文档库 最新最全的文档下载
当前位置:文档库 › 四年级上册奥数试题-倍数问题1 通用版(无答案)

四年级上册奥数试题-倍数问题1 通用版(无答案)

四年级上册奥数试题-倍数问题1 通用版(无答案)
四年级上册奥数试题-倍数问题1 通用版(无答案)

四年级秋季班奥数试题(五)

倍数问题(一)

课时要点

1、学校体育室有篮球、足球共48个。篮球的个数是足球个数的3倍,篮球有()个,足球有()个。

2、甲乙两个粮仓共存粮462吨,已知甲仓存粮比乙仓的4倍还多2吨,两仓各存粮多少吨?

3、两个数相除商4余3,被除数、除数、商和余数的和是50,求除数是多少?

4、一个书架有上下两层,一共放了109本书,如果把新买的15本放入上层,那么上层的书正好是下层的3倍,两层原来各有多少本书?

5、甲、乙、丙、丁四个人一共做了370个零件,如果把甲做的零件个数加上2,乙做的零件个数减去3,丙做的零件个数乘以2,丁做的零件个数除以2,四个人做的零件个数正好相等。问四个人各做了多少个零件?

自我挑战

1、果园里的苹果树是桃树的3倍,管理员每天能给25棵苹果树和15棵桃树洒农药,几天后,当桃树喷完农药时,苹果树还有140棵没有喷药,果园里共有树多少棵?

2、花店有菊花、玫瑰、郁金香共78支,其中菊花的数量是玫瑰数量的2倍多4支,玫瑰的数量是郁金香的3倍少两支。花店有菊花多少支?玫瑰多少支?郁金香多少支?

家庭作业

1、两个数相除商是8,被除数、除数和商的和是170,求被除数是多少?

2、三个数的和是1540,甲数是丙数的7倍,乙数比甲数多40,问甲、乙、丙三个数各是多少?

小学数学文化知识

圆田术

刘徽(大约1700年前)是我国魏晋时期的数学家,他在《九章算术》方田章“圆田术”注中提出把割圆术作为计算圆的周长、面积以及圆周率的基础。刘徽从圆内接六边形开始,将倍数逐次加倍,得到的圆内接正多边形就逐步逼近圆。

查票

老教授搭乘火车旅行,列车长前来查票时,他竟找不到票,老教授

急得满头大汗,列车长说:找不到就算了,再补张票好了。

老教授:这怎么可以,找不到那张票,我就不知道我要去哪里啊!

小学四年级奥数题及答案50题

小学四年级奥数题及答案50题 1.学校买来5盒羽毛球,每盒12只。用去20只,还剩下多少只 2、学校买来3个篮球,共花了96元;又买来一个足球,花了40元。买一个篮球和一个足球需要多少元两种球的单价相差多少元 3、王霞买来一本140页的故事书,已经看了86页。剩下的计划6天看完,每天要看多少页 4、一把椅子的价钱是25元,一张桌子的价钱是一把椅子的3倍。买一把椅子和一张桌子共用多少元 5、班里图书角有58本故事书、34本科普读物。要放在一个4层的书架上,平均每层要放多少本书 6、李丽和王敏同时做纸鹤,李丽每小时做12只,王敏每小时做14只,做了3小时,两个人一共做了多少只纸鹤 7、同学们参加爬山比赛,女同学分成了4组,每组有15人。参赛的男同学有76名,一共有多少名同学参加爬山比赛 8、王大伯进县城卖了9只兔子,每只22元。还卖1只羊,得160元。(1)王大伯的兔子和羊一共卖了多少钱(2)王大伯用卖兔子和羊的钱买了4瓶农药,每瓶13元。王大伯还剩多少钱 9、一桶3Kg的油42元,一桶5Kg的油65元,哪种瓶装的油便宜 10、一件上衣65元,一条裤子28元。(1)买4件上衣比4条裤子多花多少钱(2)用150元钱买2套衣服,够吗 11、有两根铁丝,第一根长35米,第二根的长度比第一根的4倍多2米。第二根长多少米

12、一个长方形的操场周长是400米,长是宽的3倍,这个操场的长和宽各是多少米 13、有两个同样的长方形,长是8分米,宽是4分米。如果把它们拼成一个长方形,这个长方形的周长是多少分米如果拼成一个正方形,这个正方形的周长是多少分米 14、冬冬借了一本科技书有40页,一周后归还,他每天准备看6页,能按时归还吗 15、三(2)班有44人,老师准备分成8个小组讨论,每组可分几人,还剩几人 16、用一段长4米的布料可以裁5件同样大小的背心。做一件背心要用多少布 17、一头小象重4吨,用一辆载重10吨的大货车运,一次最多能运几头小象 18、红旗连锁店原有瓶干632袋,卖出385袋,又运来200袋,这时店里有多少袋瓶干 19、学校买来810本练习册,一年级领走168本,二年级领走165本,还剩多少本 20、一列火车的第10号车厢原有116人,到某站后,有58人下车,有45人上本。再开车时,这节车厢有多少人 21、一台VCD要238元,一台扫描仪要458元,爸爸带了800元钱。够不够 22、张大爷打了700斤鱼,上午卖出523斤,下午比上午少卖出394斤。 (1)下午卖了多少斤(2)这一天一共卖了多少斤(3)还剩多少斤 23、小明和姐姐一道去书店,姐姐买一本《英语辞典》用去87元,小明买一本科技类的书用去24元。姐姐付给收银员150元,应找回多少元

五年级奥数倍数问题

五年级奥数倍数问题 Last revision date: 13 December 2020.

