文档库 最新最全的文档下载
当前位置:文档库 › 高中平面解析几何知识点总结直线圆椭圆曲线

高中平面解析几何知识点总结直线圆椭圆曲线

高中平面解析几何知识点总结直线圆椭圆曲线
高中平面解析几何知识点总结直线圆椭圆曲线

圆的知识点总结

圆的知识的归纳总结与复习 【知识与方法归纳】 1. 圆的特征:圆是由一条曲线围成的封闭图形,圆上任意一点到圆心的距离都相等。 2. 圆规画圆的方法:(1)把圆规的两脚分开,定好两脚间的距离;(2)把有针尖的一只脚固定在一点上;(3)把装有铅笔尖的一只脚绕这个固定点旋转一周,就可以画出一个圆。 3. 圆各部分的名称:圆心用O表示;半径通常用字母r表示;直径通常用字母d表示。 4. 圆有无数条直径,无数条半径;同(或等)圆内的直径都相等,半径都相等。 5. 圆心和半径的作用:圆心确定圆的位置,半径决定圆的大小。 6. 圆的轴对称性:圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。 7. 同一圆内半径与直径的关系:在同一圆内,直径的长度是半径的2倍,可以表示为d=2r 或r= 。 8. 圆的周长:圆的周长是指围成圆的曲线的长。直径的长短决定圆周长的大小。 9. 圆周率:圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时通常取3.14. 10. 圆的周长的计算公式:如果用C表示圆的周长,那么C=πd或C=2πr。 11. 圆的周长计算公式的应用: (1)已知圆的半径,求圆的周长:C=2πr。 (2)已知圆的直径,求圆的周长:C=πd。 (3)已知圆的周长,求圆的半径:r=C π 2. (4)已知圆的周长,求圆的直径:d=C π。 12. 圆的面积的含义:圆形物体所占平面的大小或圆形物体表面的大小就是圆的面积。 13. 圆的面积计算公式:如果用S表示圆的面积,r表示圆的半径,那么圆的面积计算公式是:S= 。 14. 圆的面积计算公式的应用: (1)已知圆的半径,求圆的面积:S= 。 (2)已知圆的直径,求圆的面积:r= ,S= 或。 (3)已知圆的周长,求圆的面积:r=C 2 π,S= 或。 【经典例题】

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

双曲线知识点归纳总结

双曲线知识点归纳总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2121F F MF MF =-,当2 12 1F F MF MF =-,动点轨迹是以2F 为端点向 右延伸的一条射线;当2112F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2 AB By Ax =+的方程可化为11122=+ B y A x 当01 ,01 B A ,双曲线的焦点在y 轴上; 当01 ,01 B A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.

(完整版)直线与圆知识归纳

直线与圆 ◆知识点归纳 直线与方程 1.直线的倾斜角 规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2 (tan π α≠ =a k ,R k ∈ 斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为1 21 22 1x x y y k P P --= 3.直线方程的几种形式 能力提升 斜率应用 例1.已知函数)1(log )(2+=x x f 且0>>>c b a ,则 c c f b b f a a f ) (,)(,)(的大小关系

例2.已知实数y x ,满足)11(222 ≤≤-+-=x x x y ,试求2 3 ++x y 的最大值和最小值 两直线位置关系 两条直线的位置关系 设两直线的方程分别为: 222111:b x k y l +=或0 :22221111=++C y B x A l ;当21k k ≠或1221B A B A ≠时它们 相交,交点坐标为方程组???+=+=2211b x k y b x k y 或???=++=++00 222 111C y B x A C y B x A 直线间的夹角: ①若θ为1l 到2l 的角,12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ②若θ为1l 和2l 的夹角,则12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ③当0121=+k k 或02121=+B B A A o 直线1l 到2l 的角θ与1l 和2l 的夹角α:) 2 (π θθα≤ =

圆知识点总结及归纳

第一讲圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x-a)2+(y-b)2=r2 展开并整理得x2+y2-2ax-2by+a2+b2-r2=0,取D=-2a,E=-2b,F=a2+b2-r2,得x2+y2+Dx+Ey+F=0. (2)将圆的一般方程x2+y2+Dx+Ey+F=0通过配方后得到的方程为:

(x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2 +E 2 -4F >0时,该方程表示以(-D 2,-E 2)为圆心, 1 2 D 2+ E 2-4 F 为半径的圆; ②当D 2 +E 2 -4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2,-E 2);③当D 2+E 2-4F <0时,方程没有实数解, 因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为 1 ,没有 xy 的二次项. 3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了. 2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

方法一: 方法二: (四)圆与圆的位置关系 1 外离 2外切 3相交 4内切 5内含 (五)圆的参数方程 (六)温馨提示 1、方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的条件是: (1)B=0;(2)A=C≠0;(3)D2+E2-4AF>0.

