文档库 最新最全的文档下载
当前位置:文档库 › 不等式的证明规律及重要公式总结

不等式的证明规律及重要公式总结

不等式的证明规律及重要公式总结
不等式的证明规律及重要公式总结

不等式的证明及重要公式总结

几个常应用的不等式

1、222)2

(,2b a ab ab b a +≤≥+ca bc ab c b a ++≥++?222 2、),(1122222+∈+≥≥+≥+R b a b

a a

b b a b a 3、0(3333≥++≥++

c b a abc c b a )

4、33abc c b a ?≥++,3)3

(c b a abc ++≤;),,(+∈R c b a 5、||||||||||b a b a b a +≤+≤-,),,(R c b a ∈

6、2

22111n n n i i i i i i i a b a b ===??≥ ???∑∑∑(柯西不等式)

证明方法

法一:作差: 例一:1=++c b a ,求证:3

1222≥++c b a 。 证:左-右=)1333(31222-++c b a ])(333[3

122221c b a c b a ++-++====的代换 0])()()[(3

1222≥-+-+-=a c c b b a 法二:作商;设a 、b 、c +∈R ,且c b a ≠≠,求证:b a a c c b c b a c b a c b a +++>222

证:a c c b b a b c a c a b c b c a b a b a a c c b c b a a

c c b b a c c b b a a c b a c b a ---------+++??===)()()(222右左 当a>b>0时1)(0,1>?>->?

-b a b

a b a b a 当0?<-∈?-b a b

a b a b a ∴ 不论a>b 还是a-b a b a ,同理可证,1)(>-c b c b ,1)(>-a c a c ,…… 法三:公式法:例二:a>0,b>0,且a+b=1,求证:

①8144≥+b a ②2

25)1()1(22≥+++b b a a 证①由公式:22222)2

(222B A B A B A B A +≥+?+≥+得:

8

1161])2[()2(2442222

244≥+?=+≥+≥+b a b a b a b a 证②由2

)()2(22

22222B A B A B A B A +≥+?+≥+ ∴ 左222)11(21][21)]1()1[(21ab ab b a b a b b a a +=+++=+++≥

(*) ∵ 4141)2(2≥?=+≤ab

b a ab ∴ (*)225)41(212=+≥

万有引力定律公式总结

万有引力公式 线速度 角速度 向心加速度 向心力 两个基本思路 1.万有引力提供向心力:r m r n m ma r T m r m r v m r M G ωππω======22222 2244m 2.忽略地球自转的影响: mg R GM =2 m (2 g R GM =,黄金代换式) 一、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2= ) 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r 。(r m r Mm G 2 2ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T 。(T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度: 已知环绕天体的质量m 、周期T 、轨道半径r 。中心天体的半径R ,求中心天体的密度ρ 解:由万有引力充当向心力

r T m r Mm G 2224π= 则2 324GT r M π= ——① 又3 3 4R V M πρρ? == ——② 联立两式得:3 23 3R GT r πρ= 当R=r 时,有2 3GT π ρ= 二、星球表面重力加速度、轨道重力加速度问题 1.在星球表面: 2 R GM mg =(g 为表面重力加速度,R 为星球半径) 2.离地面高h: 2 ) (h R GM g m += '(g '为h 高处的重力加速度) 联立得g'与g 的关系: 2 2 )('h R gR g += 三、卫星绕行的向心加速度、速度、角速度、周期与半径的关系 1.ma r M G =2m ,则2 a r M G =(卫星离地心越远,向心加速度越小) 2.r v m r Mm G 2 2=,则r GM v = (卫星离地心越远,它运行的速度越小) 3.r m r Mm G 22ω=,则3r GM =ω(卫星离的心越远,它运行的角速度越小) 4.r T m r Mm G 22 24π=,则GM T 3 2r 4π= (卫星离的心越远,它运行的周期越大)