五年级奥数训练——倍数问题(一) 姓名: 例1两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米,余下的铁丝第一根是第二根的3倍。原来两根铁丝各长多少厘米? 练习一 两个数的和是682,其中一个加数的个位是0,如果把这个0去掉,就得到另一个加数。这两个加数各是多少? 例2甲组有图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍。原来甲组有图书多少本? 练习二 原来小明的画片是小红的3倍,后来二人各买了3张,这样小明的画片就是小红的2倍。原来二人各有多少张画片? 例3幼儿园买来苹果的个数是梨的2倍。大班的同学每7人一组,每组领3个梨和4个苹果,结果梨正好分完,苹果还剩下16个。大班共有多少个同学? 练习三 高年级同学植树,共有杉树苗和杨树苗100棵。如果每个小组分给杉树苗6棵,杨树苗8棵,那么,杉树苗正好分完,杨树苗还剩2棵。两种树苗原来各有多少棵? 例4有两筐桔子,如果从甲筐拿出8个放进乙筐,两筐的桔子就同样多;如果从乙筐拿出13个放到甲筐,甲筐的桔子是乙筐的2倍。甲、乙两筐原来各有多少个桔子? 练习四 甲、乙两仓存有货物,若从甲仓取31吨放入乙仓,则两仓所存货物同样多;若乙仓取14吨放入甲仓,则甲仓的货物是乙仓的4倍。原来两仓各存货物多少吨? 例5甲粮库的存粮是乙粮库的2倍,甲粮库每天运出粮食40吨,乙粮库每天运出30吨。若干天后,乙粮库的粮全部运完,而甲粮库还有80吨。甲、乙粮库原来各有粮食多少吨? 练习五 果园里桃树的棵数是梨树的3倍,某农民给这些果树喷洒农药,已知他每天喷洒24棵桃树和10棵梨树,几天后,梨树全部喷洒完,而桃树还剩下24棵。果园里有桃树和梨树各多少棵? 课堂练习 1、一筐苹果和一筐梨的个数相同,卖掉40个苹果和15个梨后,剩下的梨是苹果的6倍。原来两筐水果一共有多少个? 2、幼儿园买来的苹果的个数是梨的3倍,吃掉10个梨和6个苹果后,剩下的苹果个数正好是梨的5倍。原来买来苹果和梨共多少个? 3、同学们带着水果去看“敬老院”的老人,带的苹果是桔子的3倍。如果每位老人拿2个桔子和4个苹果,那么,桔子正好分完,苹果还剩下14个。同学们把水果分给了几位老人?

四年级奥数测试题专题训练

四年级第二讲排列问题 1. 知识点: 排列组合问题的要点: 排列问题不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关。 2. 典型问题: ①.从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4班,汽车有2班,轮船有3班,那么一天中乘坐这些交通工具从甲地到乙地共有多少中不同的走法? ②.某班的8名毕业的同学见面,他们之间每两名同学之间都要握手一次,这次聚会大家一共要握多少 次手? ③. 如图,由A村去B村的道路有2条,由B村去C村的道路有3条,从A村经过B村去C村,共有多少种不同的走法? 姓名:成绩:课堂表现: ④. 一列火车从上海到南京,中途要经过6个站,这列火车要准备多少种不同的车票? ⑤. 从2、3、4、5四个数字中任取两个,将这两个数相乘,有多少种不同的乘积? ⑥. 书架的第一层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层有2本不同的体育书。 ⑴从书架上任取1本书,有多少种不同的取法? ⑵从书架的第1、2、3层各取1本书,有多少种不同的取法? 四年级第二讲排列问题 1. 知识导读: 在实际生活中,经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,在 排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关,这就是“排列”问题。在体 育比赛中,还会遇到一些分组问题,这种分组问题,就是我们要讨论的“组合”问题。 2. 练习题: ①.从A城到B城有三种交通工具:火车、汽车、飞机,坐火车每天有2个班次;坐汽车每天有3个班次;乘飞机每天只有一个班次,那么,从A城到B城的方法共有多少种?

②.如果一共有20人,每人都与别人握手一次,一共握手几次 ③. 从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通,从甲地到丙地共有多少种不同的走法? 姓名:成绩:家长签字: ④. 某铁路线共有14个车站,这条铁路线共需要多少种不同的车票? ⑤. 有4、5、6、7四个数字,共可组成多少个没有有重复数字的不同四位数? ⑥. 书架上层放有6本不同的数学书,下层放有5本不同的语文书。 ⑴从中任取一本,有多少种不同的取法? ⑵从中任取数学书与语文书各一本,有多少种不同的取法? 四年级第三讲排列问题 1. 知识点: 添加运算符号和括号: 通过本节学习提高学生的思维的灵活性和敏捷性。 2. 典型问题: ①.请用下面给出的四个数,按规则算出24。 ⑴ 3 ,3 ,5 ,6 ⑵ 2 ,2 ,4 ,8 ⑶ 1 ,3 ,5 ,7 ⑷ 2 ,5 ,7 ,9 ②.用下面每组的四张牌算24点。 ⑴ 2 ,1 ,3 ,8 ⑵ 3 ,4 ,5 ,7 ⑶ Q ,7 ,8 ,3 ⑷ K ,5 ,4 ,3

小学四年级奥数50题(附答案)1

小学四年级奥数精选50题 1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一 把椅子多288元,一张桌子和一把椅子各多少元? 2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重 多少千克? 3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千 米处相遇。甲比乙速度快,甲每小时比乙快多少千米? 4?李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过 一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车 站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计) 6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5 千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组? 7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮 吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨? 8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天, 乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米? 9?学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把

椅子贵30元,桌子和椅子的单价各是多少元? 10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行 了40千米,甲乙两地相距多少千米? 11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃? 12.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队? 13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?

