文档库 最新最全的文档下载
当前位置:文档库 › 生物化学试题及答案

生物化学试题及答案

生物化学试题及答案
生物化学试题及答案

生物化学试题及答案

绪论

一.名词解释

1.生物化学

2.生物大分子

蛋白质

一、名词解释

1、等电点

2、等离子点

3、肽平面

4、蛋白质一级结构

5、蛋白质二级结构

6、超二级结构

7、结构域

8、蛋白质三级结构

9、蛋白质四级结构 10、亚基 11、寡聚蛋白 12、蛋白质变性

13、蛋白质沉淀 14、蛋白质盐析 15、蛋白质盐溶 16、简单蛋白质

17、结合蛋白质 18、必需氨基酸 19、同源蛋白质

二、填空题

1、某蛋白质样品中的氮含量为,那么此样品中约含蛋白 g。

2、蛋白质水解会导致产物发生消旋。

3、蛋白质的基本化学单位是,其构象的基本单位是。

4、芳香族氨基酸包括、和。

5、常见的蛋白质氨基酸按极性可分为、、和。

6、氨基酸处在pH大于其pI的溶液时,分子带净电,在电场中向极游动。

7、蛋白质的最大吸收峰波长为。

8、构成蛋白质的氨基酸除外,均含有手性α-碳原子。

9、天然蛋白质氨基酸的构型绝大多数为。

10、在近紫外区只有、、和具有吸收光的能力。

11、常用于测定蛋白质N末端的反应有、和。

12、α-氨基酸与茚三酮反应生成色化合物。

13、脯氨酸与羟脯氨酸与茚三酮反应生成色化合物。

14、坂口反应可用于检测,指示现象为出现。

15、肽键中羰基氧和酰胺氢呈式排列。

16、还原型谷胱甘肽的缩写是。

17、蛋白质的一级结构主要靠和维系;空间结构则主要依靠维系。

18、维持蛋白质的空间结构的次级键包括、、和等。

19、常见的蛋白质二级结构包括、、、和等。

20、β-折叠可分和。

21、常见的超二级结构形式有、、和等。

22、蛋白质具有其特异性的功能主要取决于自身的排列顺序。

23、蛋白质按分子轴比可分为和。

24、已知谷氨酸的pK1(α2(γ3(α-NH3+。

25、溶液pH等于等电点时,蛋白质的溶解度最。

三、简答题

1、简述蛋白质α-螺旋的结构特点。

2、简述氨基酸差异对α-螺旋稳定的影响。

3、简述蛋白质β-折叠的结构特点。

4、简述引起蛋白质沉淀的因素。

5、列举出5种可引发蛋白质变性的物理因素。

6、列举出5种可引发蛋白质变性的化学因素。

7、简述按溶解性不同简单蛋白可分为哪些种类?

8、简述按辅基成份不同可将结合蛋白分为哪些种类?

9、简述蛋白质的分离提纯可依据哪些差异。

10、简述蛋白质结构与功能的关系。

【参考答案】

一、名词解释

1、等电点:当氨基酸或蛋白质溶液处在某一pH值时,氨基酸或蛋白质解离成正、负离子的趋势和程度相等,即形成兼

性离子或两性离子,净电荷为零,此时溶液的pH值称为该氨基酸或蛋白质的等电点。

2、等离子点:指氨基酸或蛋白质在纯水中的等电点。

3、肽平面:由于肽键具有一定的双键性质,使得参与肽键的4个原子(C、H、O和N)以及相邻的2个α-C位于同一平

面,此平面就是肽平面,也叫酰胺平面。

4、蛋白质一级结构:又称初级结构,指蛋白质分子中氨基酸的排列顺序,包括二硫键的定位。

5、蛋白质二级结构:指蛋白质主链的某些肽段借助氢键在空间盘绕、折叠所形成的有周期性规律的立体结构。

6、超二级结构:指蛋白质多肽链中几个相邻的二级结构单元组合在一起,形成的有规则的、可在空间上能辨认的二级结

构组合体。

7、结构域:指在蛋白质二级结构基础上多肽链进一步卷曲折叠形成几个相对独立,近似球形的组装体。

8、蛋白质三级结构:指在二级结构、超二级结构和结构域的基础上,一条多肽链包括侧链在内,整条肽链进一步盘绕,

折叠形成的特定立体构象。

9、蛋白质四级结构:具有特定三级结构的肽链通过非共价键所形成的大分子组合体系。

10、亚基:组成蛋白质四级结构中的各个肽链称为亚基。

11、寡聚蛋白:由两条或更多条具备三级结构的多肽链以非共价键相互缔合而成的聚集体,即具有四级结构的蛋白质。

12、蛋白质变性:在理化因素的影响下,天然蛋白质分子内部原有的高级结构发生变化,其理化性质和生物学功能也随之

改变或丧失,但并未涉及蛋白质一级结构的改变,这种现象称为蛋白质变性。

13、蛋白质沉淀:蛋白质分子因脱水、失去电荷、变性或生成难溶盐而从溶液中析出的现象。

14、蛋白质盐析:向蛋白质溶液中加入大量的中性盐可破坏蛋白质表面的水化层,使蛋白质的溶解度降低而从溶液中析出,

这种作用叫做盐析。

15、蛋白质盐溶:向蛋白质溶液中加入少量的中性盐可稳定蛋白质分子的双电层,从而使蛋白质溶解度增加,这种作用叫

做盐溶。

16、简单蛋白质:仅由氨基酸组成,不含其它化学成分的蛋白质。

17、结合蛋白质:此类蛋白除氨基酸组分之外,还含有非氨基酸物质,即辅基,辅基通过共价或非共价方式与氨基酸组分

结合。

18、必需氨基酸:在生物体内不能合成或合成量不足以维持正常的生长发育,必须依赖食物供给的氨基酸。

19、同源蛋白质:不同物种中行使相同或相似功能的蛋白质。

二、填空题

1、酸;

