文档库 最新最全的文档下载
当前位置:文档库 › 不定方程练习题

不定方程练习题

不定方程练习题
不定方程练习题

十一、不定方程(二) 年级 班 姓名 得分

一、填空题

1.已知△和☆分别表示两个自然数,+☆= .

2.箱子里有乒乓球若干个,其中25%是一级品,五分之几是二级品,其余91个是三级品.那么,箱子里有乒乓球 个.

3.某班同学分成若干小组去值树,若每组植树n 棵,且n 为质数,则剩下树苗20棵;若每组植树9棵,则还缺少2棵树苗.这个班的同学共分成了 组.

4.不定方程23732=++z y x 的自然数解是 .

5.王老师家的电话号码是七位数,将前四位数组成的数与后四位数组成的数相加得9063;将前三位组成的数与后四位组成的数相加得2529.王老师家的电话号码是 .

6.有三个分子相同的最简假分数,化成带分数后为8

7,65,32c b a .已知a ,b ,c 都小于10,a ,b ,c 依次为 , , .

7.全家每个人各喝了一满碗咖啡加牛奶,并且李明喝了全部牛奶(若干碗)的4

1和全部咖啡(若干碗)的6

1.那么,全家有 口人.

8.某单位职工到郊外植树,其中3

1的职工各带一个孩子参加,男职工每人种13棵树,女职工每人种10棵,每个孩子种6棵,他们共种了216棵树,那么其中有女职工 人.

9.将一个棱长为整数(单位:分米)的长方体6个面都涂上红色,然后把它们全部切成棱长为1厘米的小正方体.在这些小正方体中,6个面都没涂红色的有12块,仅有2面涂红色的有28块,仅有1面涂红色的有 块.原来长方体的体积是 立方分米.

10.李林在银行兑换了一张面额为100元以内的人民币支票,兑换员不小心将支票上的元与角、分数字看倒置了(例如,把12.34元看成34.12元),并按看错的数字支付.李林将其款花去3.50元之后,发现其余款恰为支票面额的两倍,于是急忙到银行将多领的款额退回.那么,李林应退回的款额是 元.

二、解答题

11.一队旅客乘坐汽车,要求每辆汽车的乘客人数相等,起初每辆汽车乘22人,结果剩下一人未上车;如果有一辆汽车空车开走,那么所有旅客正好能平均分乘到其它各车上.已知每辆汽车最多只能容纳32人,求起初有多少辆汽车?有多少旅客?

12.小王用50元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为200分、80分、30分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?

13.一次数学竞赛准备了22支铅笔作为奖品发给一、二、三等奖的学生,原计划发给一等奖每人6支,二等奖每人3支,三等奖每人2支,后来改为一等奖每人9支,二等奖每人4支,三等奖每人1支,问:获一、

二、三等奖的学生各几人?

14.采购员用一张1万元支票去购物.购单价590元的A 种物若干,又买单价670元的B 种物若干,其中B 种个数多于A 种个数,找回了几张100元和几张10元的(10元的不超过9张).如把购A 种物品和B 种物品的个数互换,找回的100元和几张10元的钞票张数也恰好相反.问购A 物几个,B 物几个?

———————————————答 案——————————————————————

1. 5.

依题意得11△+5☆=37,易知其自然数解为△=2,☆=3.所以△+☆=5.

2. 260.

设箱子里共有n 个乒乓球,二级品占5

a .依题意,得 n a n n =++?915

%25 整理得 9120)415(?=-a n ①

易知 15-4 a >0,所以a ≤3.

将a=1,2,3代入①知,只有a=2符合要求,此时n=260(个).

3. 11.

设共分为x 组.由树苗总数可列方程

2029+=-nx x

22)9(=-x n

因为22=1×22=2×11, n 是小于9的质数,对比上式得x=11(组).

4. ?????===?????===?????===21312514

2z y x z y x z y x

显然z 只能取1,2,3.

当z=1时,1632=+y x ,其自然数解为x=2, y=4; x =5, y=2.

当z=2时,932=+y x ,其自然数解为x=3, y=1.

当z=3时,232=+y x ,显然无自然数解.

所以原方程的自然数解为:?????===?????===?????===21312514

2z y x z y x z y x

5. 8371692.

设电话号码的前三位为x ,后三位y ,第四位为a (a ≠0).由题意有

???=++=++2529

1000906310y a x y a x ①-②,化简得a x 111726+=.

当a=1时,

x=837, y=692;

当a ≥2时, y <0,不合题意.

所以电话号码为8371692.

6. 7,3,2.

由题意有785623+=+=+c b a .解这个不定方程,得2,3,7===c b a .

7. 5.

设全家共喝了x 碗牛奶和y 碗咖啡,依题意得:16

141=+y x 整理得 1223=+y x .

易得其自然数为x=2, y=3.故共喝牛奶和咖啡2+3=5(碗).因此,全家有5口人.

8. 3.

设有女职工x 人,男职工y 人,那么有孩子

3

y x +人.这个条件说明3| x + y . 由已知 216631310=?+++y x y x 即 7254=+y x

72)(4=++y y x

由12|4(x + y ),12|72.

