;motor;driving

1.课题背景及选题意义

由于能源和环境的压力,节能减排、以减少二氧化碳为目标的“低碳”经济的概念越来越得到全社会的认可。与内燃机汽车相比,电动汽车具有无污染、低噪声、高效率、结构简单、维修方便等优点,以其为代表的新能源汽车受到国内外的极大关注。根据 TRU Group 的预测,2015、2019 年全球电动汽车产量约为 200 万辆、425 万辆。而根据美国阿贡实验室的评估报告,电动汽车控制器约占整车生产成本的 9.5%结合以上数据分析,2015 年后全球电动汽车驱动电动机控制器所占市场份额大约为210亿元。目前,国外大部分汽车企业在电动汽车领域有充足的积累,控制策略成熟度高,整车节能效果良好,控制器产品通过市场检验证实了其可靠性,尤其美国、日本及欧洲国家所拥有的电动汽车研发技术处于世界领先水平。目前国内的车用驱动电机系统已达到了小批量生产的水平,包括上述的各种类型电机以及风冷、水冷等冷却形式,涵盖5kw~180kw功率范围。部分系统指标(如比功率和系统效率)达到了国际先进水平。系统中应用了矢量控制、直接转矩控制等控制方法,采用了Igbo等全控型电力电子器件,dsp等先进的数字处理器,can总线通讯模式等控制技术,对参数辨识,效率优化,死区补偿等专门的问题开展了有针对性的研究,取得了卓有成效的成果,有一大批车辆已在城市道路上进行示范运行。目前车用驱动电机系统尚需提高的地方:

①全运行范围内的转矩、转速控制精度,效率最优化;

②系统可靠性及耐久性尚未得到充分验证,和汽车行业的严格要求还有一定差距;

③动力总成装置的集成度不高,机电一体化不够;

④关键材料(如高性能硅钢片,绝缘材料)和关键元器件(如Igbo模块,cpu 芯片)仍依靠进口,限制了选择余地和成本降低;

⑤尚未形成完整的、满足汽车工业标准的供应商体系。虽然具备了小批量供货的能力,但产品尚未通过ts16949质量体系标准认证。

今后仍需要重点研究的内容:

①系统的集成化;

②高性能电机控制策略,电机效率优化;

③系统热管理;

④系统失效模式分析,系统可靠性、耐久性预测与快速评估方法;

⑤系统电磁兼容,环境适应性研究及试验验证,电机系统成本控制等

鉴于此,国家在《电动汽车科技发展“十二五”专项规划》中明确指出开发系列纯电驱动汽车及其能源供给系统。电动机驱动控制器作为电动汽车的关键部件,其性能优劣直接影响整车的动力性与经济性。电动汽车电驱动系统应具有尽可能高的转矩密度、良好的转矩控制能力、高可靠性及在宽车速范围内的高效率。电动汽车电驱动功能的实现涉及电机、电力电子、微处理器、蓄电池、控制理论等多学科技术领域,是赶超世界汽车先进水平的核心技术。因此,对电动汽车电驱动系统的研究开发具有重要的社会意义和工程实际意义。

2.电动汽车用电机概述

相比传统汽车,电动汽车的动力通过柔性的电缆传输且驱动电机和变速器的布置多种多样,省去了联轴器和传动轴等装置因此结构较为简单。在结构上,电动汽车可分为动力能源系统、电机驱动系统和辅助控制系统,结构如图1.1所示。电机

驱动系统一般由驱动电机、控制系统(包括控制器和传感器)、减速及传动装置、车轮等组成,它是电动汽车关键部分之一。电机驱动系统通过接收控制系统发来的命令,把动力电池的能量转变为电机的机械能,经由传动系统将动力传递到车轮上,保证车辆正常行驶。电动汽车研究的最终目的以为了替代当前的燃油车,在性能上要保证车辆能够频繁的起停、加减速、乘坐的舒适性和恶劣环境的通过性等,因此对于电动汽车的驱动系统要有较高的要求:

①电动汽车用电动机应具有简单耐用、过载能力强、加速性好、转矩的动态响应快的特点。

②电动机要能实现对转矩和功率的快速平滑的响应且能满足恒转矩区和恒功率区的调速。能在起步、爬坡等低速范围运行时输出较大的恒定转矩;在额定转速以上运行时,恒功率输出,以满足超车加速等高速行驶要求,提高了调速范围。其良好的自动调速功能减轻了司机的操纵强度,达到了与内燃机车相同的加速踏板响应效果。

③电动汽车用电动机应具有再生制动功能。可以在汽车减速或下坡时,回收制动能量储存在动力电池中,提高了整车的能量利用率,也增加了车辆的续驶里程。

④为满足减少系统损耗和延长续驶里程的要求,电动汽车用电动机驱动系统效率尽量达到最优。而且电机应有较高的瞬时功率和功率密度,以满足高速行驶的需要。

⑤要求车用电机可靠性好,以适应在恶劣环境下的长期工作;便于使用与维修;尺寸和重量小,便于整车布置;价格便宜,利于批量应用。

图 1.1 电动汽车系统简图

Fig1.1 Diagram of electric vehicle system

目前,根据电动车辆所装备的电机类型,驱动系统一般可分为直流电机驱动系统和交流电机驱动系统。表 1.1 为相应的电动汽车用电机的性能比较。直流电动机的低速恒转矩和高速恒功率的特性非常适合汽车对转矩的要求并且结构简单,控

制技术成熟,它是最早用于电动车的,像日本东京大学研制的 UOT 电动汽车就采用了直流串励电动机。但由于效率低下、体积和质量较大、可靠性较差、其电刷和换向器要经常维护,不适用高速运转且换向装置工作时易产生火花而对其他电子器件造成影响等缺点,基本上已被永磁同步、无刷直流和感应电机等交流电机等取代。

表 1.1 各种电动车用电机的性能

相比来说,交流感应电机(也称交流异步电机) 效率高、调速范围宽、可靠性好、便于维护、体积和质量小、价格便宜,是目前在电动汽车上得到广泛应用的电机。美国的电动汽车普遍采用感应电动机驱动,如 Chrysler 公司生产的 EpicVan,Ford 公司生产的 Ranger EV,通用汽车公司生产的 IMPACT 和 EV1 电动汽车。还有德国大众的 Golf IV 电动汽车等。我国的胜利 SL6700DD 电动客车,郑州华联ZK6820HG 电动轻型客车等也采用感应电动机。

永磁交流电机亦称永磁无刷电机(PMBLM),它包括永磁同步电机(PMSM)和无刷直流电机(BLDCM)。前者凭借功率密度大、效率高、体积小、调速范围宽等优点,在电机驱动系统中的发展前景最为广阔,现已应用在多种电动汽车上。而后者虽具有相同的优点,但是转矩脉动大,控制较前者复杂。日本尼桑公司的ALTRA6,丰田公司的 RAV4 和 PRIUS 采用永磁同步电机驱动。英国、法国的电动汽车则主要采用永磁无刷直流电机。

交流永磁电机采用永磁体励磁,具有效率高,功率密度大等优点,但是高温工作时存在退磁现象会降低其性能,而且与感应电机相比成本较高,可靠性和使用寿命差。

开关磁阻电机虽然结构简单可靠、运行效率高、成本低、易于控制;但工作噪声大、转矩脉动严重,在电动汽车的驱动系统中应用较少,如国内东风汽车开发的EQ6110HEV。

3.电机驱动系统的关键技术

3.1 电机控制技术的发展

本论文针对现在应用较多的感应电机进行研究。早期的控制方法有 V/F 和转差率调速法,但是其调速范围小,转矩特性不好,不适合电动汽车的频繁起停和加减速的要求。通过分析交流感应电机的模型可知它是一个高阶多变量、强耦合的非线性系统,而早期的控制算法根据电机的稳态等效电路和计算公式实现其控制,系统的动态控制效果不理想。现在对交流感应电机各种控制方法的研究主要集中在基于磁场定向的矢量控制、直接转矩控制等,其相同之处在于实现对控制量的解耦,以确保交流电机的控制性能接近或达到直流电机的控制效果。