小学四年级奥数练习题汇总

奥数题1 光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答? 分析:根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题)……5(分),分析答对、答错和没答的题数。 解:(5×20-79)÷8=2(题)……5(分) 20-2-1=17(题) 答:答对17题,答错2题,有1题没答。 奥数题2 水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨? 分析:由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。 解:4.8×10÷(12-10)=24(吨) 答:原计划每天生产水泥24吨。 奥数题3 有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克? 分析:由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。 解:15×5÷(5-2)=25(千克) 答:原来每桶油重25千克。

奥数题4 计算:9+99+999+9999+99999 【解析】在涉及所有数字都是9的计算中,常使用凑整法。例如将999化成1000—1去计算。这是小学数学中常用的一种技巧。 9+99+999+9999+99999 =(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1) =10+100+1000+10000+100000-5 =111110-5 =111105 奥数题5 小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。”问大象妈妈有多少岁了? 小象10岁,妈妈19岁。 (28-1)÷3+1=10(岁)。 奥数题6 早晨,小张骑车从甲地出发去乙地.下午1点,小王开车也从甲地出发,前往乙地.下午2点时两人之间的距离是15千米,下午3点时,两人之间的距离还是15千米,下午4点时小王到达乙地,晚上7点小张到达乙地.小张是早晨()出发。 【答案】10 【解析】 由题意容易推断出,14点时小王落后小张15千米,15点时小王领先小张15千米,1小时内小王比小张多行了30千米,即两人的速度差为30千米/小时。

小学四年级奥数试题及答案

小学四年级奥数试题及答案-真题 一、按规律填数。 1)64,48,40,36,34,( ) 2)8,15,10,13,12,11,( ) 3)1、4、5、8、9、( )、13、( )、( ) 4)2、4、5、10、11、( )、( ) 5)5,9,13,17,21,( ),( ) 二、等差数列 1.在等差数列3,12,21,30,39,48,…中912是第几个数? 2.求1至100内所有不能被5或9整除的整数和 3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少? 4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和 5.将自然数如下排列, 1 2 6 7 15 16 …

3 5 8 1 4 17 … 4 9 13 18 … 10 12 … 11 … … 在这样的排列下,数字排在第2行第1列,13排在第3行第3列,问:1993排在第几行第几列? 三、平均数问题 1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ . 2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ . 3.今年前5个月,小明每月平均存钱 4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元? 4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数. 23, 26, 30, 33 A、B、C、D 4个数的平均数是多少?

《小学奥数》小学五年级奥数讲义之精讲精练第17讲 倍数问题(二)含答案

第17讲倍数问题(二) 一、知识要点 解决倍数问题的关键是,必须确定一个数作为标准数,并根据题中的已知条件,找出其它几个数与这个标准数的倍数关系,再用除法求出这个标准数。 由于倍数应用题中数量关系的变化,要求同学们在解题过程中注意解题技巧,灵活解题。 和倍问题的数量关系是: 和数÷(倍数+1)=较小数较小数×倍数=较大数差倍问题的数量关系是: 差数÷(倍数-1)=较小数较小数×倍数=较大数 二、精讲精练 【例题1】养鸡场的母鸡只数是公鸡的6倍,后来公鸡和母鸡各增加60只,结果母鸡只数就是公鸡的4倍。原来养鸡场一共养了多少只鸡? 练习1: 1.今年,爸爸的年龄是小明的6倍,再过4年,爸爸的年龄就是小明的4倍。 今年小明多少岁?2.原来食堂里存的大米是面粉的4倍,大米和面粉各吃掉80千克,大米的重量是面粉的2倍。食堂里原来存有大米、面粉各多少千克? 3.饲养场的白兔只数是黑兔的5倍,后来卖掉了10只黑兔,买回来20只白兔,现在白兔的只数是黑兔的7倍。饲养场原来养白兔和黑兔各多少只? 【例题2】有1800千克的货物,分装在甲、乙、丙三辆车上。已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200千克。甲、乙、丙三辆车各装货物多少千克? 练习2:

1.三堆货物共1800箱,甲堆的箱数是乙堆的2倍,乙堆的箱数比丙堆少200箱。 三堆货物各多少箱?2.甲、乙、丙三数的和是224,如果甲是乙的3倍,丙是甲的4倍,求甲、乙、丙三数各是多少。 3.把840本书放在书架的三层里,下层放的本数比上层的3倍多5本,中层放的本数是上层的2倍多1本。问:上、中、下三层各放书多少本? 【例题3】甲、乙两个书架,已知甲书架有书600本,从甲书架借出三分之一,从乙书架借出四分之三后,甲书架的书是乙书架的2倍还多150本。乙书架原来有书多少本? 练习3: 1.某校有男生630人,选出男生人数的三分之一和女生人数的四分之三去排练团体操,剩下的男生人数是女生人数的2倍。这个学校共有学生多少人? 2.食堂存有同样重量的大米和面粉,吃大米的四分之三和60千克面粉后,剩下的面粉的重量是大米的3倍。原来存有大米和面粉各多少千克? 3.有两堆水泥,甲堆有 4.5吨,已知甲堆重量的三分之一和乙堆重量的四分之一相等,乙堆有水泥多少吨? 【例题4】A站有公共汽车26辆,B站有公共汽车30辆。每小时由A站向B站开出汽车12辆,B站向A站开出汽车8辆,都是经过1小时到达。几小时后B站的公共汽车辆数是A站的3倍? 练习4: 1.甲有邮票42张,乙有邮票48张。每次甲给乙2张,而乙又给甲4张,这样交换多少次后,甲的邮票张数是乙的2倍? 2.甲仓存有大米650袋,乙仓存有大米400袋。每天从甲、乙仓各运出50袋,多少天后甲仓的大米袋数是乙仓的6倍? 3.有两杯水,一杯有水104毫升,另一杯有水24毫升,每次往两只杯子中各倒进8毫升水,倒几次后,一只杯中的水是另一杯的2倍?

小学数学四年级50道奥数题

1、某五个数的平均值为60,如果将其中一数改为80,这五个数的平均值为70,改的这个数应是多少? 2、30个同学平分一些练习本,后来又来了6人,大家重新分配,每人分得的练习本比原来少2本,这些练习本共有多少? 3、甲乙两位同学带着同样多的钱去买日记本,乙买了8本,剩下的钱全部借给了甲,刚好使甲买到了12本。回家后甲还给乙6元,问:日记本每本多少钱? 4、两个仓库共有10000千克大米,从每个仓库里取出同样多的大米,结果甲仓库里剩下3450千克,乙仓库里剩下4270千克,每个仓库原来有多少千克大米? 5、把一个减法算式的被减数、减数、差加起来和是180,已知减数比差大26,被减数、减数和差各是多少? 6、一个数乘8后比原数多了84,原来的数是多少? 7、小明今年18岁,小强今年14岁,当两人岁数和是70岁时,两人各有多少岁? 8、小明在算有余数的除法时,把被除数237错写成273。这样商比原来多3而余数正好相同。这道题的除数和余数各是多少?

9、学校图书馆有科技书和故事书共320本,其中故事书的本数是科技书的3倍,故事书有多少本? 10、幼儿园小朋友分苹果,如果每人分4个,则多9个,如果每人分5个,则少6个,有多少个小朋友?多少个苹果? 11、在一个数的末尾添上一个“0”以后,得到的数比原来的数多36。原来的数是多少? 12、计算:⑴454十999×999十545 ⑵999十998十997十996十1000十1004十1003十1002十1001 13、数一数下面的图形. ()条线段()个长方形 14、要使上下两排的小猫一样多,应该怎样移? 15、按下面图形的排列情况,算出第24个图形是什么? (1)○○△□○○△□○○△□……第24个图形是() (2)☆◇◇△△☆◇◇△△☆◇◇△△……第24个图形是()

小学四年级奥数题:说谎问题习题及答案

说谎问题(A卷) 一、填空题 1.四个小孩在校园内踢球.“砰”的一声,不知是谁踢的球把课堂客户的玻璃打破了,王老师跑出来一看,问“是谁打破了玻璃?” 小张说:“是小强打破的.” 小强说:“是小胖打破的.” 小明说:“我没有打破窗户的玻璃.” 小胖说:“王老师,小强在说谎,不要相信他.” 这四个小孩只有一个说了老实话. 请判断:说实话的是______;是______打破窗户的玻璃. 2.某工厂为了表扬好人好事核实一件事,厂方找了A,B,C,D四人.A说:“是B做的.”B说:“是D做的.”C说:“不是我做的.”D 说:“B说的不对.”这四人中只有一人说了实话.问:这件好事是______做的. 3.李志明、张斌、王大为三个同学毕业后选择了不同的职业,三人中一个当了记者.一次有人问起他们的职业,李志明说:“我是记者.”张斌说:“我不是记者.”王大为说:“李志明说了假话.”如果他们三人中只有一句是真的,那么_____是记者. 4.甲、乙、丙三人对小强的藏书数目作了一个估计,甲说:“他至少有1000本书.”乙说:“他的书不到1000本.”丙说:“他最少有1本书.”这三个估计中只有一句是对的,那么小强究竟有_______本书. 5. 有四个人各说了一句话. 第一个人说:“我是说实话的人.” 第二个人说:“我们四个人都是说谎话的人.” 第三个人说:“我们四个人只有一个人是说谎话的人.” 第四个人说:“我们四个人只有两个人是说谎话的人.” 你能确定谁说的是实话,谁说的是假话的吗? 6.请你从下面的谈话中确定甲、乙、丙三人的年龄, 甲说:“我22岁,比乙小2岁,比丙大1岁.” 乙说:“我不是年龄最小的,丙和我差3岁.丙25岁.” 丙说:“我比甲年龄小,甲23岁,乙比甲大3岁.” 以上每人所说的三句话中,都有一句是虚构的. 甲是______岁,乙是______岁,丙是_______岁. 7.在一星期的七天中,狼在星期一、二、三讲假话,其余各天都讲真话;狐狸在星期四、五、六讲假话,其余各天都讲真话. ①狼说:“昨天是我说谎日子.”狐狸说:“昨天也是我说谎的日子.”那么今天星期几? ②一天狼和狐狸都化了装,使人不容易辨认它们. 一个说:“我是狼.”另一个说:“我是狐狸.” 先说的是_______,这一天是星期_______.