所以12| y ,又5472x y -=≤5

414572=. 所以, y=12, x=3.即有女职工3人.

9. 32,80.

画个示意图就不难推知:小正方体中仅两面涂色的每条棱上都有,并在同一个方向的4条棱上2面涂色的小正方体数相等,设它们分别为z y x ,,,则

()???==++?12

284xyz z y x

剥去所有涂色的小块,得到上图. 由上面两上算式可以推算出2,3===z y x ,仅 2

)232223(2)(??+?+?=??+?+?z x z y y x ① ②

32216=?=(块).

原来长方体的体积为

80445)2()2()2(=??=+?+?+=z y x V (立方分米).

10. 17.82

设支票上的元数与角、分数分别为x 和y ,则可列得方程

)100(2350)100(y x x y +=-+,

其中x ,y 为整数且0≤x ,y <100.

化简方程得 35019998+=x y

由此推知2x

又 98

5633298350199+++=+=x x x y , 56≤563+x ≤20056483=+?

所以 98563=+x 或298?.

所以 3

24642==x x 或(舍去). 故42=x ,此时32=y .即李林的支票面额为14.32元,竞换时误看成32.14元,李林应退款额为32.14-14.32=17.82元.

11. 设起初有x 辆汽车,开走一辆汽车后每车乘n 人,依题意,得

)1(122-?=+?x n x ,

所以 1

23221122-+=-+=

x x x n 又n , x 为整数,所以(x -1)|23,故x -1=1或23,即x=2或x=24.

若x=2,则451

22322=-=n 与n ≤32产生矛盾. 因此x=24或n=23,故起初有24辆汽车,有旅客22 x +1=529(名).

12. 设苹果、梨子、杏子分别买了z y x ,,个,则

?

??=++=++4050003080200z y x z y x 消去z 得 380517=+y x ①

所以 17

5380y x -=

由0

6221738017538017405380171010=<-

622171010<

当x=15时, y=25, z=0,不合题意.

因此x=20, y=8, z=12.

因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.

13. 设获一、二、三等奖的人数分别为z y x ,,,根据题意有:

???=++=++22

4922236z y x z y x 2×②得 4422818=++y x ③

③-①得 22512=+y x ④

解④求得整数解为x=1, y=2.

代入②可求得z=5.

答:获得一等奖的有1人,获得二等奖的有2人,获三等奖的有5人.

14. 设买A 种物品a 个, B 种物品b 个,找回100元的m 张,10元的n 张,则有:

???--=+--=+n

m b a n m b a 10010100005906701010010000670590 其中b >a ,n <10.

①-②得 )(9)(8m n a b -=- ③

所以 )(98m n -,故m n -8,

由b >a ,n <10知 m

由此推知n=9, m=1, b=a+9.

代入①式,解得a=3. B=12.

答:购A 物3个,B 物12个.

① ② ① ②

小学奥数列方程解应用题

列方程解应用题 内容概述 列方程解决问题是一种很重要的通法,以前我们往往将应用题分成:鸡兔同笼、年龄问题、还原问题等等,再归纳出每一类问题的解法.而现在我们就可以利用方程统一来考虑这些问题.方程思想的建立可以说是一个很大的飞跃. 下面我们就如何找好等量关系,如何建立方程给出一些示范,希望大家体会掌握以提高自己的解题能力. 典型问题 1.有一篮子鸡蛋分给若干人,第一人拿走1个鸡蛋和余下的 19,第二人拿走2个和余下的19,第三人拿走3个和余下的19 ,……,最后恰好分完,并且每人分到的鸡蛋数相同,问:共有多少鸡蛋?分给几个人? 【分析与解】 设原有x 个鸡蛋,那么第一人拿了11(1)9 x +-个鸡蛋,第二人拿了182(1)299x ??+?--????个鸡蛋.1181(1)2(1)2999x x ??+-=+?--???? 解得64x =,则第一人拿了11(641)89 +?-=个鸡蛋,所以共有64÷8=8人. 即共有64个鸡蛋,分给8个人. 2.某人每日下午5时下班后有一辆汽车按时接他回家.有一天,他提前l 小时下班,因汽车未到,遂步行返家,在途中遇到来接他的汽车,因而比平日早16分钟到家,问此人是步行几分钟后遇见汽车的? 【分析与解】设此人在步行x 分钟以后遇见汽车,汽车的速度为“1”,汽车从家到单位需要y 分钟. 由家到单位的总路程为y ,如果汽车在4时就在单位接他,他应该提前1小时到家,但是现在只提前16分钟到家,说明相对汽车他在x 分钟这段路程上耽搁44分钟,所以汽车走这段路程只需要x -44分钟. 而汽车是从5:00-y 从家出发,在4:00+x 达到相遇点.所以行驶x y +-60分钟. 44(60)x x y y -++-=,有21040,52x x -==.