20 世纪 80 年代中期,德国的 M.Depenbrock 教授和日本的 I.Takahashi 教授分别提出了六边形直接转矩控制方案和圆形直接转矩控制方案。其后,该理论又被应用到弱磁调速范围。直接转矩控制(Direct Torque Control,DTC)方法是用空间矢量的分析方法分析电动机的数学模型,采用定子磁场定向,电流不需解耦,对定子磁链和电磁转矩进行直接控制,转矩的响应快速。这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现 PWM 脉宽调制和系统的高动态性能。它直接抓住电机输出特性,省去了复杂的矢量变换并对电动机的模型进行简化。其结构简单,控制思路新颖、简洁明了,克服了矢量控制运算复杂的缺点,转矩响应迅速,动静态特性优良,但是缺点也十分明显:电压、电流波形畸变比较严重,转矩脉动较大。

1971 年德国 F.Blaschke 提出了磁场定向的矢量控制(field-oriented vectorcontrol,FOC)矢量控制的主要原理是模拟直流电机的控制,基于磁场定向原理,通过解耦分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制目的,其控制精度高、动态响应快。现在矢量控制的发展已比较成熟,交流驱动驱动系统大都采用此技术。然而,实际运用中转子磁链观测的准确性及控制的复杂性问题使得实际的控制效果不如理论分析的好。这是矢量控制技术在实践上的不足之处,但是随着各种高性能芯片成本的降低,矢量控制的应用也将越来越广泛。

虽然几乎每一次电机的发展都有理论方面的突破,但对于较成熟的交流驱动系统来说,再次推出具有重大意义的理论不太容易。因此在比较长的时期内仅是对现有的各种控制理论加以结合,相互吸收、取长补短;要么在电机控制中引进其他学科的理论和方法,进行交叉贯通。近年来,随着电机及驱动系统的发展,控制方法的总体趋势是智能化和数字化。变结构控制、模糊控制、神经网络、自适应控制、专家系统、遗传算法等控制技术都已在电动汽车的电机驱动控制系统中广泛使用。其大大简化了控制系统结构、增强了抗干扰能力;响应迅速,整个系统的综合性能得到提高。

3.2 电机的磁链观测技术

从交流电机控制技术的发展来看,要想提高电机的性能就必须解决一些关键问题,如磁链的观测、参数的在线辨识、转速的估计等。磁链观测不准确会对系统控制性能特别是转矩脉动和效率产生较大影响。因此,准确的磁通观测在电机控制中有根本性的意义,它是基于矢量控制理论的电流矢量的解耦和控制策略制定的前提条件,而不断改进的的参数辨识方法和转速估计方法归根到底都是为了提高磁链观测的精确性,使电流矢量解耦较为完全。同时,磁链观测器想要减小对参数的依赖,进一步提高性能需要有更好的参数辨识方法。它们之间是相互影响、相互促进的,从而改善了控制策略的性能。

在感应电机矢量控制中,要实现变量解耦准确和转矩、转速的闭环控制,就必须准确测量磁链的相位和幅值。早期的方法是利用安装电机齿槽内的磁场传感器来

进行磁链测量,但因工艺较复杂随之被淘汰了。随着控制技术的发展,高性能控制芯片的出现,现在依靠电机的电压、电流和转速等来计算磁链的相位和幅值。目前常用的磁通观测模型有电压模型和电流模型等。前者根据定子电压和电流来计算磁链,因此叫 UI 模型。模型简单,易于实现,但是它是一个纯积分模型在低速时积分器响应特性不是完全线性且定子压降会变小,这会造成积分误差,影响观测的准确性。后者基于转子电压矢量依靠电压、电流和转速计算磁通,因此称为 IN 模型。模型较复杂,而且计算严重依赖电机转子时间常数,当参数发生变化时导致磁场定向不准,解耦不完全,高速运行时还易引起磁通震荡。现在人们针对这些缺点进行了不同程度的研究,取得了一定的成果。

3.3 无传感器控制技术

在异步电机矢量控制系统中,由于转速闭环控制可提高系统的动态性能,常用光电码盘或测速发电机等测量电机的转速。随着对矢量控制技术研究的深入,有的传感器价格昂贵,对安装精度要求也高,其信号也容易受到电磁干扰。带速度传感器的驱动系统中,其速度反馈变的不可靠。这不仅提高了驱动系统的成本,还限制了它在恶劣环境下的应用。所以,在电动汽车中对于无速度传感器的交流电机控制系统的研究成为热点。无速度传感器控制策略利用容易得到的定子电压、电流信号,通过对静止坐标系下的电机模型的分析,获得转速的控制算法并将转速其反馈回控制系统中,不仅实现了交流电机转速的高性能控制,也降低了系统硬件的复杂性和成本。R. Joetten 于 1983 年首先将该技术应用于电机控制中,使得驱动控制技术的发展进入了新的阶段。现在对于速度的估计方法一般有以下几种:

①基于数学模型的开环估计速踏板响应效果。

该方法利用电机的定、转子磁链和电压矢量方程,通过一定的变换来计算转速。这种方法简单直接、计算量较小,但是缺少反馈校正环节,当模型中电机参数发生变化时估计的准确性就会大大降低,严重影响系统的动静态性能。

②模型参考自适应法

该方法是从 20 世纪 50 年代发展起来的,它的基本思想是:在系统的参考输入作用下,模型的输出可视为系统受控对象所应具有的理想输出。受外界干扰和内部的随机变化的影响,受控对象的实际输出与理想输出之间会出现误差。自适应环节根据误差信号,按照设计的自适应律向自适应控制器发出调整信号。控制器根据其参考输入信号、受控对象实际输出的反馈信号和调整信号,对受控对象发出相应的控制信号,使误差减小以至消失,也就是使受控对象的输出接近于理想状态。

该方法的关键在于自适应规律的确定,通常有三种基本方法:以局部最优理论为基础的设计方法包括梯度法、最速下降法、共轭梯度法等;以李雅普诺夫函数为基础的方法,还有以超稳定与正性动态系统理论为基础的方法。第一种设计方法可以快速的靠近理想模型,但是可能会导致系统失稳,而后两种方法则能够保证系统稳定性,因而应用广泛。

③扩展卡尔曼滤波法

扩展卡尔曼滤波法(Extended Kalman Kilter,EKF)是线性系统状态估计的卡尔曼滤波法应用于非线性状态和参数估计的一种有效方法。它是基于最小方差估计的一种递推计算方法,可以对系统状态在线估计,能够有效地抑制随机干扰和测量噪声,实现对系统的实时控制。该算法可以在很宽的转速范围内工作,但是计算量非常大且容易受电机参数的影响,实现较困难,实际应用的很少。

④转子槽谐波法

该方法转速信息的获取是根据齿谐波信号,估计精度不会受电机参数的影响,

只取决于监测的准确性和动态特性。目前常用的方法大都采用定子电流的谐波检测,不依赖电机理想模型,因此系统的鲁棒性较好,同时由于定子电流在低频时仍然能够检测,所以理论上对低速也有较好的速度估算效果。但是,计算转速相关的定子电流齿谐波频率时容易受到干扰信号影响,且实时性较差。

总体看来,无速度传感器矢量控制是以后的一个重要的研究方向,其面临的的关键性问题是参数辨识和磁链观测。现在各种新的控制理论的出现和具有高速处理能力的微处理器的上市,能够解决控制算法中的计算问题,保证了各种最新的控制算法能用于电机控制的研究中,不断地提高系统的控制效果。

3.4 PWM 技术

新型电力电子器件的出现、变频技术、电机控制技术的发展和以计算机为基础的全数字化控制技术的应用极大的促进了交流驱动系统的应用。在新能源汽车领域,逆变器在电动汽车用交流驱动控制系统中是一个非常重要的装置,而 PWM逆变技术作为其核心技术,引起了人们的重视。该技术作为驱动系统控制的关键部分之一,它具有变压变频、高效节能、动态响应快,可靠性好等优点,在保证实现直流电源的逆变控制的同时提高了电源的能量利用效率,从而延长汽车的续驶里程,提高了车辆的性能。脉宽调制(Pulse-Width Modulation ,PWM)技术最早开始于 20 世纪 70 年代,它是利用逆变器中半导体功率器件(如 MOSFET,IGBT 等)的导通与关断实现了直流电压到电压脉冲列的转变,通过改变脉冲的宽度或周期来改变负载端的平均电压,以及同时控制脉冲信号的宽度和脉冲列的周期来实现变压变频并且能够使系统谐波得到有效的抑制和消除的一种控制技术。

