文档库 最新最全的文档下载
当前位置:文档库 › 数值计算实验三报告

数值计算实验三报告

数值计算实验三报告
数值计算实验三报告

贵州师范大学数学与计算机科学学院学生实验报告

课程名称:数值分析班级:数学(2)班实验日期:2013 年10 月10 日学号:姓名:指导教师:杨一都

实验成绩:

一、实验名称

实验三:数值积分

二、实验目的及要求

1.让学生掌握复化梯形法, 复化Simpson法和Romberg公式以及变步长梯形法,

变步长Simpson法

2. 让学生能够用这些方法解决一些具体问题

三、实验环境

每人一台微机,要求安装Windows2000或Windows XP操作系统,Matlab软件四、实验内容

题 1 从地面发射一枚火箭,在最初80 s 内记录起加速度如下表, 试求火箭在第50s,80s时的速度.

题2 给定积分dx

e x

?3

1和dx

x

?3

1

1

,分别用下列方法计算积分值要求准确到5

10-,

并比较分析计算时间.

1)变步长梯形法;

2)变步长Simpson 法

3)Romberg 方法

五、算法描述及实验步骤

题1

(1)根据复合梯形公式:T n=∑-

=+

+

1

1

))

(

)

(

2

)

(

(

2n

k

k

b

f

x

f

a

f

h

根据已知输入数据a=[30.00,31.63,33.44,35.47,37.75,40.33,42.39,46.69,50.67]步骤1:输入h

步骤2:T=(h/2)*(a(1)+a(6)+2*(a(2)+a(3)+a(4)+a(5)))

步骤3:T=(h/2)*(a(1)+2*(a(2)+a(3)+a(4)+a(5)+a(6)+a(7))+a(8))

(2)根据复合simpson 公式:S n =))()(2)(4)((611102

1b f x f x f a f h n k k n k k +++∑∑-=-=+ 根据已知输入数据a=[30.00,31.63,33.44,35.47,37.75,40.33,42.39,46.69,50.67]

先用Lagrange 插值得出t=5,15,25,35,45,55,65,75处的值

步骤1:h=n

a b -;Sn=f(a)-f(b);x=a. 步骤2:对k=1,2,...,n 执行x=x+h/2;Sn=Sn+4f(x);x=x+h/2;Sn=Sn+2f(x). 步骤3:Sn=

6h Sn 步骤4:输出Sn.

题2

(1). 求积分 ,允许误差为ε。

被积函数f (x ),a,b,ε.

复合梯形积分值T2n.

h<=b-a.

T1=h/2(f(a)+f(b)).

反复执行步4—步10。

S<=0;x<=a+h/2.

反复执行步6—步7.

S<=S+f (x );x<=x+h.

若x ≥b,则退出本层循环。

T2<=T1/2+h/2S

e<=|T2-T1|;h<=h/2;T1<=T2.

若e ≤ε则退出循环。

T2n<=T2.

输出T2n.

六、调试过程及实验结果

题1

(1)

a=[30.00,31.63,33.44,35.47,37.75,40.33,42.39,46.69,50.67];

>> h=10;

>> T=(h/2)*(a(1)+a(6)+2*(a(2)+a(3)+a(4)+a(5))

T =

1.7345e+003

T=(h/2)*(a(1)+a(9)+2*(a(2)+a(3)+a(4)+a(5)+a(6)+a(7)+a(8)))

T =

3.0803e+003

(2)

x=0:10:80;

>> y=[30.00,31.63,33.44,35.47,37.75,40.33,42.39,46.69,50.67];

>> cx=5:10:75;

>> cy=Lagrange(x,y,5,cx)

cy =

30.7962

32.5094

34.4257

36.5764

38.9978

41.7610

45.0023

48.9530

>> h=10;

>>

Sn=(h/6)*(y(1)+4*(cy(1)+cy(2)+cy(3)+cy(4)+cy(5))+2*(y(2)+y(3)+y(4)+y(5))+y(6)) Sn =