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

(完整版)六年级奥数列方程解应用题

列方程解应用题 列方程解应用题,就是用代数算法解应用题。它以布列方程为前提,先不考虑求得数,只把所求未知数设x。一般所求问 题与已知条件的数量关系明显者,采取设直接未知数的办法,即求什么就设什么为x;而所求问题与已知条件的数量关系隐蔽者,则采取设间接未知数的办法,即设一个跟所求问题与已知条件相关联的未知数为x。 但是,无论设哪种未知数为x,均将其放在与已知数同等的地位,一起参加数量关系的分析和运算。 列方程解应用题,一般分四步进行: ①弄清题意,用x表示未知数; ②找出数量间的等量关系,列出方程式; ③解方程; ④检验并作答。 正确的方程式,应符合下列条件: ①等号两边的意义的相同; ②等号两边的数量相等; ③等号两边的单位一致。 例1.光明小学买回一批图书,如果每班发15本,则少20本,如果每班发12本,则剩下16本,这个学校一共有多少个班?买回图书多少本? 我能行: 1、一批游客过一条河,如果每只船坐10个人,还剩4人,如果每船坐12个人,那么多出1只船,你知道这批游客有多少人?有多少只船? 2、小明每天同一时间从家出发去学校,如果每分钟行60米,则可提前1分钟到校,如果每分钟行50米,则迟到2分钟,小明家离学校多少米? 3、某班班主任给同学们分巧克力,如果每个人分10块,则剩下8块,如果每个人分12块,有6个同学分不到。这个班有多少个学生? 例2.一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大

4倍,个位上的数字减去2,那么所得的两位数比原来大58,求原来的两位数是多少? 解析:这道题用算术方法解答有一定的难度,换成方程来解答,思路就比较简洁。设个位上的数字为x人,则十位上的数字是x -1 我能行: 1、有一个两位数,它的十位数字和个位数字和是14,如果把十位上的数字和个位上的数字位置交换后,所得的两位数比原来的两位数大36,求原来的两位数? 2、甲数是乙数的3倍,甲数减去85,乙数减去5,则两数相等,甲乙两数各是多少? 3、一个三位数,十位数字是0,其余两位数字之和是12,如果个位数字减2,百位数字加1,那么所得的新数比原数的百位数字与个位数字互换位置后的数小100,求原三位数。 例3.100个和尚吃100个馒头,大和尚每人吃3个,小和尚每3人吃一个,那么一共有几个大和尚,几个小和尚? 我能行: 1、鸡兔同笼,从上面数,有15个头。从下面数,共48条腿,鸡和兔子各有多少只? 2、桌子上有5分和2分的硬币共十枚,总共4角4分,有5分和2分的硬币各多少枚? 3、一份数学试卷有20道选择题,规定做对一题得5分,不做或做错倒扣1分,结果某学生得分为76分,问他做对了几道题? 例4.甲、乙两列火车从相距470千米的两城相向而行,甲车每小时行38千米,乙车每小时行40千米,乙车出发2小时后,甲车才出发,求甲车几小时后与乙车相遇? 解析:甲、乙两车相向而行,“甲车行驶的路程+乙车行驶的路程=总路程”,乙车行驶的路程 包括两部分,一部分是先出发2小时所走的路程,另一部分是和甲车同时行驶的路程,

不定方程及方程组

不定方程(组)及应用 【知识点拨】 不定方程式数论中的一个古老的分支,我国对不定方程的研究已有数千年的历史,“百鸡问题”、“中国剩余定理”等一直流传至今。 当方程的个数比方程中未知数的个数少的时候,我们就称这样的方程(或方程组)为不定方程(或不定方程组)。 为纪念古希腊数学家丢番图,不定方程也成为丢番图方程,之所以把它们叫不定方程,是因为他们的解不确定(不唯一)。一般情况下,如果不加以限制,不定方程的解有无限个,如果考虑到题中的一些条件所限制的范围后,它只能有几个解,甚至无解,解答这类方程,必须对题中明显或者隐蔽的条件加以推理,才能正确求解。 【典型例题】 例 1、 求不定方程5x +9y=104的整数解 【巩固训练】 1、在不定方程89-7a=4b 中,a 、b 均为自然数,求此不定方程的解。 例 2、求三元一次不定方程组 {56203412x y z x y z +-=-+=的正整数解。

【巩固训练】 1、求不定方程组{791168 210 x y z x y ++= +=的正整数解。 例3、甲级铅笔7分钱一支,乙级铅笔3分钱一支,问张明用6角钱恰好买两种铅笔共多少支? 【巩固训练】 装水瓶的盒子有大小两种,大的能装7个,小的能装4个,要把41个水瓶装入盒内。问需要大小盒子各多少个?

例4、某地按下列规定收取电费:每月用电不超过50度,每度收4角5分,如果超过50度,超过部分每度收8角,今年七月,甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?(电的度数按整数算) 【巩固训练】 1、某乡水电站发电了,电费规定是:如果每月用电不超过24度,就按每度电9角收费;如果超过24度,超过部分按每度电2元收费,已知在某月中,甲家比乙家多交了电费9元6角钱,甲乙两家各交多少电费?(电的度数按整数算) 例5、把1000拆成两个自然数的和,一个是7的倍数并且要使这个数尽可能大,一个是11的倍数,并且使这个数尽可能的小,这两个数分别是多少?