图 1.2 SPWM 调制原理

Fig1.2 Modulation principle of SPWM

PWM 控制技术的发展经历了不断完善和创新的过程,尤其是实现数字化控制后,其形式变得多种多样,从早期的电压波形正弦到电流波形正弦再到磁通正弦;提高效率,减小转矩脉动到消除噪声等。人们一般认为,A.schonung和H.Stemmler 在1964年提出弦脉宽调制技术(Sinusoida Pulse-WidthModulation ,简称 SPWM)首先开创了通信领域的调制技术应用在交流电机系统变压变频控制中的新局面。随后 Bristol 大学的 S.R.Bowes 提出了规则采样数字化PWM 方案,为数字化控制提供了理论基础,奠定了 SPWM 技术在交流驱动控制系统的主导地位。所谓 SPWM 控制就是对正弦载波 N 等分后,利用每等分的面积用幅值相同而脉宽不等的矩形波替代正弦波,每一个矩形波的中点就是对应的正弦波的中点。实际中以正弦波与三角载波比较来确定脉宽及功率器件的开关时刻,其原理如图 1.2 所示。近年来随着对 SPWM 的深入研究发现其实现方便但却存在谐波畸变大、直流电压利用率低、转矩脉动大等问题,为了进一步提高逆变器的控制性能,人们相继提出了优化 PWM 控制、电流正弦 PWM 控制、磁通正弦PWM控制等方法。

优化PWM技术最早由 A.Kernick 提出,它主要应用于开关频率高的场合,根据预定的目标(如开关损耗最小、谐波畸变和损耗最小、转矩脉动最小等)预先计算所有工作频率范围内的开关角度,通过查表等方式输出 PWM 波形。该控制方式主要有谐波消去 PWM 控制、效率最优 PWM 控制等。由于需要计算每个周期内的所有开关角度并在整个工作区间内寻优,计算较为复杂,实时动态控制难以实现。

电流正弦 PWM 控制又叫电流滞环 PWM 控制,把电流给定值和电流实际值比较后的差值输入滞环比较器中,比较的结果控制功率器件的导通或关断。由于实际电流随给定电流在某一误范围内变化,比较器的滞环宽度的设置影响控制的精度。该控制方式硬件实现简单、电流控制响应快、鲁棒性好,但是电流谐波大,尤其在直流电压低、高速运行或电流太小时,控制效果十分不理想。而且三个滞环需单独控制,增加了控制的难度。

磁通正弦 PWM 控制又称空间电压矢量 PWM 控制(space voltage vector PWM,SVPWM),是由德国学者 H.W.Vander Broek 等提出。在供给交流电动机以三相对称正弦波电压时,利用逆变器的不同开关模式所产生的实际磁链矢量去逼近其理想的基准磁链圆,根据其比较的结果确定逆变器的开关状态,产生 PWM 控制波形。该方法模型简单,易于数字化实现,与 SPWM 相比电压利用率高、开关损耗小、控制效果较好。

4.电动车用电机驱动控制技术发展趋势

车用电机的发展趋势如下:

①电机本体永磁化:永磁电机具有高转矩密度、高功率密度、高效率、高可靠性等优点。我国具有世界最为丰富的稀土资源,因此高性能永磁电机是车用驱动电机的重要发展方向。

②电机控制数字化:专用芯片及数字信号处理器的出现,促进了电机控制器的数字化,提高了电机系统的控制精度,有效减小了系统体积。

③电机系统集成化:通过机电集成(电机与发动机集成或电机与变速箱集成)和控制器集成,有利于减小驱动系统的重量和体积,可有效降低系统制造成本。5.结论与展望

电机驱动系统是电动汽车的动力核心,它通过接收上层控制单元的命令驱动电动汽车按照命令行驶。因此对电机驱动系统的控制策略的研究显得十分重要,其控

制的效果会对车辆的性能产生影响。仅将电机理论、电力电子理论和现代控制理论积木式地组合在一起的研究方法和生产方式将不再适应系统高性能的要求。电机驱动系统将多门学科的理论和技术有机地熔融与交叉,电力电子理论、现代控制理论、材料科学和制造技术的发展,都将对电机驱动系统产生深刻的影响,并提供有力的支持。整个电机驱动系统将趋向小型化,轻量、简单,低成本,高容量,高效节能,反应迅速,调速性能好,运行稳定可靠,无须维护,对环境影响不大。

参考文献

[1]胡骅,宋慧.电动汽车(第三版)[M].北京:人民交通出版社,2012.1.

[2]李广.电动汽车驱动控制系统的研究[D].沈阳.沈阳工业大学,2012.

[3]杨国良.电动车电机驱动控制技术的研究现状及其发展趋势[J].实验室研究与探索,2005,24(11)

[4] 王立国.纯电动客车动力总成控制策略研究[D].长春:吉林大学,2009.

[5] 王相勤.当前我国电动汽车发展的瓶颈问题及对策[J].能源技术经济,2011,23(3):1-6.

[6]旦高亮.电动汽车用交流异步电机驱动系统控制策略[D].重庆:重庆大学,2012.

[7] 范玉宏,张维,陈洋.国外电动汽车发展分析及对我国的启示[J].华中电力,2010,23(6):8-12.

[9] Kumar Rajesh,Gupta R.A. ,Bhangale S.V. .Vector control techniques for induction motordrive: A review [J].International Journal of Automation and Control,2009,3(4):284-306.

[10] RenJun-Jie, LiuYan-Cheng, ZhaoYou-Tao,etal. Research on the different vector controlschemes with larger power marine PMSM [J]. Dianji yu Kongzhi Xuebao/Electric Machines and Control,2011,15(6):32-37.

[11] Barambones O. ,Alkorta R. .Vector control for induction motor drives based on adaptivevariable structure control algorithm [J].Asian Journal of Control,2010,12(5):640-649.

电动汽车车载网络综述

电动汽车车载网络 引言 汽车技术发展到今天,很多新型电气设备得到了大量应用,尤其是电动汽车的电气系统已经变成了一个复杂的大系统。为了满足电动汽车各子系统的实时性要求,需要对公共数据实行共享 电动汽车作为清洁绿色的新能源汽车, 将在未来交通体系中发挥越来越重要的作用。 汽车中电器的技术含量和数量是衡景汽车性能的一个重要标志。汽车电器技术含量和数量的增加,意味着汽车性能的提高。但汽车电器的增加,同样使汽车电器之间的信息交且桥梁——线束和与其配套的电器接插件数量成倍上升。在1955年平均一辆汽车所用线束总长度为45 米。为了在提高性能与控制线束数量之问寻求一种有效的解决途径,在20世纪80年代初,出现了一种基于数据网络的车内信息交互方式——车载网络。 一、汽车车载网络的组成 车载网络按照应用加以划分,大致可以分为4 个系统:车身系统,动力传动系统、安全系统和信息系统。

图1奥迪A4的车载网络系统 车身系统电路主要有二大块: 主控单兀电路、受控单兀电路、门控单兀电路。 主控单元按收开关信号之后,先进行分析处理,然后通过CAN 总线把控制指令发 送给各受控端,各受控端晌应后作出相应的动作。 车前、车后控制端只接收主拄 端的指令,按主控端的要求执行,并把执行的结果反馈给主控端。门控单元不但 通过总接收主控端的指令,还接收车门上的开关信号输入。根据指令和开关信号, 门控单元会做出相应动作,然后把执行结果发往主控单元。 在动力传动系统内,动力传动系统模块的位置比较集中, 可固定在一处,利 用网络 将发动机舱内设置的模块连接起来。在将汽车的主要因素一跑、停止 与拐弯这些功能用网络连接起来时,就需要较高速的网络传输速度。动力数据总 线一般连接3块电脑,它们是发动机、ABS/ EDL 及自动变速器电脑(动力CAN 数 据总线实际可以连接安全气囊、四轮驱动与组合仪表等电脑 )。总线可以同时传 递10组数据,发动机电脑5组、AB 》EDL 电脑3组和自动变速器电脑2组。数 据总线以500Kbit /s 速率传递数据,每一数据组传递大约需要 0.25ms ,每一电 控单元7-20ms 发送一次数据。优先权顺序为ABVEDL 电控单元--发动机电控单 元 -- 自动变速器电控单元 因此,线束变长, 而且容易受到干扰的影响。 为了防干扰应尽量降低通信速 度,但,丹 駅 咗'i / - Q I "—-r__ L] 车身控 & 阳Poy 灯朮平调幣转萱/灯 厂是砸硕! —