五年级奥数第13讲-倍数问题(教)

学科教师辅导讲义 一、和差问题 已知两数的和与两数的差,求两个数各是多少的应用题,叫和差问题应用题。 为了找到解答和差应用题的规律,我们来看线段图: 从上图可以看出,在两数和上加上两数差,就是两个大数,再除以2,就可以求出大数;在两数和中减去两数差,就是两个小数,除以2,就可以求出小数。得到:大数=(和+差)÷2,小数=(和-差)÷2. 二、和倍问题 已知两个数的和与这两个数的倍数关系,求这两个数各是多少的应用题。我们通常把它叫做和倍问题。它的结构可用下图来表达: 知识梳理 和差倍问题 和差问题:已知两数的和与两数的差,求这两个数. 差倍问题:已知两数的差和它们之间的倍数关系,求这两个数. 和倍问题:已知两个数的和与这两个数的倍数关系,求这两个数.

数量关系式:两数和÷(倍数+1)=小数(1倍数) 小数×倍数=大数(几倍数) 两数和—小数=大数(几倍数) 三、差倍问题 已知两数的差和它们之间的倍数关系,要求出这两个数各是多少的应用题叫差倍问题。 “差倍问题”和“和倍问题”相似,解答时先要弄清什么是差、倍数、大数、小数,然后利用线段图找准与“差”所对应的倍数,即(倍数-1),从而先求出1倍数(小数),再求出几倍数(大数)。 差倍应用题的数量关系是:小数=差÷(倍数-1); 大数=小数×倍数或大数=小数+差。 例1、期中考试王平和李杨语文成绩的总和是188分,李杨比王平少4分。两人各考了多少分? 【解析】:根据题意画出线段图。 我们可以用假设法来分析。假设李杨的分数和王平一样多,则总分就增加4分,变为 188+4=192分,这就表示王平的2倍,所以王平考了:192÷2=96分,李杨考了96-4=92分。 例2、学校将360本图书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两个年级各分得多少本图书? 【解析】:将二年级所得图书的本数看作1倍数,则三年级所得本数是这样的2倍。如图所示: 188分 ?分 ?分 李杨 王平 典例分析

四年级奥数题及答案解析

四年级奥数题及答案解析 1、某工厂为了表扬好人好事核实一件事,厂方找了A,B,C,D四人。A说:“是B做的。”B说:“是D做的。”C说:“不是我做的。”D说:“B说的不对。”这四人中只有一人说了实话。问:这件好事是______做的。 2、小明在计算两个数相加时,把一个加数个位上的6错写成9,把另一个加数百位上的8错写成3,所得的和是637。原来两个数相加的正确结果是多少? 3、甲车在东村、乙车在西村,甲乙两车同时从东西两村相向而行,第一次在距东村10km的地方相遇,相遇后两车又各自向对方出发点驶去,甲到西村后又立即返回,乙到东村后也立即返回,两车又在距西村6km的地方第二次相遇,求东西村相距多少千米?

4、黑板上写着一个形如8888……88的数,每次擦掉一个末位数,把前面的数乘2,然后再加上刚才擦掉的数,对所得的新数继续操作,最后得到的数是多少? 5、用大豆榨油,第一次用去大豆1264千克,第二次用去大豆1432千克,第二次比第一次多出油21千克,两次共出油多少千克?

答案: 1、好事应该是C做的。 ①假设A说的是实话,则C说的也属实话,不符合题意,所以A说的是假话; ②假设B说的是实话,那么好事应该是D做的,C说的应该是实话,显然这与“只有一个人讲了实话”相矛盾,所以B说的是假话; ③假设C说的是实话,即好事不是C做的,也因①、②已分别说明B和D 未做,则只剩下A做,那么D说的也是真话,这与题设相矛盾,所以C说的也是假话; ④假设D说的是实话,那好事应该不是D做的,是C做的。符合题设条件。 所以,好事应该是C做的。 2、原来两个数相加的正确结果是684。 3、解:第一次相遇时,甲、乙两车合行一个全程,甲车行10千米。第二次相遇时,又合行了两个全程,共三个全程(如图)。甲车在一个全程中行了10千米,三个全程就行了三个10千米,即30千米。甲车行了一个全程又6千米(如图),他行了30千米,去掉6千米,就是一个全程,即24千米。 4、黑板上写着一个形如8888……88的数,每次擦掉一个末位数,把前面的数乘2,然后再加上刚才擦掉的数,对所得的新数继续操作,最后得到的数是多少? 解答:每次操作时,设末位数字是A,擦去末位数字后得到的数是B。那么原来的数相当于是B的10倍加A。而经过操作后,变成B的2倍加A,说明操作后减少了B的8倍,那么减少的部分一定是8的倍数。 由于最开始写的数就是8的倍数,每次减少的部分也一定是8的倍数,那么最后剩的数也一定是8的倍数。每次操作都把数缩小了,直至没法操作,最后得到的数一定是一位数,只能是8。 5、用大豆榨油,第一次用去大豆1264千克,第二次用去大豆1432千克,第二次比第一次多出油21千克,两次共出油多少千克? 解答:第二次多用大豆1432-1264=168千克,168÷21=8,说明每8千克大豆可以榨出1千克油。所以共出油(1264+1432)÷8=337千克。