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

高中物理公式大全全集万有引力

五、万有引力 1、开普勒三定律: ⑴开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上 ⑵开普勒第二定律(面积定律):太阳和行星的连线在相等的时间内扫过相等的面积 ⑶开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等 对T 1、T 2表示两个行星的公转周期,R 1、R 2表示两行星椭圆轨道的半长轴,则周期定律可表示为32 312221R R T T = 或k T R =3 3,比值k 是与行星无关而只与太阳有关的恒量 【注意】:⑴开普勒定律不仅适用于行星,也适用于卫星,只不过此时k T R =33 ‘ ,比值k ’ 是 由行星的质量所决定的另一恒量。 ⑵行星的轨道都跟圆近似,因此计算时可以认为行星是做匀速圆周运动 ⑶开普勒定律是总结行星运动的观察结果而总结归纳出来的规律,它们每一条都 是经验定律,都是从观察行星运动所取得的资料中总结出来的。 例题:飞船沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示,如果地球半径为R 0,求飞船由A 点到B 点所需要的时间。 解析:依开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时,其半长轴的三次方跟周期平方和比值,飞船椭圆轨道的半长轴为 2 R R +,设飞船沿椭圆轨道运动的周期一、知识网络 二、 画龙点睛 概念

分式不等式的证明与方法

分式 摘要:分式不等式的证明是高中数学中的难点之一,本文主要通过作差法,利用基本不等式法,利用非负实数的性质,利用放缩法,环元法,构造法,类比法,局部不等式法来分析与 证明分式不等式,从而对分式不等式的证明有着整体的理解。通过方法与总结克服证明分式不等式的胆怯心理。 关键词:分式不等式 证明方法 作差法 基本不等式法 构造法 二.利用基本不等式法 均 值 不 等 式 即 : 利用不等式 ∑ =n i y i x m i n 11 ≥∑=∑=n i y i n n i x i n m 1 11)1(∑=-∑=n i i m m y x n n i i 1 2 1 1)((2,1,,=∈+i R y x i i )证明一 类难度较大的分式不等式是很简捷的。 例2.若1,2)(i R =∈+ a i 且N m s n i i a ∈=∑=,1 ,则有∑+=-n i m a a i i 1 ) (1)(s n n s m n +≥ 证明:(1)当m=1时, ∵n a a n i i n i i 2 1 1 1 ≥∑∑=-=,s n a n i i 2 1 1 ≥∑=-,所以有:)1 1 (a a i n i i +∑=-=∑∑==-+n i i n i i a a 1 1 1 ≧s n 2 +s=n(n s s n +) (2)当m=2时,

)1 1 (a a i n i i +∑=-≧ n m 2 1 -n i i n i m a a ∑+=-1 )(1≧n )( n s s n m + 综上,由(1)(2)知原不等式成立。 排序不等式即,适用于对称不等式 例3.设a,b,c 是正实数,求证: 23 ≥+++++b a c a c b c b a 证明:不妨设a ≧c b ≥则b a a c c b +≥+≥+1 11 由排序不等式得: ≥+++++b a c a c b c b a b a a a c c c b b +++++ (1) ≥+++++b a c a c b c b a b a b a c a c b c +++++ (2) 由(1)+(2)得 2( b a c a c b c b a +++++)3≥,所以2 3≥+++++b a c a c b c b a 利用倒数不等式即:若a i >0,则n a a n i i n i i 2 1 1 1 ≥∑∑=-= 例4.设βα,都是锐角,求证:且βα,取什么值时成立? 证明:1cos sin 2 2=+βα,不等式左边拆项得: ββαcos sin sin cos 2 2 2 2 1 1 + = β αβααsni 2 2 2 2 2 sin cos sin cos 1 1 1 + + 又由于1sin sin cos sin cos 2 2222=++βαβαα 由倒数不等式有: ) (sin sin cos sin cos 2 2 2 2 2 βαβαα++)1 1 1 ( 2 2 2 2 2 sin cos sin cos β αβααsni + + ≥9 所以原不等式成立 当且仅当βαβααsin sin cos sin cos 2 2222==即2tan ,1tan ==αβ时等

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.wendangku.net/doc/b02127447.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.wendangku.net/doc/b02127447.html,) 原文地址: https://www.wendangku.net/doc/b02127447.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