电动汽车四轮独立驱动技术

电动汽车四轮独立驱动技术 第一章:绪论 1.1 引言 内燃机汽车自20世纪初出现至今,在其自身随人类科技的进步经历了巨大的变的过程中也给人类生活和生产带来了巨大方便,为人类社会的进步做出了巨大的贡献,但其消耗日益紧缺的石油并产生大量污染物也使人类赖以生存的环境恶化。因此近年来由于环境恶化及能源紧张等问题,迫切需要开发低能耗,无污染的汽车。因此,电动汽车成为21世纪汽车技术研究的热点。 混合动力汽车与纯电动汽车是电动汽车研究的两个分支。经过近些年的发展,电动汽车技术日趋成熟,部分产品已进入商业化应用如Toyota Prius。目前,电动汽车传动系统多数在传统内燃机汽车的传动系基础上进行一些改变,进而将电动机及电池等部件加入总布置中。这种布置难以充分发挥电动汽车的优势。为使电动汽车对传统内燃机汽车形成更大的竞争优势,设计出适合电动汽车的底盘系统势在必行。而四轮独立驱动技术则可使电动汽车底盘实现电子化,主动化,大大提高电动汽车的性能。使电动汽车与传统汽车相比具有更强的竞争力。 1.2 四轮独立驱动技术的特点 电动汽车四轮独立驱动系统是利用四个独立控制的电动机分别驱动 汽车的四个车轮,车轮之间没有机械传动环节。其电动机与车轮之间可以是轴式联接也可以将电动机嵌入车轮成为轮式电机,车轮一般带有轮边减速器。这种驱

动系统与传统汽车驱动系统相比有以下特点: (一)传动系统得到减化,整车质量大大减轻。由电动机直接驱动车轮甚至两者集成为一体。这样省掉了离合器、变速器及传动轴等传动环节,传动效率得到提高,也更便于实现机电一体化。传动系质量在汽车整车质量中占有很大比重,机械传动系的消失,使汽车很好的实现了轻量化目标。另外,由于动力传动的中间环节减少,传动系的振动及噪声得到改善。甚至在采用纯电力驱动时,可实现无声行驶。这是美国海军的"RST-V"侦察车及其新一代军用"悍马"汽车采用四轮独立驱动技术的重要原因。 (二)与传统汽车相比,四轮独立驱动系统可通过电动机来完成驱动力的控制而不需要其他附件,容易实现性能更好的、成本更低的牵引力控制系统(TCS)、防抱死制动系统(ABS)及动力学控制系统(VDC)。传统汽车的TCS 与ABS系统均须对发动机与制动系进行联合控制才能达到较好性能,由于机械系统的响应较慢,且受制动器,液压管路及电磁阀的延迟等因素影响,传统内燃机汽车的ABS系统与TCS系统的实际时间延迟达50~100ms。限制了TCS系统与ABS系统的性能提高,而且增加能耗。与内燃机相比,无论在加速还是减速,电动机转矩响应都非常快且容易获得其准确值,这对TCS、ABS、VDC系统来说是非常重要的。因此电动机作为ABS、TCS及VDC系统的执行器是非常理想的。 (三)对各车轮采用制动能量回收系统,则可大大提高汽车能量利用效率,且与采用单电动机驱动的电动汽车相比,其能量回收效率也获得显著增加。这对提高电动汽车续驶里程是很重要的。 (四)实现汽车底盘系统的电子化、主动化。现代汽车驱动系统布置

纯电动汽车驱动电机应用概述

纯电动汽车驱动电机应用概述 郑金凤 胡冰乐 张翔 (福建农林大学机电工程学院,福建 福州 350002) 摘 要:介绍了目前纯电动汽车的发展状况,叙述了纯电动汽车驱动电机不同类型的特点及相关的控制方法。还介绍了一些目前应用比较广泛的驱动电机控制方法的主要内容及其所解决的相关问题。 关键词:纯电动汽车 驱动电机 矢量控制 直接转矩控制 中图分类号:TP202 文献标识码:A Driving Motor for Electric Vehicles Application Overview Zheng Jinfeng Hu Bingle Zhang Xiang (College of Mechanical and Electronic Engineering,Fujian Agriculture and Forestry University,Fuzhou 350002,China) Abstract: the current state of development of electric vehicles and features of the electric vehicles are described.Otherwise,driving motors and its control methods are narrated. Also major contents of some driving motor control methods applied extensively at present and its related issues are discussed. Key words:Electric vehicle,Drive motor,Vector control,Direct Torque Control 引言 由于环境保护越来越受消费者和政府的重视,以及能源价格的不断上涨,使得世界的汽车制造商都纷纷加大开新能源汽车开发力度。在去年金融危机的影响下,今年以来,由于全球大多主流的汽车市场纷纷出现衰退,尤其以美国和日本为代表的两大汽车市场出现了急剧下滑,使得美国和日本汽车厂家不得不加速原本保守的计划,从而重新刺激美国和日本等原有核心市场。而电动汽车以电能为能源,具有零排放无污染的突出优点,因此备受汽车界的推崇。在中国,政府今年也不断的推出各种政策来促进纯电动汽车的发展。回顾一下国际上电动汽车的发展史,连这次至少有四次,世界汽车工业界要启动纯电动汽车,但是前三次都失败了。前三次失败主要是因为电池。前三次基本上都是以铅酸电池为基础,由于他的比能量和比价格都比较差,所以没有得到推广。现在随着电池技术的不断发展,使得纯电动汽车的推广得以实现。现在纯电动汽车主要采用的是锂电池,锂电池的比能量是铅酸电池的八到十倍,且质量轻。今年比亚迪、丰田、奇瑞等汽车公司都将推出各自的纯电动汽车。并且电动汽车将可能慢慢成为汽车发展的一种趋势和必然[1,2,3]。 1各种电动汽车驱动电机的性能[4-11] 纯电动汽车关键的难点重点在于电池技术和驱动电机。电池技术已经在一定程度上得到了突破。下面主要讨论一下驱动电机的相关状况。 1.1电动汽车驱动电机控制的关键问题 电动汽车是以车载电源为动力,并采用电动机驱动的一种交通工具。电机及其驱动系统是电动汽车的核心部件之一,由于电动汽车在运行过程中频繁起动和加减速操作,对驱动系统的有着很高的要求。下面主要阐述控制过程中的一些关键问题: (1)用在电动汽车的电动机应具有瞬时功率大、过载能力强(过载3~4倍)、加速性能好,使用寿命长的特点。 (2)电动汽车用电动机调速范围应该宽广,包括恒转矩区和恒功率区。要求在低速运行时可以输出大恒定转矩,来适应快速起动、加速、负荷爬坡等要求;高速时能够输出恒定功率,能有较大的调速范围,以适应平坦的路面、超车等高速行驶要求。

纯电动汽车的驱动电机系统详解

纯电动汽车的驱动电机系统详解 驱动电机系统是电动汽车三大核心系统之一,是车辆行驶的主要驱动系统,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。一、驱动电机系统介绍驱动电机系统由驱动电机、驱动电机控制器(MCU)构成,通过高低压线束、冷却管路与整车其他系统连接,如图1所示。整车控制器(VCU)根据加速踏板、制动踏板、挡位等信号通过CAN网络向电机控制器MCU发送指令,实时调节驱动电机的扭矩输出,以实现整车的怠速、加速、能量回收等功能。电机控制器能对自身温度、电机的运行温度、转子位置进行实时监测,并把相关信息传递给整车控制器VCU,进而调节水泵和冷却风扇工作,使电机保持在理想温度下工作。驱动电机技术指标参数,如表1所示,驱动电机控制器技术参数如表2所示。1、驱动电机永磁同步电机是一种典型的驱动电机(图2),具有效率高、体积小、可靠性高等优点,是动力系统的执行机构,是电能转化为机械能载体。它依靠内置旋转变压器、温度传感器(图3)来提供电机的工作状态信息,并将电机运行状态信息实时发送给MCU。旋转变压器检测电机转子位置,经过电机控制器内旋变解码器解码后,电机控制器可获知电机当前转子位置,从而控制相应的IGBT功率管导通,按顺序给定子三个线圈通电,驱