不定方程

第六节 不定方程 所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理 数、整数或正整数等等)的方程或方程组。不定方程也称为丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。不定方程的重要性在数学竞赛中也得到了充分的体现,每年世界各地的数学竞赛吉,不定方程都占有一席之地;另外它也是培养学生思维能力的好材料,数学竞赛中的不定方程问题,不仅要求学生对初等数论的一般理论、方法有一定的了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。在本节我们来看一看不定方程的基础性的题目。 基础知识 1.不定方程问题的常见类型: (1)求不定方程的解; (2)判定不定方程是否有解; (3)判定不定方程的解的个数(有限个还是无限个)。 2.解不定方程问题常用的解法: (1)代数恒等变形:如因式分解、配方、换元等; (2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解; (3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解; (4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解; (5)无穷递推法。 以下给出几个关于特殊方程的求解定理: (一)二元一次不定方程(组) 定义1.形如c by ax =+(,,,,Z c b a ∈b a ,不同时为零)的方程称为二元一次不定方程。 定理1.方程c by ax =+有解的充要是c b a |),(; 定理2.若1),(=b a ,且00,y x 为c by ax =+的一个解,则方程的一切解都可以表示成 ??? ????-=+=t b a a y y t b a b x x ),(),(00t (为任意整数)。 定理3.n 元一次不定方程c x a x a x a n n =+++ 2211,(N c a a a n ∈,,,,21 )有解的充要条件是c a a a n |),,,(21 . 方法与技巧: 1.解二元一次不定方程通常先判定方程有无解。若有解,可先求c by ax =+一个特解,从而写出通解。当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减

(完整word版)初中数学几种不定方程和方程组的解题技巧和方法

初中数学几种不定方程和方程组的解题技巧和方法 凯里市大风洞正钰中学曾祥文 摘要:教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。在初中数学教学中不定方程与方程(组)占很大的比例,是中学生经常出错和不懂的部分。本文主要探讨几种不定方程和方程组的解题技巧和方法。 关键词:初中数学不定方程方程 教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。有效教学是教师在达成教学目标和满足学生发展需要方面都很成功的教学行为,它是教学的社会价值和个体价值的双重体现。数学是人们对客观世界定性把握和定量刻画、逐渐抽象、形成方法和理论,并进行广泛应用的过程。数学教学是教师对学生进行数学思维培养的一种认知过程。 方程(组)中,未知数的个数多于方程的个数时,它的解往往有无数多个,不能唯一确定,因此这类方程常称为不定方程(组),解不定方程没有固定的方法,需具体问题具体分析,经常用到整数的整除、奇数偶数的特性、因数分解、不等式估值、穷举、分离整数、配方等知识与方法,解不定方程的技巧是对方程适当变形,灵活运用相关知识。本文就几类常见的不定方程与方程做如下浅析。 1 非负数的巧用 在初中数学中,经常用的非负数有:①a2 ≥0 ;②|a|≥0;③a≥0若干个非负数的和为0,那么每个非负数均为0, 例1:已经x2 + y2-x+2y+5/4= 0 ,求x 、y的值。 评析:方程左边配方可变为非负数之和 解:由x2 + y2-x+ 2y+5/4= 0 得( x—1/2 ) 2+ ( y +1 ) 2= 0 所以( x—1/2 ) 2≥0,( y + 1 )2≥≥0 一般地,几个非负数之和为0,则每个非负数均为0。所以x=1/2, y=1 2 二元一次方程的整数解

高等数学微分方程练习题

(一)微分方程的基本概念 微分方程:含未知函数的导数或微分的方程,称为微分方程、 微分方程的阶:微分方程所含未知函数的最高阶导数或微分的阶数称为微分方程的阶数、 1、不就是一阶微分方程. A、正确 B、不正确 2、不就是一阶微分方程. A、正确 B、不正确 一阶线性微分方程:未知函数及其导数都就是一次的微分方程d ()() d y P x y Q x x +=称为一阶 线性微分方程、 微分方程的解:如果一个函数代入微分方程后,方程两边恒等,则称此函数为微分方程的解、通解:如果微分方程的解中所含独立任意常数C的个数等于微分方程的阶数,则此解称为微分方程的通解、 特解:在通解中根据附加条件确定任意常数C的值而得到的解,称为特解、 1、就是微分方程的解. A、正确 B、不正确 2、就是微分方程的解. A、正确 B、不正确 3、就是微分方程的通解. A、正确 B、不正确 4、微分方程的通解就是( ). A、 B、 C、 D、