(完整版)五年级奥数倍数问题讲座及练习答案

五年级奥数集训专题讲座(三)———倍数问题 倍数问题是整个小学阶段很重要的一个问题,我们研究倍数问题主要从“和倍、差倍、和差”这三个方面来研究。解答倍数问题我们要理解以下数量关系式: ①和÷(倍数+1)=小数小数×倍数=大数(和—小数=大数) ②差÷(倍数—1)=小数小数×倍数=大数(小数+差=大数) ③(和-差)÷2=小数小数+差=大数(和—小数=大数) ④(和+差)÷2=大数大数-差=小数(和—大数=小数) 例1:三个筑路队共筑路1360米,甲队筑的米数是乙队的2倍,乙队比丙队多240米,三个队各筑多少米? 分析:把乙队的米数看作“1”份,甲队筑的米数是这样的2份,假设丙队多筑240米,三个队共筑了1360+240=1600(米),正好是乙队的4倍,所以用和倍问题来解答就很容易了。乙队:(1360+240)÷(2+1+1)=400(米)甲队:400×2=800(米丙队:400-160=240(米) 答:甲队筑了800米,乙队筑了400米,丙队筑了240米。 【巩固练习】:三个植树队植树1900棵,甲队植树的棵数是乙队的2倍,乙队比丙队少植300棵,三个队各植了多少棵? 解: 因为甲队植树的棵数是乙队的2倍,即是以乙队植树棵数为1倍量,乙队比丙队少植300棵,即丙队植树的棵数=乙队植树棵数+300棵,所以,三个队植树的总棵数是乙队的(1+1+2=)4倍多300棵,如果我们从植树总数里减去300,则正好是乙队的4倍所以乙队植树棵数=(1900-300)÷(1+1+2)=400(棵) 甲队植树棵数=400×2=800(棵) 丙队植树棵数=400+300=700(棵)。 答:甲队植了800棵,乙队植了400棵,丙队植了700棵。 例2:师徒两人加工同样多的一批零件,师傅加工了102个,徒弟加工了40个。这时徒弟剩下的个数是师傅剩下的3倍,师傅要加工多少个零件? 分析:徒弟比师傅少加工了102-40=62(个),相当于师傅剩下的3-1=2倍。 (102-40)÷(3-1)=31(个) 31+102=133(个) 答:师傅要加工133个零件。 量的3倍,两筐梨原来各重多少千克? 丙队 乙队 甲队

四年级奥数30题题目及答案

小学四年奥数大全 小学四年级奥数题及答案:速算与巧算 1、9+99+999+9999+99999= 2、199999+19999+1999+199+19= 3、(1+3+5+...+1989)-(2+4+6+ (1988) 4、389+387+383+385+384+386+388 5、(4942+4943+4938+4939+4941+4943)÷6

1、对任意一个自然数进行变换:如果这个数是奇数,则加上99;如果这个数是偶数,则除以2。现在对300连续作这种变换,能否经过若干次变换出现100?为什么? 2、商店进了一批钢笔,用零售价10元卖出20支与用零售价11元卖出15支的利润相同。那么每支钢笔的进货价是多少元?

1、黑板上有5和7两个数。现在规定操作:将黑板上的任意两个数相加的和写在黑板上。问:经过若干次操作后,黑板上能否出现23?为什么? 2、河堤上有一排树共100棵,从左往右数第78棵起往右都是一班种的,从右往左数第67棵起往左都是三班种的,其余都是二班种的,那么二班种了多少棵?

果园里有梨树、桃树、核桃树共526棵,梨树比桃树的2倍多24棵,核桃树比桃树少18棵.求梨树、桃树及核桃树各有多少棵?

1、在□中填入适当的数字,使乘法竖式成立。 2、在□中填入适当的数字,使除法竖式成立。

1、天天带了一些苹果和梨到敬老院慰问。每次从篮里取出2个梨和4个苹果送给老人,最后当梨正好分完时,还剩下27个苹果。这时他才想起原来苹果是梨的3倍多3个。原有苹果、梨各多少个? 2、40名同学在做3道数学题时,有25人做对第一题,有28人做对第二题,有31人做对第三题。那么至少有多少人做对了三道题?

小学四年级奥数测试题及答案

小学四年级奥数测试题及 答案 Prepared on 21 November 2021

四年级奥数测试 1、按规律填数。(每空2分) (1)1,4,9,(),25,36,(),…… (2)1,1,2,3,5,8,(),21,…… (3)64,48,40,36,34,() (4)8,15,10,13,12,11,() 2、.在等差数列3,12,21,30,39,48,…中912是第()个数。 3、把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数是()与第6个数是()。 4、已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是() 5、某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是()。 6、□-○=9□+□+○+○=22□=()○=() 7、一个数减去8,乘以5,其结果是20,求这个数是()。 8、在算式A÷B=12……24中,要使除数最小,被除数是()。 9、除数是20,增加100以后,要使商不变,被除数应该要扩大()倍。 10、有一根圆木长12米,如果要锯成每段3米,共要锯()次。 11、甲班与乙班共植树300棵,甲班植的棵数是乙班的5倍,甲班植树()棵。 12、在□中填入适当的数字,使除法竖式成立。 13、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要()分钟 14、父亲45岁,儿子23岁。()年前父亲年龄是儿子的2倍. 15、一只蜗牛在12米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要()小时才能爬出井口。 16、锯一根10米长的木棒,每锯一段要2分钟。如果把这根木棒锯成相等的5段,一共要()分钟。