1.7336e+003

>>Sn=(h/6)*(y(1)+4*(cy(1)+cy(2)+cy(3)+cy(4)+cy(5)+cy(6)+cy(7)+cy(8))+2*(y(2)+y( 3)+y(4)+y(5)+y(6)+y(7)+y(8))+y(9))

Sn =

3.0869e+003

题2

(1)dx

e x

?3

1

的运行结果

a=1;b=3;tol=0.00005;

>> I=Vsm('f',a,b,tol)

I =

17.3673

(2)

dx

x

?3

1

1

的运行结果

a=1;b=3;tol=0.000005; >> I=Vsm('f',a,b,tol)

I =

1.0986

经过这次实验,我基本上掌握了复化梯形法, 复化Simpson法以及变步长梯形法,对Romberg公式,变步长Simpson法有了初步了解。能够用这些方法解决一些具体问题,如题1和题2。对Matlab软件的应用又多了基本理解和掌握,但仍感觉数值分析这么这门课程有几分难度,希望以后的学习可以更上一层楼。对计算机的操作可以更加熟练,做起题来能够得心应手。

八、附录(源程序清单)

1,

M 函数

function cy=Lagrange(x,y,n,cx)

m=length(cx);cy=zeros(1,m);

for

k=1:n+1

t=ones(1,m);

for

j=1:n+1

if

j~=k

t=t.*(cx-x(j))./(x(k)-x(j));

end

end

cy=cy+y(k).*t;

end

2,

function T2n=Vsm(f,a,b,tol)

h=b-a;

T1=h/2*(feval(f,a)+feval(f,b));

while 1

S=0;x=a+h/2;

while 1

S=S+feval(f,x);x=x+h;

if x>=b

break

end

end

T2=T1/2+h*S/2;

e=abs(T2-T1);h=h/2;T1=T2;

if e<=tol

break

end

end

T2n=T2;

function y=f(x)

y=exp(x);

《计算方法》课内实验报告

《计算方法》实验报告 姓名: 班级: 学号: 实验日期: 2011年10月26日

一、实验题目: 数值积分 二、实验目的: 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解数值积分的基础理论。 3.进一步掌握应用不同的数值积分方法求解给定的积分并给出数据结果及误差分析。 三、实验内容: 1.分别用复合梯形求积公式及复合辛普森求积公式计算积分xdx x ln 10 ? , 要求计算精度达到410-,给出计算结果并比较两种方法的计算节点数. 2.用龙贝格求积方法计算积分dx x x ?+3 021,使误差不超过510-. 3.用3=n 的高斯-勒让德公式计算积分?3 1 sin x e x ,给出计算结果. 4.用辛普森公式(取2==M N ) 计算二重积分.5 .00 5 .00 dydx e x y ? ? - 四、实验结果: 1.(1)复合梯形法: 将区间[a,b]划分为n 等份,分点n k n a b h kh a x k ,2,1,0,,=-=+=在每个区间[1,+k k x x ](k=0,1,2,···n-1)上采用梯形公式,则得 )()]()([2)()(1 11 1 f R x f x f h dx x f dx x f I n n k k k b a n k x x k k ++===∑?∑? -=+-=+ 故)]()(2)([21 1 b f x f a f h T n k k n ++=∑-=称为复合梯形公式 计算步长和划分的区间 Eps=1E-4 h1=sqrt(Eps/abs(-(1-0)/12*1/(2+1))) h1 =0.0600 N1=ceil(1/h1) N1 =17 用复合梯形需要计算17个结点。 复合梯形: function T=trap(f,a,b,n) h=(b-a)/n;

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

数值分析实验报告

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p Λ 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a Λ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a Λ 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots +

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

数值计算实验课题目

数值实验课试题 本次数值实验课结课作业,请按题目要求内容写一篇文章。按题目要求 人数自由组合,每组所选题目不得相同(有特别注明的题目除外)。试题如下: 1)解线性方程组的Gauss 消去法和列主元Gauss 消去法(2人)/*张思珍,巩艳华*/ 用C 语言将不选主元和列主元Gauss 消去法编写成通用的子程序,然后用你编写的程序求解下列84阶的方程组 ???? ?????? ? ??=??????????? ????????????? ? ?1415151515768 168 168 168 1681684 8382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 2)解线性方程组的平方根法(4人)/*朱春成、黄锐奇、张重威、章杰*/ 用C 语言将平方根法和改进的平方根法编写成通用的子程序,然后用你编写的程序求解对称正定方程组b Ax =,其中 (1)b 随机的选取,系数矩阵为100阶矩阵 ?????? ???? ? ? ?101 1101 1101 1101 1101110 ; (2)系数矩阵为40阶的Hilbert 矩阵,即系数矩阵A 的第i 行第j 列元素为 1 1-+= j i a ij ,向量b 的第i 个分量为∑=-+ = n j i j i b 1 1 1. 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编

3.《数值分析简明教程》,王能超编 3)三对角线方程组的追赶法(3人)/*黄佳礼、唐伟、韦锡倍*/ 用C 语言将三对角线方程组的追赶法法编写成通用的子程序,然后用你编写的程序求解如下84阶三对角线方程组 ???? ?????? ? ??=??????????? ????????????? ? ?1415151515768 168 168 168 16816 84 8382321 x x x x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值分析简明教程》,王能超编 4)线性方程组的Jacobi 迭代法(3人)/*周桂宇、杨飞、李文军*/ 用C 语言将Jacobi 迭代法编写成独立的子程序,并用此求解下列方程组, 精确到小数点后5位 ???? ? ??=????? ??????? ? ?-149012 2111221 3 2 1 x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 5)线性方程组的Gauss-Seidel 迭代法(3人)/*张玉超、范守平、周红春*/ 用C 语言将Gauss-Seidel 迭代法编写成独立的子程序,并用此求解下列方程组,精确到小数点后5位 ???? ? ??=????? ??????? ? ?--39721 1111112 3 2 1 x x x 参考书目: 1.《计算机数值方法》,施吉林、刘淑珍、陈桂芝编 2.《数值线性代数》,徐树方、高立、张平文编 3.《数值分析简明教程》,王能超编 6)解线性方程组的最速下降法法(2人)/*赵育辉、阿热孜古丽*/ 用C 语言将最速下降法编写成通用的子程序,然后用你编写的程序求解对称

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

数值分析实验报告

实验一、误差分析 一、实验目的 1.通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; 2.通过上机计算,了解误差、绝对误差、误差界、相对误差界的有关概念; 3.通过上机计算,了解舍入误差所引起的数值不稳定性。 二.实验原理 误差问题是数值分析的基础,又是数值分析中一个困难的课题。在实际计算中,如果选用了不同的算法,由于舍入误差的影响,将会得到截然不同的结果。因此,选取算法时注重分析舍入误差的影响,在实际计算中是十分重要的。同时,由于在数值求解过程中用有限的过程代替无限的过程会产生截断误差,因此算法的好坏会影响到数值结果的精度。 三.实验内容 对20,,2,1,0 =n ,计算定积分 ?+=10 5dx x x y n n . 算法1:利用递推公式 151--=n n y n y , 20,,2,1 =n , 取 ?≈-=+=1 00182322.05ln 6ln 51dx x y . 算法2:利用递推公式 n n y n y 51511-= - 1,,19,20 =n . 注意到 ???=≤+≤=10 10202010201051515611261dx x dx x x dx x , 取 008730.0)12611051(20120≈+≈y .: 四.实验程序及运行结果 程序一: t=log(6)-log(5);

n=1; y(1)=t; for k=2:1:20 y(k)=1/k-5*y(k-1); n=n+1; end y y =0.0884 y =0.0581 y =0.0431 y =0.0346 y =0.0271 y =0.0313 y =-0.0134 y =0.1920 y =-0.8487 y =4.3436 y =-21.6268 y =108.2176 y =-541.0110 y =2.7051e+003 y =-1.3526e+004 y =6.7628e+004 y =-3.3814e+005 y =1.6907e+006 y =-8.4535e+006 y =4.2267e+007 程序2: y=zeros(20,1); n=1; y1=(1/105+1/126)/2;y(20)=y1; for k=20:-1:2 y(k-1)=1/(5*k)-(1/5)*y(k); n=n+1; end 运行结果:y = 0.0884 0.0580 0.0431 0.0343 0.0285 0.0212 0.0188 0.0169