(二)变量可分离的微分方程:()()dy f x g y dx = 一阶变量可分离的微分方程的解法就是: (1)分离变量:1221()()()()g y f x dy dx g y f x =;(2)两边积分:1221()()()()g y f x dy dx g y f x =?? 左边对y 积分,右边对x 积分,即可得微分方程通解、 1、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 2、微分方程的通解就是( ). A 、 B 、 C 、 D 、 3、微分方程的通解就是( ). A 、 B 、 C 、 D 、 4、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 5、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 6、微分方程的通解( ). A 、 B 、 C 、 D 、 7、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 8、 x y dy e dx -=就是可分离变量的微分方程. A 、正确 B 、不正确

(完整)五年级奥数:列方程解应用题

列方程解应用题(一) 列方程解应用题是小学数学的一项重要内容,是一种不同于算术解法的新的解题方法。 传统的算术方法,要求用应用题里给出的已知条件,通过四则运算,逐步求出未知量。而列方程解应用题是用字母来代替未知数,根据等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值。它的优点在于可以使未知数直接参加运算。 列方程解应用题的关键在于能够正确地设立未知数,找出等量关系,从而建立方程。而找出等量关系,又在于熟练运用数量之间的各种已知条件。掌握了这两点,就能正确地列出方程。 列方程解应用题的一般步骤是: 1.弄清题材意,找出未知数,并用x表示; 2.找出应用题中数量之间的相等关系,列方程; 3.解方程; 4.检验,写出答案。 例题与方法: 例1.一个数的5倍加上10等于它的7倍减去6,求这个数。 例2.两块地一共100公顷,第一块地的4们比第二块地的3倍多120公顷。这两块地各有多少公顷? 例3.琅琊路小学少年数学爱好者俱乐部五年级有三个班,一班人数是三班人数的1.12倍,二班比三班少3人,三个班共有153人。三个班 各有多少人?

例4.被除数与除数的和是98,如果被除数与除数都减去9,那么,被除数是除数的4倍。求原来的被除数和除数。 练习与思考: 1.列方程解应用题,有时要求的未知数有两个或两个以上,我们必须视具体情况,设对解题有利的未知数为x,根据数量关系用含有x的式子来表示另一个未知数。 2.篮球、足球、排球各1个,平均每个36元。篮球比排球贵10元,足球比排球贵8元。每个排球多少元? 3.一次数学竞赛有10道题,评分规定对一道题得10分,错一题倒扣2分。小明回答了全部10道题,结果只得了76分,他答对了几道题? 4.将自然数1—100排列如下表: 在这个表里,用长方形框出的二行六个数(图中长方形框仅为示意),如果框起来的六个数的和为432,问:这六个数中最小的数是几?

不定方程及不定方程组

不定方程及不定方程组集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第二十七讲 不定方程、方程组 不定方程(组)是指未知数的个数多于方程的个数的方程(组),其特点是解往往有无穷多个,不能惟一确定. 对于不定方程(组),我们往往限定只求整数解,甚至只求正整数解,加上条件限制后,解就可确定. 二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)常常转化为二元一次不定方程问题加以解决,与之相关的性质有: 设d c b a 、、、为整数,则不定方程c by ax =+有如下两个重要命题: (1)若(a ,b)=d ,且d 卜c ,则不定方程c by ax =+没有整数解; (2)若00y x ,是方程c by ax =+且(a ,b)=1的一组整数解(称特解),则为整数) t at y y bt x x (00???-=+=是方程的全部整数解(称通解). 解不定方程(组),没有现成的模式、固定的方法可循,需要依据方程(组)的特点进行恰当的变形,并灵活运用以下知识与方法;奇数偶数,整数的整除性、分离整系数、因数分解。配方利用非负数性质、穷举,乘法公式,不等式分析等. 举例 【例1】 正整数m 、n 满足8m+9n=mn+6,则m 的最大值为 . (新加坡数学竞赛题) 思路点拔 把m 用含n 的代数式表示,并分离其整数部分(简称分离整系数法).再结合整除的知识,求出m 的最大值. 注:求整系数不定方程c by ax =+的整数解。通常有以下几个步骤: (1)判断有无整数解;(2)求一个特解;(3)写出通解;(4)由整数t 同时要满足的条件(不等式组),代入(2)中的表达式,写出不定方程的正整数解. 分离整系数法解题的关键是把其中一个未知数用另一个未知数的代数敷式表示,结合整除的知识讨论. 【例2】 如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两种标志.问下一个同时设置这两种标志的地点的千米数是( ). A .32千米 B .37千米 C .55千米 D .90千米 (河南省竞赛题) 思路点拨 设置限速标志、照相标志千米数分别表示为3+4x 、10十9y(x ,y 为自然数),问题转化为求不定方程3+4x=0+9y 的正整数解. 【例3】 (1)求方程15x+52y=6的所有整数解. (2)求方程x+y =x 2一xy+y 2的整数解. (莫斯科数学奥林匹克试题) (3)求方程 6 5 111=++z y x 的正整数解. (“希望杯”邀请赛试题)

小学奥数 不定方程与不定方程组.教师版

不定方程与不定方程组 教学目标 1.利用整除及奇偶性解不定方程 2.不定方程的试值技巧 3.学会解不定方程的经典例题 知识精讲 一、知识点说明 历史概述 不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来. 考点说明 在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。 二、不定方程基本定义 1、定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。 2、不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。