五年级奥数倍数问题

第16周倍数问题(一)专题简析: 倍数问题是数学竞赛中的重要内容之一,它是指已知几个数的和或差以及这几个数之间的倍数关系,求这几个数的应用题。 解答倍数问题,必须先确定一个数(通常选用较小的数)作为标准数,即1倍数,再根据其它几个数与这个1倍数的关系,确定“和”或“差”相当于这样的几倍,最后用除法求出1倍数。 例1两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米,余下的铁丝第一根是第二根的3倍。原来两根铁丝各长多少厘米?分析由于第二根比第一根多剪去26-18=8厘米,所以剩下的铁丝第一根就比第二根多(3-1)倍。因此,8÷(3-1)=4(厘米)。就是现在第二根铁丝的长度,它原来长4+26=30厘米。 练习一 1,两个数的和是682,其中一个加数的个位是0,如果把这个0去掉,就得到另一个加数。这两个加数各是多少? 2,两根绳子一样长,第一根用去6.5米,第二根用去0.9米,剩下部分第二根是第一根的3倍。两根绳子原来各长多少米?

3,一筐苹果和一筐梨的个数相同,卖掉40个苹果和15个梨后,剩下的梨是苹果的6倍。原来两筐水果一共有多少个? 例2甲组有图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍。原来甲组有图书多少本? 分析甲组的图书是乙组的3倍,若乙组拿出6本,甲组相应的也拿出6×3=18本,则甲组仍是乙组的3倍。事实上甲组不但没有拿出18本,反而接受了乙组的6本,18+6就正好对应着后来乙组的(5-3)倍。因此,后来乙组有图书(18+6)÷(5-3)=12本,乙组原来有12+6=18本,甲组原来有18×3=54本。 练习二 1,原来小明的画片是小红的3倍,后来二人各买了3张,这样小明的画片就是小红的2倍。原来二人各有多少张画片? 2,一个书架分上、下两层,上层的书的本数是下层的4倍。从下层拿5本放入上层后,上层的本数正好是下层的5倍。原来下层有多少本书? 3,幼儿园买来的苹果的个数是梨的3倍,吃掉10个梨和6个苹果后,剩下的苹果个数正好是梨的5倍。原来买来苹果和梨共多少个? 例3幼儿园买来苹果的个数是梨的2倍。大班的同学每7人一组,每组领3个梨和4个苹果,结果梨正好分完,苹果还剩下16个。大班共有多少个同学?

(完整版)四年级奥数题精选200题

四年级奥数精选200题 一、算式谜 1.在下面的数中间填上“+”、“-”,使计算结果为100。 1 2 3 4 5 6 7 8 9=100 2. ABCD+ACD+CD=1989,求A、B、C、D。 3. □4□□-3□89=3839。 4. 1ABCDE×3=ABCDE1,求A、B、C、D、E。 二、找规律 5.找找规律填数 76,2,75,3,74,4,( ),( ); 2,3,4,5,8,7,( ),( ); 2,1,4,1,8,1,( ),( )。 6.在( )内填入适当的数 1,1,2,3,5,8,( ),( ); 1,1,1,3,5,9,( ),( ); 0,1,2,3,6,11,( ),( ); 7.找规律在( )内填上合适的数 (1)0,1,3,8,21,55,( ); (2)2,6,12,20,30,42,( ); (3)1,2,4,7,11,16,( )。 (1)1,6,7,12,13,18,19,( );

8.选择 一个锐角三角形的一个内角是44度,其余两个角可能是() 36度和100度90度和46度 75度和61度18度和96度 9.简便计算 12×102-24 69×56+32×56-56 13×94+13×10-13×4 10.解决问题 一个三角形的三个内角分别为∠1,∠2和∠3,∠2=2∠1,∠3=∠2,求∠1=? 三、排列组合 11.小华、小花、小马三个好朋友要在一起站成一排拍一张照片。三个人争着要站在排头,无法拍照了。后来照相师傅想了一个办法,说:"我给你们每人站在不同位置都拍一张,好不好?"这下大家同意了。那么,照相师傅一共要给他们拍几张照片呢? 12.二(1)班的小平、小宁、小刚、小超4人排了一个小块板,准备"六、一"演出。在演出过程中,队形不断变化。(都站成一排)算算看,他们在演出小快板过程中,一共有多少种队形变化形式? 13."69"顺倒过来看还是"69",我们把这两个顺倒一样的数,称为一对数。你能在"0,1,6,9,8"这五个数中任意选出3个,可以组成几对顺倒相同的数? 14.有五种颜色的小旗,任意取出三面排成一行表示各种信号。问:共可以表示多少种

五年级奥数—倍数问题(二)汇编

五年级奥数训练——倍数问题(二) 姓名: 例1 养鸡场的母鸡只数是公鸡的6倍,后来公鸡和母鸡各增加60只,结果母鸡只数就是公鸡的4倍。原来养鸡场一共养了多少只鸡? 练习一 今年,爸爸的年龄是小明的6倍,再过4年,爸爸的年龄就是小明的4倍。今年小明多少岁? 例2 有1800千克的货物,分装在甲、乙、丙三辆车上。已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200千克。甲、乙、丙三辆车各装货物多少千克? 练习二 三堆货物共1800箱,甲堆的箱数是乙堆的2倍,乙堆的箱数比丙堆少200箱。三堆货物各多少箱? 例3 甲、乙两个书架,已知甲书架有书600本,从甲书架借出三分之一,从乙书架借出四分之三后,甲书架的书是乙书架的2倍还多150本。乙书架原来有书多少本? 练习三 某校有男生630人,选出男生人数的三分之一和女生人数的四分之三去排练团体操,剩下的男生人数是女生人数的2倍。这个学校共有学生多少人? 例4 A站有公共汽车26辆,B站有公共汽车30辆。每小时由A站向B站开出汽车12辆,B站向A站开出汽车8辆,都是经过1小时到达。几小时后B站的公共汽车辆数是A站的3倍?