c 计算器实验报告

简单计算器 姓名: 周吉祥 实验目的:模仿日常生活中所用的计算器,自行设计一个简单的计算器程序,实现简单的计算功能。 实验内容: (1)体系设计: 程序是一个简单的计算器,能正确输入数据,能实现加、减、乘、除等算术运算,运算结果能正确显示,可以清楚数据等。 (2)设计思路: 1)先在Visual C++ 6.0中建立一个MFC工程文件,名为 calculator. 2)在对话框中添加适当的编辑框、按钮、静态文件、复选框和单 选框 3)设计按钮,并修改其相应的ID与Caption. 4)选择和设置各控件的单击鼠标事件。 5)为编辑框添加double类型的关联变量m_edit1. 6)在calculatorDlg.h中添加math.h头文件,然后添加public成 员。 7)打开calculatorDlg.cpp文件,在构造函数中,进行成员初始 化和完善各控件的响应函数代码。 (3)程序清单:

●添加的public成员: double tempvalue; //存储中间变量 double result; //存储显示结果的值 int sort; //判断后面是何种运算:1.加法2.减法3. 乘法 4.除法 int append; //判断后面是否添加数字 ●成员初始化: CCalculatorDlg::CCalculatorDlg(CWnd* pParent /*=NULL*/) : CDialog(CCalculatorDlg::IDD, pParent) { //{{AFX_DATA_INIT(CCalculatorDlg) m_edit1 = 0.0; //}}AFX_DATA_INIT // Note that LoadIcon does not require a subsequent DestroyIcon in Win32 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); tempvalue=0; result=0; sort=0; append=0; }

实验三 MATLAB 数值计算(2)

实验三 MATLAB 数值计算 一、实验目的: 熟悉MATLA B多项式的运用。 (1)多项式的求值、求根和部分分式展开 (2)多项式的乘除法和微积分 (3)多项式拟合和插值 二、实验内容和步骤: 1. 多项式求值 函数polyval可以用来计算多项式在给定变量时的值,是按数组运算规则进行计算的。 语法: polyval(p,s) 说明:p为多项式, s为给定矩阵。 【例1】计算p(x)= 3x2+2x+1多项式的值。 p = [3 2 1]; polyval(p,2) %计算x=2时多项式的值 ans = 17 x=0:0.5:3; polyval(p,x) %计算x为向量时多项式的值 ans = 1.0000 2.7500 6.0000 10.7500 17.0000 24.7500 34.0000 2. 多项式求根 ?roots用来计算多项式的根。 语法: r=roots(p) 说明:p为多项式;r为计算的多项式的根,以列向量的形式保存。 ?与函数roots相反,根据多项式的根来计算多项式的系数可以用poly函数来实现。 语法: p=poly (r) 【例2】计算多项式p(x)= x3-6x2-72x-27的根以及由多项式的根得出系数。 p = [1 -6 -72 -27] roots(p) %计算多项式的根 ans = 12.1229 -5.7345 -0.3884 poly([ 12.1229;-5.7345;-0.3884]) %计算多项式的系数

ans = 1.0000 -6.0000 -7 2.0000 -27.0011 3. 特征多项式 对于一个方阵s ,可以用函数poly 来计算矩阵的特征多项式的系数。特征多项式的根即为特征值,用roots 函数来计算。 语法: p=poly (s) 说明:s 必须为方阵;p 为特征多项式。 【例3】 根据矩阵来计算的特征多项式系数。 A =[1 2 3;4 5 6;7 8 0] p = poly(A) A = 1 2 3 4 5 6 7 8 0 p = 1.0000 -6.0000 -7 2.0000 -27.0000 r = roots(p) r = 12.1229 -5.7345 -0.3884 程序分析:p= x 3-6x 2-72x-27为矩阵A 的特征多项式,12.1229, -5.7345和-0.3884为矩阵s 的特征根。 4. 部分分式展开 用residue 函数来实现将分式表达式进行多项式的部分分式展开。 k(s)n p s n r 2p s 2r 1p s 1r A(s)B(s)+-++-+-= 语法: [r,p,k]=residue(b,a) 说明:b 和a 分别是分子和分母多项式系数行向量;r 是[r 1 r 2 …r n ]留数行向量;p 为[p 1 p 2 …p n ]极点行向量;k 为直项行向量。 【例4】 将表达式 进行部分分式展开。 b = [ 5 3 -2 7] a = [-4 0 8 3]