动电机旋转。温度传感器的作用是检测电机绕组温度,并提信息供给MCU,再由MCU通过CAN线传给VCU,进而控制水泵工作、水路循环、冷却电子扇工作,调节电机工作温度。驱动电机上有一个低压接口和三根高压线(V、U、W)接口,如图4所示。其中低压接口各端子定义如表3所示,电机控制器也正是通过低压端口获取的电机温度信息和电机 转子当前位置信息。2、驱动电机控制器驱动电机控制器MCU结构如图5所示,它内部采用三相两电平电压源型逆变器,是驱动电机系统的控制核心,称为智能功率模块,它以IGBT(绝缘栅双极型晶体管)为核心,辅以驱动集成电路、主控集成电路。MCU对所有的输入信号进行处理,并将驱动电机控制系统运行状态信息通过CAN2.0网络发送给整车控制器VCU。驱动电机控制器内含故障诊断电路,当电机出现异常时,达到一定条件后,它将会激活一个错误代码并发送给VCU整车控制器,同时也会储存该故障码和相关数据。驱动电机控制器主要依靠电流传感器(图6)、电压传感器、温度传感器来进行电机运行状态的监测,根据相应参数进行电压、电流的调整控制以及其它控制功能的完成。电流传感器用于检测电机工作实际电流,包括母线电流、三相交流电流。电压传感器用于检测供给电机控制器工作的实际电压,包括动力电池电压、12V蓄电池电压。温度传感器用于检测电机控制系统的工作温度,包括IGBT模块的温度。驱动电

电动车驱动电机和控制技术综述

电动车驱动电机及其控制技术综述 摘要:简述了电动车驱动系统及特点,在此基础上详细分析并比较了电动车主要电气驱动系统,着重介绍了一种深埋式永磁同步电动机及其控制系统,最后简要概述了电动车电气驱动系统的发展方向。 1 概述 电动车是一种安全、经济、清洁的绿色交通工具,不仅在能源、环境方面有其独特的优越性和竞争力,而且能够更方便地采用现代控制技术实现其机电一体化的目标,因而具有广阔的发展前景。 现有电动车大致可以分为以下几个主要部分:蓄电池、电池管理、充电系统、驱动系统、整车管理系统及车体等。驱动系统为电动车提供所需的动力,负责将电能转换成机械能。无论何种电动车的驱动系统,均具有基本相同的结构,都可以分成能源供给子系统、电气驱动子系统、机械传动子系统三部分,其中电气驱动子系统是电动车的心脏,主要包括电动机、功率电子元器件及控制部分。如图1所示。 其中,电动车驱动系统均具有相同或相似的功能模块,如图2所示。 2 电动车电气驱动系统比较 电动机的类型对电气驱动系统以及电动车整体性能影响非常大,评价电动车的电气驱动系统实质上主要就是对不同电动机及其控制方式进行比较和分析。目前正在应用或开发的电动车电动机主要有直流电动机、感应电动机、永磁无刷电动机、开关磁阻电动机四类。由这四类电动机所组成的驱动系统,其总体比较如下表所示。 电动车电气驱动系统用电动机比较表 下面分别对这几种电气驱动系统进行较为详细地分析和阐述。 2.1 直流驱动系统

直流电动机结构简单,具有优良的电磁转矩控制特性,所以直到20世纪80年代中期,它仍是国内外的主要研发对象。而且,目前国内用于电动车的绝大多数是直流驱动系统。 但普通直流电动机的机械换向结构易产生电火花,不宜在多尘、潮湿、易燃易爆环境中使用,其换向器维护困难,很难向大容量、高速度发展。此外,电火花产生的电磁干扰,对高度电子化的电动汽车来说将是致命的。此外,直流电动机价格高、体积和重量大。随着控制理论和电力电子技术的发展,直流驱动系统与其它驱动系统相比,已大大处于劣势。因此,目前国外各大公司研制的电动车电气驱动系统已逐渐淘汰了直流驱动系统。 2.2 感应电动机驱动系统 2.2.1 感应电动机 电动车感应电动机与一般感应电动机相比较具有以下特征: (1)稳定运行时,与一般感应电动机工况相似。 (2)驱动电动机没有一般感应电动机的起动过程,转差率小,转子上的集肤效应不明显。 (3)运行频率不是50hz,而是远远在此之上。 (4)采用变频调速方式时,转速与极数之间没有严格对应关系。 为此,电动车感应电动机设计方面如下特点: (1)尽力扩大恒转矩区,使电动机在高速运转时也能有较高转矩。而要提高转矩,则需尽量减小定转子之间的气隙,同时减小漏抗。 (2)更注重电动机的电磁优化设计,使转矩、功率和效率等因素达到综合最优。 (3)减少重量、体积,以增加与车体的适配性。 2.2.2 控制技术 应用于感应电动机的变频控制技术主要有三种:v/f控制、转差频率控制、矢量控制。20世纪90年代以前主要以pwm方式实现v/f控制和转差频率控制,但这两种控制技术因转速控制范围小,转矩特性不理想,而对于需频繁起动、加减速的电动车不太适宜。近几年

电动汽车用永磁同步电机控制系统设计

硕士学位论文 二0一五 年 六 月 作者姓名 指导教师 学科专业 控制工程

摘要 本文在开始先介绍了研究电动汽车的背景及其意义,并介绍了电动汽车在国内外的发展现状,然后从电动汽车的燃油经济性,驱动性,安全性及舒适度,三个方面分析了电动汽车比其他燃料汽车存在的优越性。电动机是电动汽车的核心部件,本文中从其驱动方式把电动机分为四大类,直流有刷电动机,永磁同步电动机,永磁无刷直流电动机和开关磁阻电动机。本章从工作原理与性能方面分析了,这四种电动机各存在的优点和不足。从中得出永磁同步电动机是电动汽车比较理想的选择。本文刚开始介绍了永磁同步电动机PMSM的三种不同的控制方式,恒压频比控制,矢量控制,直接转矩控制,并从三者之间比较得出,PMSM采用直接转矩控制DTC的方式有着比其他两者更好的稳定性。 随后从永磁同步电动机PMSM的结构及其特点,分析了其优越性,并建立数学模型,根据空间矢量坐标关系推导出PMSM的在各坐标系下DTC的原理。本章分析了定子磁链与电磁转矩的估算和滞环控制,通过其原理研究了开关表控制的方式,并对PMSM的直接转矩控制DTC的Matlab/Simulink仿真,最终得出了DTC 较其它控制方式的稳定性。 其次分析了永磁同步电机PMSM的直接转矩控制DTC存在的诸多缺点,并提出基于SVM技术的SVPWM的控制方式,即空间矢量调制DTC控制策略,通过Matlab/Simulink仿真,得出SVPWM比PMSM DTC有着更好的稳定性。 TI公司推出的TMS320F2812 DSP芯片的控制系统设计,从硬件电路的设计和软件的设计,两个方面研究了该芯片。DSP硬件方面包含了智能模块的自保护特性,并设计了检测电路,保护电路,驱动电路和CAN通信等模块,软件系统方面分析了,其初始化流程图,接收流程图等。 关键词:永磁同步电机;直接转矩控制;DSP;SVPWM

电动汽车用车电机及控制器技术条件

ID号:9034790 受控文件归档日期:2009-04-21 09:13:27 编码:ID号:xxxxxxx 受控文件归档日期:2009-04-xx 编 码: JLYY-XX -09 电动汽车用电机及控制器 技术条件 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司 二○○九年五月

前言 为了规范电动汽车用电机及控制器的技术特性,控制驱动电机及控制器系统质量和出厂检验规则编制了本标准。 本标准由浙江吉利汽车研究院有限公司提出。 本标准由浙江吉利汽车研究院有限公司新能源技术开发部负责起草。 本标准主要起草人:刘波。 本标准于2009年5月13日发布并实施。

1 范围 本标准规定了吉利电动汽车使用的电机及控制器型号、要求、检验规则、标志、随车技术文件、包装、运输、贮存及质量承诺。 本标准适用于吉利电动汽车用的驱动电机及其控制器。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 755-200 旋转电机定额和性能 GB/T 2423.17-1993 电工电子产品基本环境试验规程试验Ka:盐雾试验方法 GB/T 4772.1-1999 旋转电机尺寸和输出功率等级第1部分:机座号56~400和凸缘号55~1080 GB/T 4942.1-1985 电机外壳防护分级 GB/T 4942.2-1993 低压电器外壳防护等级 GB 10068.2-2000 轴中心高为56 mm及以上电机的机械振动—振动的测量、评定及限值 GB 10069.3-1988 旋转电机噪声测定方法及限值噪声限值 GB/T 12665-1990 电机在一般环境条件下使用的湿热试验要求 GB/T 12668-1990 交流电动机半导体变频调速装置总技术条件 GB 1471l-1993 中小型旋转电机安全通用要求 GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值测量方法 GB/T 18488.2-2001 电动汽车用电机及其控制器试验方法 GB/T 2900.25-1994 电工术语旋转电机 GB/T 2900.26-1995 电工术语控制电机 GB/T 2900.33-1993 电工术语电力电子技术 GB/T 10069.1-2006 旋转电机噪声测定方法及限值第1部分:旋转电机噪声测定方法 GB 10069.3 旋转电机噪声测定方法及限值第3部分:噪声限值 GB/T 18488.1-2001 电动汽车用电机及其控制器技术条件 GB/T 18488.2-2001 电动汽车用电机及其控制器试验方法 3 定义