双曲线知识点复习总结

双曲线知识点总结复习 1. 双曲线的定义: (1)双曲线:焦点在x 轴上时1-2222=b y a x (222 c a b =+),焦点在y 轴上时2 222-b x a y =1(0a b >>)。双曲线方程也可设为: 22 1(0)x y mn m n -=>这样设的好处是为了计算方便。 (2)等轴双曲线: (注:在学了双曲线之后一定不要和椭圆的相关内容混淆了,他们之间有联系,可以类比。) 例一:已知双曲线C 和椭圆22 1169 x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。(要分清椭圆和双曲线中的,,a b c 。) 思考:定义中若(1)20a =;(2)122a F F =,各表示什么曲线 2. 双曲线的几何性质: (1)双曲线(以)(0,01-22 22>>=b a b y a x 为例):①范围:x a x a ≥≤-且;②焦点: 两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点 (,0),(0,)a b ±±,其中实轴长为2a ,虚轴长为2b ;④准线:两条准线2 a x c =±; ⑤离心 率:c e a = ,双曲线?1e >,e 越大,双曲线开口越大;e 越小,双曲线开口越小。⑥通径22b a (2)渐近线:双曲线22 221(0,0)x y a b a b -=>>的渐近线为:

等轴双曲线的渐近线方程为: ,离心率为: (注:利用渐近线可以较准确的画出双曲线的草图) 例二:方程 1112 2=--+k y k x 表示双曲线,则k 的取值范围是___________________ 例三:双曲线与椭圆 164 162 2=+y x 有相同的焦点,它的一条渐近线为x y -=,则双曲线的方程为__________________ 例四:双曲线142 2=+b y x 的离心率)2,1(∈e ,则b 的取值范围是___________________

初中数学圆知识点总结

A 图5 圆的总结 一 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的部:可以看作是到定点的距离小于定长的点的集合 二 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 三 位置关系: 1点与圆的位置关系: 点在圆 dr 点A 在圆外 2 直线与圆的位置关系: 直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 d

D B B A B A 四 垂径定理: 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB ⊥CD ③CE=DE ④ ⑤ 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD 五 圆心角定理 六 圆周角定理 圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半 即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB 圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧 即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角 ∴∠C=∠D 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径 即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠ C=90° ∴AB 是直径 推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 BC BD =AC AD =

高中圆的知识点总结

高中圆的知识点总结 椭圆的中心及其对称性;判断曲线关于x轴、y轴及原点对称的依据;如果曲线具有关于x轴、y轴及原点对称中的任意两种,那么它也具有另一种对称性;注意椭圆不因坐标轴改变的固有性质。下面是圆的知识点总结。 一、教学内容: 椭圆的方程 高考要求:理解椭圆的标准方程和几何性质. 重点:椭圆的方程与几何性质. 难点:椭圆的方程与几何性质. 二、知识点: 1、椭圆的定义、标准方程、图形和性质 定义第一定义:平面内与两个定点 )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距第二定义: 平面内到动点距离与到定直线距离的比是常数e.(0 标 准 方 程焦点在x轴上 焦点在y轴上

图形焦点在x轴上 焦点在y轴上 性质焦点在x轴上 范围: 对称性:轴、轴、原点. 顶点:, . 离心率:e 概念:椭圆焦距与长轴长之比 定义式: 范围: 2、椭圆中a,b,c,e的关系是:(1)定义:r1+r2=2a (2)余弦定理: + -2r1r2cos(3)面积: = r1r2 sin ?2c| y0 |(其中P( ) 三、基础训练: 1、椭圆的标准方程为 焦点坐标是,长轴长为___2____,短轴长为2、椭圆的值是__3或5__; 3、两个焦点的坐标分别为 ___; 4、已知椭圆上一点P到椭圆一个焦点的距离是7,则点P 到另一个焦点 5、设F是椭圆的一个焦点,B1B是短轴,,则椭圆的离心率为 6、方程 =10,化简的结果是 ; 满足方程7、若椭圆短轴上的两个三等分点与两个焦点构成