《数值计算方法》上机实验报告

《数值计算方法》上机实验报告华北电力大学 实验名称数值il?算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一. 各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程 *对于非线性方程,若已知根的一个近似值,将在处展开成一阶 xxfx ()0, fx ()xkk 泰勒公式 "f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2! 忽略高次项,有 ,fxfxfxxx 0 ()()(),,, kkk 右端是直线方程,用这个直线方程来近似非线性方程。将非线性方程的 **根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkk fx 0 fx 0 0,

解出 fX 0 *k XX,, k' fx 0 k 水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ik fx ()k 八XX, Ikk* fx()k 这就是牛顿迭代公式。 ,2,计算机程序框图:,见, ,3,输入变量、输出变量说明: X输入变量:迭代初值,迭代精度,迭代最大次数,\0 输出变量:当前迭代次数,当前迭代值xkl ,4,具体算例及求解结果: 2/16 华北电力大学实验报吿 开始 读入 l>k /fx()0?,0 fx 0 Oxx,,01* fx ()0 XX,,,?10 kk, ,1,kN, ?xx, 10 输出迭代输出X输出奇异标志1失败标志

,3,输入变量、输出变量说明: 结束 例:导出计算的牛顿迭代公式,并il ?算。(课本P39例2-16) 115cc (0), 求解结果: 10. 750000 10.723837 10. 723805 10. 723805 2、列主元素消去法求解线性方程组,1,算法原理: 高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角 3/16 华北电力大学实验报告方程组求解。 列选主元是当高斯消元到第步时,从列的以下(包括)的各元素中选出绝 aakkkkkk 对值最大的,然后通过行交换将其交换到的位置上。交换系数矩阵中的 两行(包括常ekk 数项),只相当于两个方程的位置交换了,因此,列选主元不影响求解的结 ,2,计算机程序框图:,见下页, 输入变量:系数矩阵元素,常向量元素baiji 输出变量:解向量元素bbb,,12n

数值分析实验报告62338

数值分析实验报告 (第二章) 实验题目: 分别用二分法、牛顿迭代法、割线法、史蒂芬森迭代法求方程 的根,观察不同初始值下的收敛性,并给出结论。 问题分析: 题目有以下几点要求: 1.不同的迭代法计算根,并比较收敛性。 2.选定不同的初始值,比较收敛性。 实验原理: 各个迭代法简述 二分法:取有根区间的重点,确定新的有根区间的区间长度仅为区间长度的一版。对压缩了的有根区间重复以上过程,又得到新的有根区间,其区间长度为的一半,如此反复,……,可得一系列有 根区间,区间收敛到一个点即为根。 牛顿迭代法:不动点迭代法的一种特例,具有局部二次收敛的特性。迭代格式为 割线法:是牛顿法的改进,具有超线性收敛的特性,收敛阶为1.618. 迭代格式为 史蒂芬森迭代法:采用不动点迭代进行预估校正。至少是平方收敛的。迭代格式为

这里可采用牛顿迭代法的迭代函数。实验内容: 1.写出该问题的函数 代码如下: function py= f(x) syms k; y=(k^2+1)*(k-1)^5; yy=diff(y,k); py(1)=subs(y,k,x); py(2)=subs(yy,k,x); end 2.分别写出各个迭代法的迭代函数代码如下: 二分法: function y=dichotomie(a,b,e) i=2; m(1)=a; while abs(a-b)>e t=(a+b)/2; s1=f(a); s2=f(b); s3=f(t); if s1(1)*s3(1)<=0 b=t; else a=t; end m(i)=t; i=i+1; end y=[t,i+1,m]; end 牛顿迭代法: function y=NewtonIterative(x,e) i=2; en=2*e; m(1)=x; while abs(en)>=e s=f(x); t=x-s(1)/s(2); en=t-x; x=t; m(i)=t; i=i+1; end y=[x,i+1,m]; end 牛顿割线法:

计算方法实验报告格式

计算方法实验报告格式 小组名称: 组长姓名(班号): 小组成员姓名(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一个完整的实验,应包括数据准备、理论基础、实验内容及方法,最终对实验结果进行分析,以达到对理论知识的感性认识,进一步加深对相关算法的理解,数值实验以实验报告形式完成,实验报告格式如下: 一、实验名称 实验者可根据报告形式需要适当写出. 二、实验目的及要求 首先要求做实验者明确,为什么要做某个实验,实验目的是什么,做完该实验应达到什么结果,在实验过程中的注意事项,实验方法对结果的影响也可以以实验目的的形式列出. 三、算法描述(实验原理与基础理论) 数值实验本身就是为了加深对基础理论及方法的理解而设置的,所以要求将实验涉及到的理论基础,算法原理详尽列出. 四、实验内容 实验内容主要包括实验的实施方案、步骤、实验数据准备、实验的算法以及可能用到的仪器设备. 五、程序流程图 画出程序实现过程的流程图,以便更好的对程序执行的过程有清楚的认识,在程序调试过程中更容易发现问题. 六、实验结果 实验结果应包括实验的原始数据、中间结果及实验的最终结果,复杂的结果可以用表格

形式列出,较为简单的结果可以与实验结果分析合并出现. 七、实验结果分析 实验结果分析包括对对算法的理解与分析、改进与建议. 数值实验报告范例 为了更好地做好数值实验并写出规范的数值实验报告,下面给出一简单范例供读者参考. 数值实验报告 小组名称: 小组成员(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一、实验名称 误差传播与算法稳定性. 二、实验目的 1.理解数值计算稳定性的概念. 2.了解数值计算方法的必要性. 3.体会数值计算的收敛性与收敛速度. 三、实验内容 计算dx x x I n n ? += 1 10 ,1,2,,10n = . 四、算法描述 由 dx x x I n n ? += 1 10 ,知 dx x x I n n ?+=--101110,则

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

数值实验题目

数值计算实验重庆大学数理学院 信息与计算科学系 董海云 2009年9月4日

实验一 线性方程组的数值解法 1.实验目的: (1)高斯列主元消去法求解线性方程组的过程 (2)熟悉用迭代法求解线性方程组的过程 (3)设计出相应的算法,编制相应的函数子程序 2.实验内容 分别用高斯列主元消去法 ,Jacobi 迭代法,Gauss--Saidel 迭代法,超松弛迭代法求解线性方程组 ????? ???????-=????????????????????????------7251013914443211312433010 24321x x x x 3、 实验原理 写出本次实验所用算法的算法步骤叙述或画出算法程序框图 4.实验环境及实验文件存档名 写出实验环境及实验文件存档名 3、 实验结果及分析 输出计算结果,结果分析和小结等。 实验二、 求特征值 1实验目的:学会 方法求特征值 2.实验内容: (1)设计古典Jacobi 方法算法,编制并调试相应的函数子程序 (2)运用该程序求下列矩阵的特征值 3.实验原理 写出本次实验所用算法的算法步骤叙述或画出算法程序框图 4.实验环境及实验文件存档名 写出实验环境及实验文件存档名 5.实验结果及分析 输出计算结果,结果分析和小结等。 实验三 插值方法实验目的: (1) 学会拉格朗日插值、牛顿插值等基本方法 (2) 设计出相应的算法,编制相应的函数子程序 (3) 会用这些函数解决实际问题 , 35.05.05.025.05.05.01? ???? ??=A