(完整版)万有引力与航天重点知识、公式总结

万有引力与航天重点规律方法总结 一.三种模型 1.匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型: 将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。 3.“天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。 二.两种学说 1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律 1.开普勒定律: 第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆 的一个焦点上 第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫 过相同的面积。 第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公 转周期T 的二次方的比值都相等。 表达式为:)4(2 23 π GM K K T R == k 只与中心天体质量有关的 定值与行星无关 2.牛顿万有引力定律 1687年在《自然哲学的数学原理》正式提出万有引力定律 ⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比. ⑵.数学表达式: r F Mm G 2 =万 ⑶.适用条件: a.适用于两个质点或者两个均匀球体之间的相互作用。(两物体为均匀球体时,r 为两球心间的距离) b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算 c. 认为当0→r 时,引力∞→F 的说法是错误的 ⑷.对定律的理解 a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力 b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。 c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附 近的物体间,它的存在才有实际意义. d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在 空间的性质无关,与周期及有无其它物体无关. (5)引力常数G :

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

万有引力定律公式总结

万有引力定律知识点 班级: 姓名: 一、三种模型 1、匀速圆周运动模型:无论自然天体还是人造天体都可以看成质点,围绕中心天体做匀速圆周运动。 2、双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。 3、“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。 二、两种学说 1、地心说:代表人物是古希腊科学托勒密 2、日心说:代表人物是波兰天文学家哥白尼 三、两个定律 第一定律(椭圆定律):所有行星绕太阳的运动轨道都是椭圆,太阳位于椭圆的每一个焦点上。 第二定律(面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。 第三定律(周期定律):所有行星绕太阳运动的椭圆轨道半长轴R 的三次方跟公转周期T 的二次方的比值都相等。 (表达式 ) 四、基础公式 线速度:v ==== 角速度:== == 向心力:F=m =m(2r=m(2 )2r= m(2)2r=m =m 向心加速度:a= = (2r= (2)2r= (2 )2r== 五、两个基本思路 1.万有引力提供向心力:ma r T m r m r v m r M G ====22 2224m πω 2.忽略地球自转的影响: mg R GM =2m (2g R GM =,黄金代换式) 六、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2=)一般用于地球 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r (r m r Mm G 22ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T (T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度:

几个重要不等式

几个重要不等式(二)柯西不等式 ,当且仅当b i=l a i(1£i£n)时取等号 柯西不等式的几种变形形式 1.设a i?R,b i>0 (i=1,2,…,n)则,当且仅当b i=l a i(1£i£n)时取等号 2.设a i,b i同号且不为零(i=1,2,…,n),则,当且仅当b1=b2=…=b n时取等号 例1.已知a1,a2,a3,…,a n,b1,b2,…,b n为正数,求证: 证明:左边= 例2.对实数a1,a2,…,a n,求证: 证明:左边= 例3.在DABC中,设其各边长为a,b,c,外接圆半径为R,求证:

证明:左边3 例4.设a,b,c为正数,且a+b+c=1,求证:证明:左边= 3 = = 例5.若n是不小于2的正整数,试证: 证明: 所以求证式等价于 由柯西不等式有

于是: 又由柯西不等式有 < 例6.设x1,x2,…,x n都是正数(n32)且,求证: 证明:不等式左端即 (1) ∵,取,则(2) 由柯西不等式有 (3) 及 综合(1)、(2)、(3)、(4)式得:

三、排序不等式 设a1£a2£…£a n,b1£b2£…£b n;r1,r2,…,r n是1,2,…,n的任一排列,则有:a1b n+ a2b n-1+…+ a n b1£a1b r1+ a2b r2+…+ a n b rn£ a1b1+ a2b2+…+ a n b n 反序和£乱序和£同序和 例1.对a,b,c?R+,比较a3+b3+c3与a2b+b2c+c2a的大小 解:取两组数a,b,c;a2,b2,c2,则有a3+b3+c33a2b+b2c+c2a 例2.正实数a1,a2,…,a n的任一排列为a1/,a2/,…a n/,则有 证明:取两组数a1,a2,…,a n; 其反序和为,原不等式的左边为乱序和,有 例3.已知a,b,c?R+求证: 证明:不妨设a3b3c>0,则>0且a123b123c12>0 则

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立∴原不等式成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