练习四 甲有邮票42张,乙有邮票48张。每次甲给乙2张,而乙又给甲4张,这样交换多少次后,甲的邮票张数是乙的2倍? 例5 甲、乙、丙三数的和是78,甲数比乙数的2倍多4,乙数比丙数的3倍少2。求这三个数。 练习五 有三个小组,甲组的人数比乙组的2倍多6人,乙组的人数是丙组的2倍。三个小组一共有90人,每个小组各有多少人? 课堂练习 1、饲养场的白兔只数是黑兔的5倍,后来卖掉了10只黑兔,买回来20只白兔,现在白兔的只数是黑兔的7倍。饲养场原来养白兔和黑兔各多少只? 2、把840本书放在书架的三层里,下层放的本数比上层的3倍多5本,中层放的本数是上层的2倍多1本。问:上、中、下三层各放书多少本? 3、有两堆水泥,甲堆有4.5吨,已知甲堆重量的三分之一和乙堆重量的四分之一相等,乙堆有水泥多少吨? 4、有两杯水,一杯有水104毫升,另一杯有水24毫升,每次往两只杯子中各倒进8毫升水,倒几次后,一只杯中的水是另一杯的2倍?

小学四年级奥数试题

1:454十999×999十545 2:一支钢笔能换3支圆珠笔,4支圆珠笔能换7支铅笔,那么4支钢笔能换()支铅笔。 3:两数之和是616,其中一个数的最后一位数字是0,如果把0去掉与另一个数相同,这两个数的差是( )。 4:一只母鸡生蛋很有规律,总是连着两天每天生一个蛋,以后就要空一天不生蛋,已知1997年元旦这天没有生蛋,1997年全年一共生了( )只蛋。 5:老师今年45岁,他有三个学生,小明今年15岁,小红今年11岁,小亮今年7岁,要过( )年,老师的岁数等于他们三个学生岁数的和。 6:一六位数,个位数字是5,十万位上的数是9,任意相邻的三个数位上数的和都是20,这个六位数是( )。 7:某班同学要订A、B、C三种报刊,每人至少订一种,最多订三种。那么每个同学有( )不同的订阅方式。 1、4、7、7 _________=24 1、2、7、7 _________ =24 9:小张、小李两人进行射击比赛,约定每中一发记20分,脱靶一发则扣12分,两人各打了10发,共得208分,其中小张比小李多64分,小张射中( )发,小李射中( )发。 10:有重量不等的甲、乙、丙三桶油,共重90千克,现在甲倒给乙10千克,乙倒给丙4千克,丙再倒给甲1千克,这时三桶油同样重。三桶油原来各重( )千克? 3:3辆大车与18辆小车一次共运货物48吨,而3辆大车与26辆小车一次可运货物64吨,求大车载重为小车载重量的多少倍? 4:公共汽车共有男、女人数100人,到甲站后下车27个男人,9个女人,又上来3个男人,9个女人。车到乙站后,上来8个女人,这时车上的男人数正好是女人数的3倍,问原来男人比女人多多少人?

小学四年级奥数测试题及答案

四年级奥数测试 1、按规律填数。(每空2分) (1)1,4,9,(),25,36,(),…… (2)1,1,2,3,5,8,(),21,…… (3)64,48,40,36,34,( ) (4)8,15,10,13,12,11,( ) 2、.在等差数列3,12,21,30,39,48,…中912是第()个数。 3、把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数是()与第6个数是()。 4、已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是() 5、某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是()。 6、□-○=9 □+□+○+○=22 □=()○=() 7、一个数减去8,乘以5,其结果是20,求这个数是()。 8、在算式A÷B=12……24中,要使除数最小,被除数是()。 9、除数是20,增加100以后,要使商不变,被除数应该要扩大()倍。 10、有一根圆木长12米,如果要锯成每段3米,共要锯()次。 11、甲班与乙班共植树300棵,甲班植的棵数是乙班的5倍,甲班植树()棵。 12、在□中填入适当的数字,使除法竖式成立。 13、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要( )分钟 14、父亲45岁,儿子23岁。( )年前父亲年龄是儿子的2倍. 15、一只蜗牛在12米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要( )小时才能爬出井口。 16、锯一根10米长的木棒,每锯一段要2分钟。如果把这根木棒锯成相等的5段,一共要( )分钟。 17、3只猫3天吃了3只老鼠,照这样的效率,9只猫9天能吃( ) 只。 18、┖┴┴┴┴┴┴┴┴┴┚图中共有( )条线段。 19、有四个同学在假期里约定每两人互通一封信,他们总共写了()封信。

相关文档
相关文档 最新文档