电动汽车电机控制器

电动汽车电机控制器 一、电机控制器的概述 根据GB/T18488.1-2001《电动汽车用电机及其控制器技术条件》对电机控制器的定义,电机控制器就是控制主牵引电源与电机之间能量传输的装置、是由外界控制信号接口电路、电机控制电路和驱动电路组成。 电机、驱动器和电机控制器作为电动汽车的主要部件,在电动汽车整车系统中起着非常重要的作用,其相关领域的研究具有重要的理论意义和现实意义。 二、电机控制器的原理 图1汽车电机控制器原理图 电机控制器作为整个制动系统的控制中心,它由逆变器和控制器两部分组成。逆变器接收电池输送过来的直流电电能,逆变成三相交流电给汽车电机提供电源。控制器接受电机转速等信号反馈到仪表,当发生制动或者加速行为时,控制器控制变频器频率的升降,从而达到加速或者减速的目的。 三、电机控制器的分类 1、直流电机驱动系统 电机控制器一般采用脉宽调制(PWM)斩波控制方式,控制技术简单、成熟、成本低,但效率低、体积大等缺点。 2、交流感应电机驱动系统 电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速,采用矢量控制或直接转矩控制策略实现电机转矩控制的快速响应。 3、交流永磁电机驱动系统 包括正弦波永磁同步电机驱动系统和梯形波无刷直流电机驱动系统,其中正弦波永磁同步电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速;梯形波无刷直流电机控制通常采用“弱磁调速”方式实现电机的控制。由于正弦波永磁同步电机驱动系统低速转矩脉动小且高速恒功率区调速更稳定,因此比梯形波无刷直流电机驰动系统具有更好的应用前景。

4、开关磁阻电机驱动系统 开关磁阻电机驱动系统的电机控制一般采用模糊滑模控制方法。目前纯电动汽车所用电机均为永磁同步电机,交流永磁电机采用稀土永磁体励磁,与感应电机相比不需要励磁电路,具有效率高、功率密度大、控制精度高、转矩脉动小等特点。 四、电动控制器的相关术语 1、额定功率:在额定条件下的输出功率。 2、峰值功率:在规定的持续时间内,电机允许的最大输出功率。 3、额定转速:额定功率下电机的转速。 4、最高工作转速:相应于电动汽车最高设计车速的电机转速。 5、额定转矩:电机在额定功率和额定转速下的输出转矩。 6、峰值转矩:电机在规定的持续时间内允许输出的最大转矩。 7、电机及控制器整体效率:电机转轴输出功率除以控制器输入功率再乘以100%。

电动汽车用驱动电机发展现状与趋势分析

龙源期刊网 https://www.wendangku.net/doc/af11684527.html, 电动汽车用驱动电机发展现状与趋势分析 作者:张勇 来源:《时代汽车》2016年第12期 摘要:目前,我国电动汽车行业正在不断发展,相关的生产技术也逐步完善。本文中,笔者即将对电动汽车用驱动电机进行介绍,并就驱动电机目前的发展状况以及在将来一段时间的发展趋势作出相关分析。 关键词:电动汽车;驱动电机;现状;趋势 1电动汽车用驱动电机概述 目前,电动汽车的不同特性对于驱动电机提出了不同类型的要求。其中,对速度要求较高的电动汽车,要求其电机的瞬时功率及功率密度值较高;而要求电池使用周期较长,充电后可以行使更远距离的电动汽车,要求电机的效率应相对较高;此外,电动汽车还要求驱动电机具有比较理想的高低速综合效率,用材坚固,耐用性强,且具有理想的防水性能,性价比高等特性。依据上述要求,目前国内设计生产的比较常见的驱动电机主要包括下述4种类型。 1.1直流有刷电机 直流有刷电机是一种采用直流供电的驱动电机,是最早研发并使用的电动汽车用驱动电机类型,且目前在很多类型的电动汽车中仍旧在广泛使用。直流有刷电机最大的优势在于控制特性较好,简单易于操作,且目前国内的生产技术较为成熟,质量比较稳定。 然而,直流有刷电机之所以后来逐步为其他类型的驱动电机所取代,正是由于其也存在着一些比较突显的缺陷。首先,由于直流有刷电机具有电刷及机械换向器两个结构,导致其电机过载能力及速度得不到有效的提高,且使用过程中对零部件的维护成本较高。此外,直流有刷电机的损耗主要发生在转子部分,这便导致产生的热量散失难度较大,对转矩质量比参数需要进一步优化。第三,直流有刷电机在运行过程中,电刷容易因摩擦产生火花,从而形成电磁干扰对电动汽车的正常运行造成不利影响。第四,由于采用的是机械换向器,因此会对电机的容量、转速等性能造成限制,越来越无法满足用户对于驱动电机的需求。 1.2感应电机 目前电动汽车中最为常用的就是交流三相感应电机。此类电机的定子和转子是通过对硅钢片进行叠压后制成的,没有其他零部件接触。具有结构简单,性能稳定,耐用性能优良等特点。此外,该电机的功率范围较广;可以通过空气进行冷却,也可以通过液体冷却;同时,对于周边环境具有很好的适应性能。相比于其他类型的驱动电机,感应电机的质量小,价位低,性价比高,并且保养及维修成本也相对较低。

分析电动汽车驱动电机发展现状

摘要:近年来,环境和能源问题正引起人们的高度重视,因此研发节约能源、少污染甚至无 污染的绿色汽车已成为全球的热点。驱动电机作为纯的核心零部件,其性能直接关系到的动 力性和能源转化效率,同时还需要满足汽车结构尺寸的限制及复杂工况下的运行条件。本文 重点对驱动电机进行介绍,并对驱动电机目前的发展现状进行分析。 0引言 纯指仅由电能驱动的,我国2012年发布的《节能与产业发展规划(2012-2020年)》中所 指的纯为符合国家“双80”标准的。纯电动主要包括动力电池及电池管理技术、驱动电机及其 控制技术、整车控制技术等。受限于电池技术的发展,目前面临的最大问题主要为续航里程 及成本问题,在电池能量密度低这一“瓶颈”问题没有取得重大突破之前,提高驱动电机系统 的效率显得尤为重要。 1电动汽车驱动特点分析 驱动电机作为纯的核心零部件,其性能直接关系到的动力性和能源转化效率,同时还需要 满足汽车结构尺寸的限制及复杂工况下的运行条件。因此,除了要求驱动电机效率高、重量轻、尺寸小、功率密度大、扭矩密度大、可靠性高以及成本低以外,还必须能够满足汽车的 频繁启动、停车、爬坡、急加速、急减速和倒车等复杂工况要求。这就要求驱动电机还需要 具备宽广的调速范围和较大的过载能力,以满足低速时高启动扭矩和爬坡能力,高速巡航时 恒功率输出能力。同时为进一步提高的续驶里程,还要求驱动电机具有能量回收功能,即在 车辆减速或者制动时将车辆的部分动能回收,转化为电能存储到动力电池中。 综合上述要求及特点,目前比较常见的可作为驱动的电机主要有四种:直流有刷电机、交 流异步感应电机、开关磁阻电机、永磁同步电机。 1.1直流有刷电机 直流有刷电机因控制简单、生产技术成熟在发展早期得到了广泛的采用。但因其结构上存 在电刷和换向器而限制了电机的转速和过载能力,同时其运转时会产生火花,可靠性较差, 需要经常维护保养,目前在驱动系统中已经被淘汰。 1.2交流异步感应电机 交流异步感应电机与直流电机相比,效率高、功率大、结构简单,无电刷和换向器,可靠 性高、便于维护。但与永磁电机相比,其存在损耗大、功率密度低、发热量大、功率因数低 等缺陷,在中的应用也逐渐被永磁电机所取代。 1.3开关磁阻电机 开关磁阻电机是近年来新研发的一种电机,具有结构简单、运行效率高、易于散热、耐高 温以及维护方便等显著特点,能够较好地满足的需求。但其扭矩脉动严重,电机运行噪声大,与永磁同步电机相比效率和功率密度均偏低,限制了其在中的应用。 1.4永磁同步电机 永磁同步电机采用永磁体直接励磁,具有体积小、无励磁损耗、效率和功率密度高、功率 因数高、转矩脉动小、振动和噪声小、可靠性高以及维护成本低等优点,已经逐渐取代其他 类型的电机作为的首选。但永磁材料在高温、振动以及过流的条件下,会产生不可逆的退磁 现象,这会降低永磁电机的性能。因此还需通过技术、工艺等方面的研究来提升永磁同步电 机的性能水平。