一个正方形,则椭圆的离心率为 8、直线y=kx-2与焦点在x轴上的椭圆9、在平面直角坐标系顶点,顶点在椭圆上,则10、已知点F是椭圆的右焦点,点A(4,1)是椭圆内的一点,点P(x,y)(x0)是椭圆上的一个动点,则的最大值是 8 . 【典型例题】 例1、(1)已知椭圆的中心在原点,焦点在坐标轴上,长轴长是短轴长的3倍,短轴长为4,求椭圆的方程. (2)中心在原点,焦点在x轴上,右焦点到短轴端点的距离为2,到右顶点的距离为1,求椭圆的方程. 解:设方程为 . 所求方程为(3)已知三点P,(5,2),F1 (-6,0),F2 (6,0).设点P,F1,F2关于直线y=x的对称点分别为,求以为焦点且过点的椭圆方程 . 解:(1)由题意可设所求椭圆的标准方程为所以所求椭圆的标准方程为(4)求经过点M( , 1)的椭圆的标准方程. 解:设方程为 例2、如图所示,我国发射的第一颗人造地球卫星运行轨道是以地心(地球的中心) 为一个焦点的椭圆,已知它的近地点A(离地面最近的点)距地面439km,远地点B(离地面最远的点)距地面2384km,并且、A、B在同一直线上,设地球半径约为6371km,求卫星运行的轨道方程 (精确到1km).

高中数学【椭圆与双曲线】知识点总结

高中数学【椭圆与双曲线】知识点总结 姓名: (一)椭圆 1.椭圆的定义 如果平面内一动点到两定点距离之和等于正的常数(大于两定点的距离),则动点的规迹是椭圆 即|PF1|+|PF2|=2a 其中P是动点,F1,F2是定点且|F1F2|=2C 当a>c时表示 当a=c时表示 当a

标准方程 x,y的范围 顶点焦点对称轴对称中心 长半轴的长短半轴的长焦距 离心率e= 范围e越大椭圆越e越小椭圆越 准线焦半径公式|PF1|= |PF2|= (F1,F2分别为椭圆的下上两焦点,P为椭圆上的一点) 4.椭圆系 (1)共焦点的椭圆系方程为 22 2 1 x y k k c += - (其中k>c2,c为半焦距) (2 )具有相同离心率的标准椭圆系的方程 22 22 (0) x y a b λλ +=> (二) 双曲线 1.双曲线的定义 如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线 若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支 F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 (2) 若|P F1|-|PF2|=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 2.双曲线的标准方程

双曲线知识点归纳总结

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2 12 1F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向

右延伸的一条射线;当2 112 F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一 条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2πAB By Ax =+的方程可化为11122=+ B y A x 当01 ,01φπB A ,双曲线的焦点在y 轴上; 当01 ,01πφB A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 6. 离心率与渐近线之间的关系 22 2 22222 1a b a b a a c e +=+== 1)2 1?? ? ??+=a b e 2) 12-=e a b 7. 双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). (4)与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-22 22b y a x 0(≠λ

(完整版)高中数学直线和圆知识点总结

直线和圆 一.直线 1.斜率与倾斜角:tan k θ=,[0,)θπ∈ (1)[0,)2π θ∈时,0k ≥; (2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k < (4)当倾斜角从0?增加到90?时,斜率从0增加到+∞; 当倾斜角从90?增加到180? 时,斜率从-∞增加到0 2.直线方程 (1)点斜式:)(00x x k y y -=- (2)斜截式:y kx b =+ (3)两点式:1 21121x x x x y y y y --=-- (4)截距式:1x y a b += (5)一般式:0C =++By Ax 3.距离公式 (1)点111(,)P x y ,222(,)P x y 之间的距离:12PP = (2)点00(,)P x y 到直线0Ax By C ++= 的距离:d = (3)平行线间的距离:10Ax By C ++=与20Ax By C ++= 的距离:d = 4.位置关系 (1)截距式:y kx b =+形式 重合:1212 k k b b == 相交:12k k ≠ 平行:1212 k k b b =≠ 垂直:121k k ?=- (2)一般式:0Ax By C ++=形式 重合:1221A B A B =且1221A C A C =且1212B C C B = 平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠

垂直:12120A A B B += 相交:1221A B A B ≠ 5.直线系 1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l ) 二.圆 1.圆的方程 (1)标准形式:222 ()()x a y b R -+-=(0R >) (2)一般式:220x y Dx Ey F ++++=(2240D E F +->) (3)参数方程:00cos sin x x r y y r θθ=+??=+? (θ是参数) 【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决. (4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--= 2.位置关系 (1)点00(,)P x y 和圆222 ()()x a y b R -+-=的位置关系: 当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部 当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上 当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外 (2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++= 的距离d = R 的大小关系 当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点);

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

(完整版)双曲线经典知识点总结

双曲线知识点总结班级姓名 知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0 且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支; 3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在; 5.若常数,则动点轨迹为线段F1F2的垂直平分线。 知识点二:双曲线的标准方程 1.当焦点在轴上时,双曲线的标准方程:,其中; 2.当焦点在轴上时,双曲线的标准方程:,其中. 注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程; 2.在双曲线的两种标准方程中,都有; 3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上, 双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为, . 知识点三:双曲线的简单几何性质 双曲线(a>0,b>0)的简单几何性质 (1)对称性:对于双曲线标准方程(a>0,b>0),把x换成― x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b >0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。 (2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a或x≥a。(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,―b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。 注意:①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。 ②双曲线的焦点总在实轴上。③实轴和虚轴等长的双曲线称为等轴双曲线。 (4)离心率:①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。 ②因为c>a>0,所以双曲线的离心率。由c2=a2+b2,可得, 所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。所以离心率可以用来表示 双曲线开口的大小程度。③等轴双曲线,所以离心率。 (5)渐近线:经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线 围成一个矩形(如图),矩形的两条对角线所在直线的方程是,我们把直线叫做双曲线的渐近线。 注意:双曲线与它的渐近线无限接近,但永不相交。 标准方程 图形 性质 焦点,, 焦距 范围,,

双曲线知识点总结 (1)

双曲线知识点 知识点一:双曲线的定义: 在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且) 的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 注意: 1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支; 3. 若常数满足约束条件:,则动点轨迹是以F 1 、F 2 为端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在; 5.若常数,则动点轨迹为线段F 1 F 2 的垂直平分线。 标准方程 图形 性质 焦点,, 焦距 范围,, 对称性关于x轴、y轴和原点对称 顶点

轴长实轴长 =,虚轴长= 离心率 渐近线方 程 1.通径:过焦点且垂直于实轴的弦,其长 a b2 2 2.等轴双曲线 :当双曲线的实轴长与虚轴长相等即2a=2b时,我们称这样的双曲线为等轴双曲线。其离心率,两条渐近线互相垂直为,等轴双曲线可设为 3.与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y轴上) 4.焦点三角形的面积 2 cot 2 2 1 θ b S F PF = ? ,其中 2 1 PF F ∠ = θ 5.双曲线的焦点到渐近线的距离为b. 6.在不能确定焦点位置的情况下可设双曲线方程为:)0 (1 2 2< = +mn ny mx 7. 椭圆双曲线 根据|MF 1 |+|MF 2 |=2a 根据|MF 1 |-|MF 2 |=±2a a>c>0, a2-c2=b2(b>0) 0<a<c, c2-a2=b2(b>0) , (a>b>0) , (a>0,b>0,a不一定大于b)