3、研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数; ③求出所有的解 三、不定方程的试值技巧 1、奇偶性 2、整除的特点(能被2、 3、5等数字整除的特性) 3、余数性质的应用(和、差、积的性质及同余的性质) 模块一、利用整除性质解不定方程 【例 1】求方程 2x-3y=8的整数解 【考点】不定方程【难度】2星【题型】解答 【解析】方法一:由原方程,易得 2x=8+3y,x=4+3 2 y,因此,对y的任意一个值,都有一个x与之对应,并且,此时x与y的值必定满足原方 程,故这样的x与y是原方程的一组解,即原方程的解可表为: 3 4 2 x k y k ? =+ ? ? ?= ? ,其中k为任意数.说明由y取值的任意性,可知上述不定方程有无 穷多组解. 方法二:根据奇偶性知道2x是偶数,8为偶数,所以若想2x-3y=8 成立,y必为偶数, 当y=0,x=4;当y=2,x=7;当y=4,x=10……,本题有无穷多个解。 【答案】无穷多个解 【巩固】求方程2x+6y=9的整数解 【考点】不定方程【难度】2星【题型】解答 【解析】因为2x+6y=2(x+3y),所以,不论x和y取何整数,都有2|2x+6y,但29,因此,不论x和y取什么整数,2x+6y都不可能等于9,即 原方程无整数解. 说明:此题告诉我们并非所有的二元一次方程都有整数解。 【答案】无整数解 【例 2】求方程4x+10y=34的正整数解 【考点】不定方程【难度】2星【题型】解答 例题精讲

第七章 微分方程经典例题

第七章 微分方程 例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律. 解 由力学知识得,水从孔口流出的流量为 62.0dt dV Q ?== 孔口截面面积 重力加速度 ,12cm S = .262.0dt gh dV =∴ ① 设在微小的时间间隔],,[t t t ?+水面的高度由h 降至,h h ?+则,2dh r dV π-= ,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ② 比较①和②得: ,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h g dt --- =π ,1000==t h ,1015 14 262.05?? = ∴g C π 所求规律为 ).310107(265.45335h h g t +-?= π 例10 求解微分方程 .2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=222 2y xy x xy y dx dy ,1222 ? ?? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得? ? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1 )2ln(23)1ln(C x u u u +=----

不定方程及不定方程组

第二十七讲 不定方程、方程组 不定方程(组)就是指未知数的个数多于方程的个数的方程 (组),其特点就是解往往有无穷多个,不能惟 一确定. 对于不定方程(组),我们往往限定只求整数解,甚至只求正整数解,加上条件限制后,解就可确定? 二元一次不定方程就是最简单的不定方程 ,一些复杂的不定方程(组)常常转化为二元一次不定方程问题 加以解决,与之相关的性质有: 设a 、b 、c 、d 为整数,则不定方程ax by c 有如下两个重要命题: (1)若(a ,b )=d ,且d 卜c ,则不定方程ax by c 没有整数解; x x 0 bt , ⑵若X 。,y o 就是方程ax by c 且(a ,b )=1的一组整数解(称特解),则 (t 为整数)就是方程 的 y y o at 全部整数解(称通解). 解不定方程(组),没有现成的模式、固定的方法可循 ,需要依据方程(组)的特点进行恰当的变形,并灵活运 用以下知识与方法;奇数偶数,整数的整除性、分离整系数、因数分解。配方利用非负数性质、 穷举,乘法公式, 不等式分析等. 举例 【例1】 正整数m 、n 满足8m+9n=mn+6,则m 的最大值为 _______________ . (新加坡数学竞赛题) 思路点拔 把m 用含n 的代数式表示,并分离其整数部分(简称分离整系数法).再结合整除的知识,求出m 的最大值. 注:求整系数不定方程 ax by c 的整数解。通常有以下几个步骤 : (1)判断有无整数解;(2)求一个特解;(3)写出通解;(4)由整数t 同时要满足的条件(不等式组),代入⑵中的表 达式,写出不定方程的正整数解. 分离整系数法解题的关键就是把其中一个未知数用另一个未知数的代数敷式表示 ,结合整除的知识讨 论. 【例2】 如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从10千米处开始,每隔 9千米设一个测速照相标志,则刚好在19千米处同时设置这两种标志 .问下一个同时设置这两种标志的地点 的千米数就是( ). 1115 (3)求方程 的正整数解. x y z 6 (“希望杯”邀请赛试题) p 1 思路点拨 设置限速标志、照相标志千米数分别表示为 定方程3+4x=0+9y 的正整数解. 【例3】(1)求方程15x+52y=6的所有整数解. (2)求方程x+y = x 2 一 xy+y 2 的整数 (河南省竞赛题) 3+4x 、10十9y (x,y 为自然数),问题转化为求不 A.32千米 B.37千米 C.55千米 D.90千米