混合动力电动汽车中电力电子技术的应用综述

混合动力电动汽车中电力电子技术的应用综述 1 引言 电力电子技术是研究应用电力半导体器件实现电能变换和控制的学科,它是一门由电子、电力半导体器件和控制三者相互交叉而出现的新兴边缘学科。它研究的内容非常广泛,主要包括电力半导体器件、磁性材料、电力电子电路、控制集成电路以及由其组成的电力变换装置。目前,电力电子学研究的主要方向是[1]: (1)电力半导体器件的设计、测试、模型分析、工艺及仿真等; (2)电力开关变换器的电路拓扑、建模、仿真、控制和应用; (3)电力逆变技术及其在电气传动、电力系统等工业领域中的应用等。 电动汽车(ev)作为清洁、高效和可持续发展的交通工具,既对改善空气质量、保护环境具有重大意义,又对日益严重的石油危机提供了解决方法;同时,电动汽车作为电力电子技术的一个新的应用领域,涵盖了dc/dc和dc/ac的全部变换,是实用价值非常高的运用领域[2]。 2 混合动力电动汽车简介 当前世界汽车产业正处于技术革命和产业大调整的发展时期,安全、环保、节能和智能化成为汽车界共同关心的重大课题。为了使人类社会和汽车工业持续发展,世界各国尤其是发达国家和部分发展中国家都在研究各种新技术来改善汽车和环境的协调性。 电动汽车作为21世纪汽车工业改造和发展的主要方向,目前已从实验室开发试验阶段过渡到商品性试生产阶段,世界上许多知名汽车厂家都推出了具有高科技水平的安全或环保型概念车,目的是为了引导世界汽车技术的潮流。 2.1 各种类型电动汽车特点及其发展 根据所使用的动力源不同,电动汽车大致可分为三类:蓄电池电动汽车或纯电动汽车(battery elect ric vehicle)、以氢气为能源的燃料电池电动汽车(fuel cell electric vehicle)和混合动力电动汽车(h

新能源汽车电机驱动系统关键技术解析【干货】

新能源汽车电机驱动系统关键技术解析 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 近年随着我国交通事业的飞速发展,交通领域成为我国能耗增长最快的领域。能源危机和环境污染的加剧,使电动汽车研发成为世界汽车工业可持续发展的战略性项目,世界各国也普遍将发展电动汽车确立为保障能源安全和转型低碳经济的重要途径。1881 年,第一辆电动汽车由法国工程师古斯塔夫. 士维(GustaveTrouve)制造问世,它是采用铅酸蓄电池供电,由0.1 hp(英制马力,1 hp=745.7 W)的直流电机驱动的三轮电动汽车,整车及其驾驶员的重量约160 kg。两位英国教授在1883年制成了相似的电动汽车。因当时该应用技术尚未成熟到足以与马车竞争,因此这些早期构造并没有引起公众很多的注意。 20 世纪40 年代之后,半导体技术快速发展,随后出现的晶闸管、三极管,尤其是在20 世纪80年代问世的绝缘栅双极型晶体管(IGBT)为电机调速与控制提供了便利,同时伴以电力电子技术的快速发展,为以电能为能源的电机取代以石油为能源的内燃机提供了技术基础。 一、电动汽车分类 根据国标GB/T 19596-2004 电动汽车术语,电动汽车可分为由动动力电池提供能源的纯电动汽车、电机和内燃机共存的混合动力汽车和以燃料电池为能源的燃料电池

电动汽车,这三类电动汽车均采用一个及以上的电机驱动系统将电能转换为机械能,进而驱动汽车,同时回收刹车的制动能量,从而实现了能量利用率的提升。 1. 纯电动汽车 纯电动汽车由电机驱动汽车,能量完全由二次电池(如铅酸电池、镍镐电池、镍氢电池或锂离子电池)提供。由于一次石化能源的日趋匮乏,纯电动汽车被认为是汽车工业的未来。典型的纯电动汽车动力结构如图1 所示。电池组的电能通过充电系统在车辆行驶一定里程后进行补充。纯电动汽车的特点是车辆 实现零排放,不依赖汽油,完全采用电能驱动车辆,但是由于蓄电池的能量密度和功率密度比汽油或柴油低很多,因此纯电动汽车的连续行驶里程有限。 2. 混合动力汽车 混合动力汽车按动力总成结构及能量流传递方案不同,可分为串联、并联及混联三种混合动力方式。串联混合动力车辆中,发动机动力与电动机动力通过电气系统传递;并联和混联混合动力车辆中,发动机动力与电动机动力通过一个专门的机电耦合机构实现向车轮的传递,常用的机电耦合机构包括行星齿轮耦合、变速器耦合及离合器耦合等。 串联式混合动力系统的动力总成,发动机的机械能通过发电机转化为电能,电动机将电能转换为机械能传到驱动桥,驱动桥和发动机之间没有直接的机械连接。该方案的优点是系统控制简单,缺点是难以应对复杂路况,电池充放电压力较大,电池寿命要求较高。

学长福利——电动汽车电机驱动控制技术的研究现状及其发展趋势

编号:35 《电动汽车》课程论文 电动车电机驱动控制技术的研究现状及 其发展趋势 Study Status and DeveIopment Trend of EIectric VehicIe ControI TechnoIogy of Motor Driving 班级:车辆1103 姓名(及手机):李朗 学号:1101504321 任课教师:郑建祥 2013年5月14号

电动车电机驱动控制技术的研究现状及其发 展趋势 摘要:当今世界上节能和环保日益受到重视,因此电动车技术的发展步伐正在加快。本文综合评述了电动车的关键技术—电机驱动技术,并对未来的发展趋势作了展望。 关键词:电动汽车;电机;驱动系统 Study Status and DeveIopment Trend of EIectric VehicIe ControI TechnoIogy of Motor Driving Abstract:The development of the technology for electric vehicle is speeding up,as more attentions have been paid to the world energy saving and environment protection.This article described the key technology to electric vehicle———the motor driving control system,and made a prospect for the future technology. Key words:electric vehicle;motor;driving

电动汽车四轮独立驱动技术综述

电动汽车四轮独立驱动技术综述 摘要:在能源与环境的双重压力下,电驱动车辆已经成为当前汽车工业的发展趋势,其中四轮独立驱动技术更是成为当前相关领域的研究热点。通过对电动汽车四轮独立驱动技术领域的关键技术的描述,如电动轮驱动电机及驱动系统、电子差速控制技术、整车控制技术进行分析,了解和深化对电动汽车的认识。 关键词:电动汽车,驱动电机,电子差速控制,整车控制 0引言 随着能源问题的突显和人们环境保护意识的加强,混合动力汽车(HEV)、燃料电池汽车(FCEV)、纯电动汽车(EV)等新能源汽车已经开始受到越来越多的关注。在这种大背景下,具有无污染、零排放特点的纯电动汽车被公认为是最具有发展前途的交通工具之一[1]。以驱动电机为原动机的电动汽车,在驱动形式的多样性上有较大优势。其中,把电机直接安装在轮毂上,对整车进行驱动的四驱动方式称为四轮独立驱动(Four-wheel Independent Drive),简称4WD,因其简洁的整车结构、高效传动、以及能借助微控制器实时控制技术直接控制各电动轮实现差速转向和驱动防滑等突出优点,成为电动汽车发展的一个独特方向[2]。目前率先进入到商业运行的电动车辆多是在传统内燃机汽车底盘结构上进行改造,以中置电机取代发动机作为车辆动力源。由于机械传动系统结构未发生改变,这种形式电动车辆难以充分发挥电机驱动应有的各种技术优势。随着电机技术的发展和线控技术的应用,以轮毂电机为驱动系统的底盘结构成为电动汽车新的发展方向[3]。本文通过对电动汽车四轮独立驱动技术领域的关键技术的描述,如电动轮驱动电机及驱动系统、电子差速控制技术、整车控制技术,了解和深化对电动汽车的认识。 1国内外研究现状 1.1国外电动汽车研究现状 轮毂电机车辆平台自身具有的线传控制特征,使整车布置和控制系统设计具有很大的柔性,这些优势得到了各国汽车厂商和研发机构的认同并都展开了相关的研究。不过受到安全法规的限制,现在与整车安全相关的线控技术还无法应用到量产车型当中。因此,目前对基于轮毂电机平台的线控电动汽车的研究主要还是处于概念车的开发和实验室研究阶段。 丰田汽车公司从上世纪九十年代末开始进行轮毂电机驱动的纯电动车的开发,重点研究基于传统汽车底盘的轮毂电机电动汽车走向实用化的关键技术,如