2.实验内容 (1)设计拉格朗日插值算法,编制并调试相应的函数子程序 (2)设计牛顿插值算法,编制并调试相应的函数子程序 (3)给定函数四个点的数据如下: 试用拉格朗日插值确定函数在x=2.101,4.234处的函数值。 (4)已知, ,,392411===用牛顿插值公式求5的近似值。 3.实验原理 写出本次实验所用算法的算法步骤叙述或画出算法程序框图 4.实验环境及实验文件存档名 写出实验环境及实验文件存档名 5.实验结果及分析 输出计算结果,结果分析和小结等。 实验四 数值微积分 1.实验目的: (1)学会复化梯形、复化辛浦生求积公式的应用 (3)设计出相应的算法,编制相应的函数子程序 (4)会用这些函数解决实际问题 2.实验内容 (1)设计复化梯形公式求积算法,编制并调试相应的函数子程序 (2)设计复化辛浦生求积算法,编制并调试相应的函数子程序 (4)分别用复化梯形公式和复化辛浦生公式计算定积分 ?10 sin dx x x 取n=2,4,8,16,精确解为0.9460831 3、 实验原理 写出本次实验所用算法的算法步骤叙述或画出算法程序框图 4.实验环境及实验文件存档名 写出实验环境及实验文件存档名 5.实验结果及分析 输出计算结果,结果分析和小结等。 实验五 常微分方程的数值解法 1.实验目的: (1)学会四阶龙格-库塔方法的使用 (2)设计出相应的算法,编制相应的函数子程序 (3)会用这些函数解决实际问题 2.实验内容

计算方法实验报告 拟合

南京信息工程大学实验(实习)报告 一、实验目的: 用最小二乘法将给定的十个点拟合成三次多项式。 二、实验步骤: 用matlab编制以函数为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi=1) x -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y -2.30 -1 -0.14 -0.25 0.61 1.03 1.75 2.75 4.42 6.94 给定直线方程为:y=1/4*x3+1/2*x2+x+1 三、实验结论: 最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。 一般地。当测量数据的散布图无明显的规律时,习惯上取n次代数多项式。 程序运行结果为: a = 0.9731 1.1023 0.4862 0.2238 即拟合的三次方程为:y=0.9731+1.1023x+0.4862*x2+0.2238*x3

-2.5 -2-1.5-1-0.5 00.51 1.52 2.5 -4-20246 81012 x 轴 y 轴 拟合图 离散点 y=a(1)+a(2)*x+a(3)*x.2+a(4)*x.3 结论: 一般情况下,拟合函数使得所有的残差为零是不可能的。由图形可以看出最小二乘解决了残差的正负相互抵消的问题,使得拟合函数更加密合实验数据。 优点:曲线拟合是使拟合函数和一系列的离散点与观测值的偏差平方和达到最小。 缺点:由于计算方法简单,若要保证数据的精确度,需要大量的数据代入计算。

数值计算实验报告

2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:安元龙 学号:2012060501 成绩:

数值计算方法与算法实验报告 学期: 2014 至___2015 第 1 学期 2014年 10月26日课程名称:__数值计算方法与算法 __ 专业:信息与计算科学 12级5班实验编号: 1实验项目Neton插值多项式指导教师__孙峪怀姓名:安元龙学号: 2012060501 实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页) 1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)/(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp/*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)*/ Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. #include #define MAX_N 20 typedef struct tagPOINT { double x; double y; }POINT; int main() { int n; int i,j; POINT points[MAX_N+1];double diff[MAX_N+1]; double x,tmp,newton=0;

数值分析实验报告

学生实验报告实验课程名称 开课实验室 学院年级专业班 学生姓名学号 开课时间至学年学期

if(A(m,k)~=0) if(m~=k) A([k m],:)=A([m k],:); %换行 end A(k+1:n, k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c); %消去end end x=zeros(length(b),1); %回代求解 x(n)=A(n,c)/A(n,n); for k=n-1:-1:1 x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k); end y=x; format short;%设置为默认格式显示,显示5位 (2)建立MATLAB界面 利用MA TLAB的GUI建立如下界面求解线性方程组: 详见程序。 五、计算实例、数据、结果、分析 下面我们对以上的结果进行测试,求解:

? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - 7 2 5 10 13 9 14 4 4 3 2 1 13 12 4 3 3 10 2 4 3 2 1 x x x x 输入数据后点击和,得到如下结果: 更改以上数据进行测试,求解如下方程组: 1 2 3 4 43211 34321 23431 12341 x x x x ?? ???? ?? ???? ?? ???? = ?? ???? - ?? ???? - ???? ?? 得到如下结果:

数值分析实验题目及解答

内容包括: 实验题目1:算法的数值稳定性实验 实验题目2:LU分解实验 实验题目3:三次样条插值外推样条实验 实验题目4:第二类Fredholm 积分方程实验实验题目5:M级显式R_K法

实验题目:算法的数值稳定性实验 实验内容:计算积分()1 0()d 1515n x I n x a x ==+? (n=1,2,…,20) 易得到下面递推公式 ()()1 1I n aI n n =--+ 并有估计式 ()() ()() 1 1 111I n a n a n << +++ 计算方法: 算法一:采用下面递推公式计算: ()()1 1I n aI n n =--+ ()1,2,,20 n = 取初值()116 0ln ln 15a I a +== 算法二: 采用下面递推公式计算: ()()111I n I n a n ??-= -+???? ()20,19,,1 n =

结果分析:(分析哪个好哪个不好,原因是什么) 我觉得算法二比较好, 原因一:根据式 ()() ()() 1 1 111I n a n a n << +++得知,I(n)不可能小于 零,而算法一的计算结果有部分结果小于零。原因二:对算法一记初始误差 ε0=/I 0-I(0)/>0; 则εn =/I n -I(n)/=a/I n-1-I(n-1)/=a n *ε0 由此可知,当n=20时, ε20把ε0放大了a 20倍,其结果造成严重的。 而对于算法二^ ^ 11n n a εε-= ,…, ^ ^ 01 n n a εε=,尽管有初始误差^ 20ε,但随着计算的进程,这个误差的影响不断减小。 附:源程序:(把源程序附上) 算法一程序: >> format long >> a=15;I=log(16/15); for n=1:20 n I=-a*I+1/n end 算法二程序: >> format long >> a=15;I=31/10080; >> for n=20:-1:1 n I I=1/a*(-I+1/n); End

数值分析实验报告资料

机电工程学院 机械工程 陈星星 6720150109 《数值分析》课程设计实验报告 实验一 函数插值方法 一、问题提出 对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n ==。试用Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。 数据如下: (1 求五次Lagrange 多项式5L ()x ,计算(0.596)f ,(0.99)f 的值。(提示:结果为(0.596)0.625732f ≈, (0.99) 1.05423f ≈) 实验步骤: 第一步:先在matlab 中定义lagran 的M 文件为拉格朗日函数 代码为: function[c,l]=lagran(x,y) w=length(x); n=w-1; l=zeros(w,w); for k=1:n+1 v=1; for j=1:n+1 if(k~=j) v=conv(v,poly(x(j)))/(x(k)-x(j)); end end l(k,:)=v; end c=y*l; end

第二步:然后在matlab命令窗口输入: >>>> x=[0.4 0.55 0.65 0.80,0.95 1.05];y=[0.41075 0.57815 0.69675 0.90 1.00 1.25382]; >>p = lagran(x,y) 回车得到: P = 121.6264 -422.7503 572.5667 -377.2549 121.9718 -15.0845 由此得出所求拉格朗日多项式为 p(x)=121.6264x5-422.7503x4+572.5667x3-377.2549x2+121.9718x-15.0845 第三步:在编辑窗口输入如下命令: >> x=[0.4 0.55 0.65 0.80,0.95 1.05]; >> y=121.6264*x.^5-422.7503*x.^4+572.5667*x.^3-377.2549*x.^2+121.9718 *x-15.0845; >> plot(x,y) 命令执行后得到如下图所示图形,然后 >> x=0.596; >> y=121.6264*x.^5-422.7503*x.^4+572.5667*x.^3-377.2549*x.^2+121.9718 *x-15.084 y =0.6257 得到f(0.596)=0.6257 同理得到f(0.99)=1.0542

相关文档