微分方程练习题基础篇答案

常微分方程基础练习题答案 求下列方程的通解 1.dy xy dx = 分离变量 dy xdx y =,2 2x y Ce =,C 为任意常数 2.0xydx = 分离变量 dy y = ,y =C 任意常数 3.ln 0xy y y '-= 分离变量 1 ln dy dx y y x =,x y Ce = 224.()()0xy x dx x y y dy ++-= 分离变量 22 11ydy xdx y x =+-,22 (1)(1)y x C +-= 2 5.(25)dy x y dx =++ 令25u x y =++则2du dy dx dx =+,22du dx u =+ 1x C =+ 6.dy x y dx x y +=-,原方程变为11y dy x y dx x + =-,令y u x =,dy du u x dx dx =+,代入得22111u du dx u x -=+ 2arctan ln u u x C -=+ , y u x = 回代得通解 2arctan ln y y x C x x =++ 7.0xy y '-= 方程变形为0dy y dx x =+=,令y u x = dx x = arctan ln u x C =+, y u x = 回代得通解arctan ln y y x C x x =++ 8.ln dy y x y dx x =,方程变形为ln dy y y dx x x =,令y u x =,(ln 1)du dx u u x =-,1 Cx u e +=,1Cx y xe +=

9.24dy xy x dx +=,一阶线性公式法222(4)2xdx xdx x y e xe dx C Ce --??=+=+? 210.2dy y x dx x -=,一阶线性公式法112 3(2)dx dx x x y e x e dx C x Cx -??=+=+? 2211.(1)24x y xy x '++=,方程变形为2 222411x x y y x x '+=++一阶线性公式法3 2 14()13 y x C x =++ 212.(6) 20dy y x y dx -+=,方程变形为312dx x y dy y -=-一阶线性公式法2312y y Cy =+ 2 13.3y xy xy '-=,方程变形为2113dy x x y dx y -=伯努利方程,令12,dz dy z y y dx dx --==-代入方程得 3dz xz x dx +=-一阶线性公式法再将z 回代得23 2 113x Ce y -=- 411 14. (12)33 dy y x y dx +=-,方程变形为4 3 1111(12)33dy x y dx y +=-伯努利方程,令 34, 3dz dy z y y dx dx --==-代入方程得21dz z x dx -=-,一阶线性公式法再将z 回代得3121x Ce x y =-- 15.560y y y '''++=,特征方程为2560r r ++=,特征根为122,3r r =-=-,通解 2312x x y C e C e --=+ 16.162490y y y '''-+=,特征方程为2 162490r r -+=,特征根为1,23 4 r =,通解 34 12()x y C C x e =+

五年级奥数列方程解应用题

五年级奥数列方程解应用题 例1:笼中共有鸡兔100只,鸡兔足数共有320条,问鸡兔各有多少只? 等量关系式是: ①有10分和20分的邮票共18张,总面值为2.80元,问10分和20分邮票各有多少张? ②小兔妈妈采蘑菇,晴天每天可采16只,雨天每天只能采11只,它一共采了195只,平均每天采13只,这几天中有几天下雨?几天晴天? 例2:已知鸡比兔多13只,鸡的脚比兔脚多16条,问鸡兔各有多少只? 等量关系式是: ①五年一班有52人做手工,男生每人做3件,女生每人做2件,已知男生比女生多做36件,求五年一班男女生各有多少人? ②学校组织暑假旅游,一共用了10辆车,大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐了520人,问大小客车各几辆? 例3:一条船从码头顺流而下,再逆流而上,打算在8小时内回到原出发的码头,已知船的静水速度是每小时10千米,水流速度是每小时2千米,问此船最多走出多少千米就必须返回才能在8小时内回到原码头? 等量关系式是:

①一架飞机飞行于两城之间顺风需要6小时30分,逆风时需要7小时,已知风速是每小时26千米,求两城之间的距离是多少千米? ②甲、乙两人分别从AB两地同时出发,如果两人同向而行,经过13分钟,甲赶上乙。如两人相向而行,经过3分钟两人相遇。已知乙每分钟行25千米,问AB两地相距多少米? 例4:一群公猴,母猴和小猴共38只,每分钟共摘桃266个。已知一只公猴每分钟摘桃10个,一只母猴每分钟摘桃8个,一只小猴每分钟摘桃5个,已知公猴比母猴少4只,那么这群猴中公猴、母猴、小猴各有多少只? ①有大、中、小卡车共42辆,每次共运货315箱,已知每辆大卡车每次能运10箱,中卡车每辆每次运8箱,小卡车每辆每次可运5箱,又知中卡车的辆数和小卡车同样多,求大卡车有多少辆? ②蜘蛛有8只脚,晴蜓有6只脚和2双翅膀,蝉有6只脚和一对翅膀,现在有这三种小虫共16只,共有110条腿,14对翅膀,问每只小虫各有多少只? ③学校组织新年联欢会,用于奖品的铅笔、圆珠笔、钢笔共232支,价值100元,其中铅笔的数量是圆珠笔的4倍,已知每支铅笔0.2元,每支圆珠笔0.9元,每支钢笔2.1元。三种笔各值多少元? 例5:一个两位数,十位数是个位数字的2倍,如果把十位数上的数字与个位上的数字对调,那么所得的两位数比原两位数小27,原两位数是多少? ①一个两位数,个位数是十位上的数的3倍,若把这个十位上的