电动汽车综述、

一:电动汽车的综合概念 纯电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。电动汽车的优点是:它本身不排放污染大气的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著减少,由于电厂大多建于远离人口密集的城市,对人类伤害较少,而且电厂是固定不动的,集中的排放,清除各种有害排放物较容易,也已有了相关技术。由于电力可以从多种一次能源获得,如煤、核能、水力等,解除人们对石油资源日见枯竭的担心。电动汽车还可以充分利用晚间用电低谷时富余的电力充电, 使发电设备日夜都能充分利用,大大提高其经济效益。有些研究表明,同样的原油经过粗炼,送至电厂发电,经充入电池,再由电池驱动汽车,其能量利用效率比经过精炼变为汽油. 电动汽车的研发历史 一百多年来,电动汽车在汽车发展史中经历了三次重大机遇:第一次发生在一百余年前。由于当时电池和电机的发展较内燃机成熟,而且石油的运用还没有普及,使电动汽车在早期的汽车领域中占有举足轻重的位置。第一辆电动汽车(3轮)由法国人古斯塔夫?土维(Gustave Trouve)在1881年制造出来,此后三四十年间,电动汽车在当时的汽车发展中占据着重要位置。例如,世界上首辆车速超过100公里/小时的汽车就是电动汽车。那是在1899年,由比利时工程师卡米乐?热纳茨(Camille Jenatzy)设计的名为“从不满意”(La Jamais Contente)的铝制车身汽车,现在保存在法国贡批尼(Compiegne)博物馆中。据统计,到1890年在全世界4200辆汽车中,有38%为电动汽车,40%为蒸汽车,22%为内燃机汽车。到了1911年,就已经有电动出租汽车在巴黎和伦敦的街头上运营,到了1912年在美国更有至少3.4万辆电动汽车运行。 第二次是在70年代石油危机的爆发时.由于石油的大量开采和内燃机的种种优越性,电动汽车渐渐被人们忽视。直到上世纪70年代石油危机的爆发,给世界各国政界一次不小的打击,开始考虑替代石油的其他能源,包括风能、太阳能、电能等可再生能源。因此从政治经济方面考虑,才又给了电动汽车第二次机 遇,又一次被人瞩目。 第三次机遇开始于若干年前,世界上除了已存在的能源问题之外,环境保护问题也逐渐成为了各个方面所关心重大课题,内燃机汽车的排放污染,给全球的环境以灾难性的影响,因此开发生产零污染交通工具成为各国所追求的目标,电动汽车的无(低)污染优点,使其成为当代汽车发展的主要方向。 目前混合动力汽车的成本还是居高不下,加上其他的一些问题,推广起来还有很大难度。 电动汽车主要有纯电动汽车、混合动力电动汽车和燃料电池电动汽车3 种类型. 1.纯电动汽车是完全由二次电池( 如铅酸电池、镍镉电池、镍氢电池或锂离子电池等) 提供动力的汽车。目前纯电动轿车和纯电动客车均已通过国家质检中心的型式认证试验, 各项指标均满足有关国家标准和企业标准的规定。天津清源电动车辆有限公司、深圳雷天公司等单位研发的纯电动轿车, 其整车的动力性、经济性、续驶里程、噪声等指标已达到甚至超过国外同级别车型, 初步形成了关键技术的研发能力。目前, 进行纯电动汽车示范运行的城市有若干个, 但是规模都比较小。2005 年1 月, 天津市的22 辆轿车和1 辆公共汽车的示范运行通过了国家验收。同年12 月, 武汉市进行的95 辆纯电动小型公共汽车( 另有20 辆混合动力公共汽车和3 辆混合动力轿车) 的3 年示范运行也通过了国家验收。因为纯电动汽车受到续驶能力的约束, 纯电动汽车试验主要集中在小型公共汽车上。根据“中国电动汽车网”报道, 2006 年

电动汽车用电机控制策略分析

电动汽车用电机控制策略分析摘要 第一章绪论 1.1引言 1.2电动汽车的定义及优势 1.2.1电动汽车的定义 1.2.2电动汽车的优势 1.3电动汽车的基本结构 1.4本论文选题的意义及主要内容 1.4.1选题的意义 1.4.2本文的主要内容 第二章电动汽车电机驱动系统介绍 2.1电动汽车驱动电机分类 2.2电机驱动系统系统构成与布置方式 2.3电动汽车中电动机类型及其驱动系统 2.4电动汽车电机驱动控制的发展现状和趋势 第三章交流感应电动机及其控制策略 第四章无刷直流电动机及其控制策略 第五章永磁同步电动机及其控制策略 5.1永磁同步电机的结构和特点 5.2永磁同步电机矢量控制理论 5.2.1电动机的转矩控制 5.2.2 PMSM坐标变换 5.2.3 PMSM数学模型 5.2.4电流极限圆和电压极限圆 5.3永磁同步电动机恒转矩控制

5.3.1id =0控制 5.3.2最大转矩/电流比控制 5.3.3恒磁链控制 5.3.4 cosφ=1控制 5.4永磁同步电动机弱磁控制 第六章全文总结与展望 摘要 第一章绪论 1.1引言 在未来的一段时间内,我国将成为世界最大的汽车消费国,2010年我国汽车增加到五千六百万辆以上,不过空气污染源也会大幅度提高,空气污染将有64%来自于汽车尾气的排放,在2020年左右,我国石油消费量将超过4.5亿吨,而我国能源系统效率平均低于国际先进水平10%,但是我国60%石油消费量依赖于进口,要是仍然采用传统的内燃机技术发展汽车工业将会使我国为此付出巨大代价和对环境保护也会造成巨大的压力。在这种严峻的形势下,我国汽车工业的未来发展需要我们好好思考。 根据现在世界人口和汽车的增长趋势来看,今后50年中,世界人口和汽车数量分别从60亿增加到100亿和7千万增加到2亿5千万辆以上。若这些车辆都采用内燃机,能源需求和空气污染将会给人类造成巨大的压力和损坏。因此我们必须开发节能环保型以及高效智能型的交通车辆,只有这样才能在本世纪实现交通的可持续发展。能源危机曾经对世界经济带来严重影响,因此石油毕源的争夺更加强烈,石油纠纷在国际上也不断发生,甚至为了争夺石油资源而爆发的战争在近几年也不断发生。因此石油资源的解决是当今世界每个国家所面临的首要考虑的问题,石油资源解决的好坏是当今世界是否稳定的重要因素。 电动汽车是将机算机、电子与化学各学科领域中的高新技术于一体,是汽车、计算机、电力拖动、新材料、新能源、功率电子、自动控制、化学电源等工程技术中最新成果的集成产物。混合动力电动汽车、燃料电池汽车和纯电动汽车对世界汽车的发展以及环境的保护都起到一个前所未有的阶段,具有里程碑的意义。 1.2电动汽车的定义及优势 我国政府已将电动汽车的快速发展列入我国“十五”国家863计划,加大了对电动汽车开发和产业化的投入,与世界发达国家电动汽车发展接轨,目前已经取得了一定得成就。我国不少高等院校、相关的研究以及国内部分企业都加强了对电动汽车研究开发的力度,加快了汽车事业的发展速度。目前我国纯电动汽车研发比较顺利,可以小批量生产与应用;与此同时混合动力汽车的发展目前它的产业化也可以说具备条件;值得炫耀的是我国的燃料电池汽车研发目前达到国际先进水平。因此我国建立电动汽车产业,逐步实施车用能源动为系统转型,实现节能环保目标奠定了技术基础。 1.2.1电动汽车的定义 电动汽车是指以车载电源为动力,用全部或部分由电机驱动,并配置大容量电能储存装置,符合道路交通、安全法规各项要求的车辆 1.2.2电动汽车的优势 现如今各国都在发展电动汽车事业,是由于它具有以下几个方面的优点:

相关文档
相关文档 最新文档