直线与圆知识点总结

直线和圆知识点总结 1、直线的倾斜角:(1 )定义:在平面直角坐标系中,对于一条与 X 轴相交的直线l , 如果把X 轴绕着交点按逆时针方向转到和直线I 重合时所转的最小正角记为,那么 就叫 做直线的倾斜角。当直线I 与x 轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围 0, < 2 一 过点P ( J3,1),Q (0,m )的直线的倾斜角的范围 [―,——],那么m 值的范围是 3 3 (答:m 2 或 m 4) 2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线 的斜率k ,即k = tan ( 丰90° );倾斜角为90°的直线没有斜率;(2)斜率公式:经过 两点R (x 1,yJ 、卩2&2』2)的直线的斜率为 k a (1,k ),直线的方向向量与直线的斜率有何关系? 如(1)两条直线钭率相等是这两条直线平行的一 X 1 X 2 ; ( 3)直线的方向向量 x 1 x 2 (4)应用:证明三点共线: k AB k BC 。 _________ 条件(答:既不充分也不必要); (2)实数x, y 满足3x 2y 5 0 ( 1 x 3),则上的最大值、最小值分别为 ___________ (答: x (1)点斜式:已知直线过点 (x 0,y 0)斜率为k ,则直线方程为kx b ,它不包括垂直于 x 轴的直线。(3)两点式:已知直 线经过R (X 1,yJ 、卩:化皿)两点,则直线方程为 —―丄 —―生,它不包括垂直于坐 y 2 y 1 X 2 X 1 标轴的直线。(4)截距式:已知直线在x 轴和y 轴上的截距为a,b ,则直线方程为— 1 , a b 它不包括垂直于坐标轴的直线和过原点的直线。(5) 一般式:任何直线均可写成 Ax By C 0(A,B 不同时为0)的形式。如(1)经过点(2,1)且方向向量为v =( — 1, . 3 ) 的直线的点斜式方程是 _____________________ (答:y 1 V3(x 2) ) ; ( 2 )直线 (m 2)x (2 m 1)y (3m 4) 0 ,不管 m 怎样变化恒过点 _______ (答:(1, 2) ); (3) 若曲线y a | x |与y x a (a 0)有两个公共点,则a 的取值范围是 ____________ (答: a 1) 提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线, 还 有截距式呢?); (2)直线在坐标轴上的截距可正、 可负、也可为0.直线两截距相等 直线 的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线 两截距绝对值相等 直线的斜率为 1或直线过原点。 如过点A (1,4),且纵横截距的绝对 值相等的直线共有―条(答:3) 4. 设直线方程的一些常用技巧 :(1)知直线纵截距b ,常设其方 程为y kx b ; (2) 知直线横截距X 0,常设其方程为x my x °(它不适用于斜率为 0的直线);(3)知直线过 点 (x °,y °),当斜率k 存在时,常设其方程为 y k (x x 。) y 。,当斜率k 不存在时,则其 方程 如(1)直线xcos .. 3y 2 0的倾斜角的范围是 5 (答:[。,評它,));(2) 1) 3、直线的方程 y y 。 k (x x 0),它不包括垂直于 x 轴的直线。(2)斜截式:已知直线在y 轴上的截距为 b 和斜率k ,则直线方程为y

圆知识点总结及归纳

圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x -a )2+(y -b )2=r 2 展开并整理得x 2+y 2-2ax -2by +a 2+b 2- r 2=0,取D =-2a ,E =-2b ,F =a 2+b 2-r 2,得x 2+y 2+Dx +Ey +F =0. (2)将圆的一般方程x 2+y 2+Dx +Ey +F =0通过配方后得到的方程为: (x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2+E 2-4F >0 时,该方程表示以(-D 2,-E 2)为圆心, 1 2 D 2+ E 2-4 F 为半径的 圆; ②当 D 2+ E 2-4 F =0 时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2 ,- E 2 );③当D 2+E 2-4F <0时,方程没有实数解,因而它不表示任何图形.

2、圆的一般方程的特征是:x2和y2项的系数都为1 ,没有xy 的二次项. 3、圆的一般方程中有三个待定的系数D、E、F,因此只要求出这三个系数,圆的方程就确定了. (三)直线与圆的位置关系 方法一: 方法二: (四)圆与圆的位置关系 1 外离 2外切 3相交 4切 5含 (五)圆的参数方程

(六)温馨提示 1、方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是: (1)B =0; (2)A =C ≠0; (3)D 2+E 2-4AF >0. 2、求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上. (3)两圆切或外切时,切点与两圆圆心三点共线. 3、中点坐标公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),点M (x ,y )是线段AB 的中点,则x = 122x x + ,y =12 2 y y + . 考点一:有关圆的标准方程的求法 ()()()2 2 20x a y b m m +++=≠的圆心是 ,半径是 . 【例2】 点(1,1)在圆(x -a )2+(y +a )2=4,则实数a 的取值围是( ) A .(-1,1) B .(0,1)

双曲线知识点归纳总结.