小学数学不定方程与不定方程组的解法

不定方程与不定方程组 知识框架 一、知识点说明 历史概述 不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来. 考点说明 在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。 二、不定方程基本定义 (1)定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。 (2)不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。(3)研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数;③求出所有的解 三、不定方程的试值技巧 (1)奇偶性 (2)整除的特点(能被2、3、5等数字整除的特性) (3)余数性质的应用(和、差、积的性质及同余的性质) 重难点 (1)b利用整除及奇偶性解不定方程 (2)不定方程的试值技巧 (3)学会解不定方程的经典例题

例题精讲 一、利用整除性质解不定方程【例 1】求方程2x-3y=8的整数解 【考点】不定方程 【解析】方法一:由原方程,易得2x=8+3y,x=4+3 2 y,因此,对y的任意一个值,都有一个x与之对 应,并且,此时x与y的值必定满足原方程,故这样的x与y是原方程的一组解,即原方程的解 可表为: 3 4 2 x k y k ? =+ ? ? ?= ? ,其中k为任意数.说明由y取值的任意性,可知上述不定方程有无穷多 组解. 方法二:根据奇偶性知道2x是偶数,8为偶数,所以若想2x-3y=8成立,y必为偶数,当y=0,x=4;当y=2,x=7;当y=4,x=10……,本题有无穷多个解。 【答案】无穷多个解 【巩固】求方程2x+6y=9的整数解 【考点】不定方程 【解析】因为2x+6y=2(x+3y),所以,不论x和y取何整数,都有2|2x+6y,但29,因此,不论x和y取什么整数,2x+6y都不可能等于9,即原方程无整数解. 说明:此题告诉我们并非所有的二元一次方程都有整数解。 【答案】无整数解 【例 2】求方程4x+10y=34的正整数解 【考点】不定方程 【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得2x+5y=17,5y的个位是0或5两种情况,2x是偶数,要想和为17,5y的个位只能是5,y为奇数即可;2x的个位为2,所以x的取值为1、6、11、16…… x=1时,17-2x=15,y=3, x=6时,17-2x=5,y=1, x=11时,17-2x=17 -22,无解

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2 x e x xdy y x dx y =+-==。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+? ?=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11 ln ln 2 y x x = +。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2 u u u x u -='+, 分离变量得 dx x u du 1 2 =-, 积分得 C x u +=ln 1 , 原方程的通解为 ln x y x C = +。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03 2 2 3 =---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3 2 2 3 --- 42222441 )(2141dy dy x dx y dx -+-= )2(41 4224y y x x d --=, 得 0)2(4 224=--y y x x d , 原方程的通解为 C y y x x =--4 2 2 4 2。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222 =--r r ,特征根为 i r ±=1, 通解为12(cos sin )x y e C x C x =+。

解三元一次不定方程组

题目:小明的妈妈去超市购物,已知买13个鸡蛋,5个鸭蛋,9个鹌鹑蛋需付9.25元,买2个鸡蛋,4个鸭蛋,3个鹌鹑蛋需付3.20元,小明妈妈想买一个鸡蛋一个鸭蛋一个鹌鹑蛋需付多少钱? 分析:此方程组是三元一次不定方程组,由于只有两个三元一次方程,因而要分别求出x、y、z的值是不可能的,但注意到所求的是x+y+z的代数和,因此,可通过变形变换得到多种解法. 解:设鸡、鸭、鹌鹑三种蛋的单价分别为x、y、z元,则根据题意,得13x+5y+9z=9.25 ① 2x+4y+3z=3.20 ② (1)凑整法 解法1: (①+②)/3: 5x+3y+4z=4.15 ③ ∴②+③,得 7(x+y+z)=7.35 ∴ x+y+z=1.05 答:只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需1.05元。 解法2: 原方程组可变形为 13(x++y+z)-4(2y+z)=9.25 ① 2(x++y+z)+4(2y+z)=3.20 ② 解之得x+y+z=1.05 (2)主元法 解法3: 视x、y为主元,视z为常数,解①、②得x=0.5-0.5z,y=0.55-0.5z.∴x+y+z=0.55+0.5-z+z=1.05. 解法4: 视y、z为主元,视x为常数,解①、②得y=0.05+x,z=1-2x. ∴x+y+z=1.05+x-2x+x=1.05. 解法5: 视z、x为主元,视y为常数,解①、②得x=y-0.05,z=1.1-2y ∴x+y+z=y-0.05+y+1.1-2y=1.05. (3)参数法 解法6: 设x+y+z=k,则 13x+5y+9z=9.25 ① 2x+4y+3z=3.20 ② x+y+z=k ③ ∴①-②×3,得x-y=-0.05 ④ ③×3-②,得x-y=3k-3.2 ⑤

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

相关文档
相关文档 最新文档