万有引力定律的推导及完美之处

万有引力定律的推导及完美之处 现在由开普勒第一定律来求行星所受的力的量值。既然轨道为椭圆,我们就可把轨道方程写为 1cos P r e θ=+ 或1cos e P P μθ=+ 把这关系式1cos e P P μθ=+代入比耐公式 2222()d F h d m μμμθ+=- ,就得到 222222 22()d mh h m F mh d P P r μμμμθ=-+=-=- 这表明行星所受力是引力,且与距离平方成反比。 乍一看来,似乎不需要开普勒第三定律就已经能推出胡克的万有引力公式。其实不然,我们并不能把 22h m F P r =-化成22k m F r =-,因为式22h m F P r =-中的h 和P 对每一个行星来讲都具有不同的数值(2r h θ=,1r μ=,P 为椭圆曲线正焦弦长度的一半),而式中的2k 是一个与行星无关的常数。 开普勒第一定律:行星绕太阳作椭圆运行,太阳位于椭圆的一个焦点上。 开普勒第二定律:行星和太阳之间的连线,在相等的时间内所扫过的面积相等。 开普勒第三定律:行星公转的周期的平方和轨道半长轴的立方成正比。 为了能把22h m F P r =-化为 22k m F r =-,就得利用开普勒第三定律,由行星公转的周期得 22324T P a h π= 虽然h 和P 都是和行星有关的常数,但根据开普勒第三定律中2 3T a 是与行星无关的常数,可以得到2P h (或2 h P )是一个与行星无关的常数(即跟行星质量无关,而是由太阳决定了行 星轨道的性质)。因而可以令22h k P =,我们就可以把22h m F P r =-化为 22k m F r =-, 即 2222h m k m F P r r =-=-

基本不等式的证明

课题:基本不等式及其应用 一、教学目的 (1)认知:使学生掌握基本不等式a 2+b 2≥2ab(a 、b ∈R ,当且仅当a=b 时取“=”号)和 ab b a ≥+2 (a 、b ∈R +,当且仅当a=b 时取“=”号),并能应用它们证明一些不等式. (2)情感:通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 二、教学重难点 重点:两个基本不等式的掌握; 难点:基本不等式的应用。 三、教材、学生分析 教材分析:两个基本不等式为以后学习不等式的证明和求函数的最大值或最小值提供了一种 方法,基本不等式的理解和掌握对以后的解题是很有帮助的。 学生分析:学生在上新课之前都预习了本节内容,对上课内容有一定的理解。所以根据这一 情况多补充了一些内容,增加了课堂容量。 四、教学过程 (一)引入新课 客观世界中,有些不等式关系是永远成立的。例如,在周长相等时,圆的面积比正方形的面积大,正方形的面积又比非正方形的任意矩形的面积大。对这些不等关系的证明,常常会归结为一些基本不等式。今天, 我们学习两个最常用的基本不等式。

(二)推导公式 1.奠基 如果a、b∈R,那么有(a-b)2≥0 ① 把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,也就是基本不等式1,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 学生回答:a=b,因为a=b a2+b2=2ab 充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号). 以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索. 2.探索 公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab;

(完整word版)高中物理万有引力定律知识点总结和典型例题精选

万有引力定律 人造地球卫星 『夯实基础知识』 1.开普勒行星运动三定律简介(轨道、面积、比值) 丹麦天文学家 第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上; 第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等; 第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即k T r =23 开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。 2.万有引力定律及其应用 (1) 内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。 2r Mm G F =(1687年) 2211/1067.6kg m N G ??=-叫做引力常量,它在数值上等于两个质量都是1kg 的物体相距1m 时的相互 作用力,1798年由英国物理学家卡文迪许利用扭秤装置测出。 万有引力常量的测定——卡文迪许扭秤 实验原理是力矩平衡。 实验中的方法有力学放大(借助于力矩将万有引力的作用效果放大)和光学放大(借助于平面境将微小的运动效果放大)。 万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面附近的物体m ,有2E E R m m G mg =(式中R E 为地球半径或物体到地球球心间的距离),可得到G gR m E E 2 =。 (2)定律的适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离. 当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公式算出F 近为无穷大。 (3) 地球自转对地表物体重力的影响。 体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,

相关文档
相关文档 最新文档