第二章 2.3 双曲线 双曲线 标准方程(焦点在x 轴) )0,0(122 22>>=-b a b y a x 标准方程(焦点在y 轴) )0,0(122 22>>=-b a b x a y 定义 第一定义:平面内与两个定点1F ,2F 的距离的差的绝对值是常数(小于12F F )的点的轨迹叫双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。 {}a MF MF M 22 1 =-()212F F a < 第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数e ,当1e >时,动点的轨迹是双曲线。定点F 叫做双曲线的焦点,定直线叫做双曲线的准线,常数e (1e >)叫做双曲线的离心率。 范围 x a ≥,y R ∈ y a ≥,x R ∈ 对称轴 x 轴 ,y 轴;实轴长为2a ,虚轴长为2b 对称中 心 原点(0,0)O 焦点坐标 1(,0)F c - 2(,0)F c 1(0,)F c - 2(0,)F c 焦点在实轴上,22c a b =+;焦距:122F F c = 顶点坐标 (a -,0) (a ,0) (0, a -,) (0,a ) x y P 1 F 2 F x y P x y P 1F 2F x y x y P 1 F 2 F x y x y P 1F 2F x y P

离心率 e a c e (= >1) 准线方 程 c a x 2 ± = c a y 2 ± = 准线垂直于实轴且在两顶点的内侧;两准线间的距离:c a 2 2 顶点到准线的 距离 顶点1A (2A )到准线1l (2l )的距离为c a a 2 - 顶点1 A (2A )到准线2l (1l )的距离为a c a +2 焦点到准线的 距离 焦点1F (2F )到准线1l (2l )的距离为c a c 2 - 焦点1F (2F )到准线2l (1l )的距离为c c a +2 渐近线 方程 x a b y ±= x b a y ±= 共渐近 线的双曲线系 方程 k b y a x =-2222(0k ≠) k b x a y =-22 2 2(0k ≠) 1. 双曲线的定义 ① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2 12 1F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向 右延伸的一条射线;当2112F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<.

双曲线知识点归纳总结

第二章 2.3 双曲线 双曲线 标准方程(焦点在x轴) )0 ,0 (1 2 2 2 2 > > = -b a b y a x 标准方程(焦点在y轴) )0 ,0 (1 2 2 2 2 > > = -b a b x a y 定义 第一定义:平面内与两个定点 1 F, 2 F的距离的差的绝对值是常数(小于 12 F F)的 点的轨迹叫双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。 {}a MF MF M2 2 1 = -()21 2F F a< 第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e,当1 e>时, 动点的轨迹是双曲线。定点F叫做双曲线的焦点,定直线叫做双曲线的准线,常数 e(1 e>)叫做双曲线的离心率。 范围x a ≥,y R ∈y a ≥,x R ∈ 对称轴x轴,y轴;实轴长为2a,虚轴长为2b 对称中 心 原点(0,0) O x y P 1 F 2 F x y P x y P 1 F 2 F x y x y P 1 F 2 F x y x y P 1 F 2 F x y P

焦点坐 标 1 (,0) F c- 2 (,0) F c 1 (0,) F c- 2 (0,) F c 焦点在实轴上,22 c a b =+;焦距: 12 2 F F c = 顶点坐 标 (a -,0) (a,0) (0, a -,) (0,a) 离心率e a c e( =>1) 准线方 程 c a x 2 ± = c a y 2 ± = 准线垂直于实轴且在两顶点的内侧;两准线间的距离: c a2 2 顶点到 准线的 距离 顶点 1 A( 2 A)到准线 1 l( 2 l)的距离为 c a a 2 - 顶点 1 A( 2 A)到准线 2 l( 1 l)的距离为a c a + 2 焦点到 准线的 距离 焦点 1 F( 2 F)到准线 1 l( 2 l)的距离为 c a c 2 - 焦点 1 F( 2 F)到准线 2 l( 1 l)的距离为c c a + 2 渐近线 方程 x a b y± =x b a y± = 共渐近 线的双 曲线系 方程 k b y a x = - 2 2 2 2 (0 k≠)k b x a y = - 2 2 2 2 (0 k≠) ①当|MF1|-|MF2|=2a时,则表示点M在双曲线右支上; 当a MF MF2 1 2 = -时,则表示点M在双曲线左支上; ②注意定义中的“(小于 12 F F)”这一限制条件,其根据是“三角形两边 之和之差小于第三边”。 若2a=2c时,即 2 1 2 1 F F MF MF= -,当21 2 1 F F MF MF= -,动点轨迹是以2F为端点向右延伸的一条射线;当 2 1 1 2 F F MF MF= -时,动点轨迹是以1F为端点向左延伸的一条射线;

相关文档
相关文档 最新文档