2、氨基酸,肽平面或酰胺平面;

3、苯丙氨酸(Phe或F)、色氨酸(Trp或W)、酪氨酸(Tyr或Y);

4、非极性氨基酸、极性不带电荷氨基酸、极性带正电荷氨基酸、极性带负电荷氨基酸;

5、负或-,阳或正或+;

6、280nm;

7、甘氨酸或Gly或G;

8、L-型;

9、苯丙氨酸(Phe或F)、色氨酸(Trp或W)、酪氨酸(Tyr或Y);

10、2,4-二硝基氟苯反应或Sanger反应、苯异硫氰酸酯反应或Edman反应、丹磺酰氯反应或DNS-Cl反应;

11、蓝紫;

12、黄色;

13、精氨酸或Arg或R,砖红色沉淀;

14、反;

15、GSH;

16、肽键、二硫键,次级键;

17、氢键、疏水作用、范德华力、离子键或盐键;

18、α-螺旋、β-折叠或β-片层、β-转角、γ-转角、无规卷曲;

19、平行式、反平行式;

20、αα、ββ、βαβ或βxβ;

21、氨基酸或氨基酸残基;

22、球状蛋白、纤维状蛋白;

23、小。

三、简答题

1、①主链绕一条固定轴形成右手螺旋;②③相邻螺旋间每个氨基酸残基中的-NH和前面第4个残基中的C=O形成氢键;

④侧链R基团辐射状分布在螺旋外侧;⑤遇到Pro,α-螺旋自动中断。

2、酸性或碱性氨基酸集中处,因同种电荷氨基酸的两性性质及等电点相斥,不利于α-螺旋形成;侧链R基较大的氨基

酸集中的区域不利于α-螺旋形成如Phe、Trp、Ile; Gly的R基团为H,空间占位很小,也会影响该处螺旋的稳定;

Pro的α-C位于五元环上,不易扭转,且为亚氨基酸,不易形成氢键,故不能形成α-螺旋。

3、主链借助氢键以平行或反平行的方式排列;构象呈锯齿状(或扇面状)结构;氢键与中心轴接近垂直;R基团交替位

于片层上、下方,侧链向外形成疏水环境。

4、高浓度中性盐、有机溶剂、重金属盐、生物碱试剂、加热。

5、加热、紫外线、X射线、超声波、剧烈振荡、搅拌或高压等(任5项)。

6、强酸、强碱、脲、胍、重金属盐、生物碱、有机溶剂等(任5项)。

7、清蛋白、球蛋白、谷蛋白、醇溶蛋白、精蛋白、组蛋白和硬蛋白。

8、核蛋白或(脱氧核糖核蛋白/核糖体核蛋白)、糖蛋白或(糖蛋白/黏蛋白)、脂蛋白、磷蛋白、色蛋白、黄素蛋白和

金属蛋白。

9、可以根据蛋白质的溶解度差异、电荷差异、分子大小差异和与配体的特异性差异进行分离。

10、一级结构与功能的关系:同种功能的蛋白质具有相似的一级结构,一级结构的改变会引起功能的变化;高级结构与功

能的关系:相同功能的蛋白质高级结构也很相似,高级结构决定生物学功能,功能与结构之间相适应。

一、名词解释

1、酶

2、活性中心

3、诱导楔合学说

4、酶活力

5、比活力

6、转换数

7、别构酶

8、同工酶

9、诱导酶 10、K m 11、天然底物 12、Q10

13、可逆抑制作用 14、不可逆抑制作用

二、填空题

1、全酶由和组成,其中决定酶的专一性。

2、辅基与酶蛋白共价结合,不可以通过透析去除。

3、酶按其结构特点不同可以分为、和。

4、酶按其专一性不同可分为、和。

5、国际系统命名法将酶分为6大类,分别是、、、、和。

6、酶原激活过程可以看成是酶形成或暴露的过程。

7、活性中心必需基团包括和。

8、影响酶促反应速度的主要因素有、、、、和。

9、酶的可逆抑制作用可分为、和。

10、磺胺药物的结构与相似,它可以竞争性抑制细菌体内的活性。

11、有机磷农药是生物体内的抑制剂。

12、抑制剂对酶的作用有一定选择性,蛋白质变性剂对酶的作用选择性。

13、酶促反应速度达到最大反应速度80%时的K m等于。

14、动物体内LDH1最为丰富的组织是。

15、动物体内LDH5最为丰富的组织是。

16、别构酶的动力学曲线不符合米氏方程,为或。

17、当K m值近似 ES的解离常数K S时,K m值可用来表示酶对底物的。

18、最适温度酶的特征性常数,它与反应时间有关,当反应时间延长时,最适温度可以。

三、简答题

1、简述酶的催化特性。

2、简述酶高效催化的一般原理。

3、简述K m的意义。

4、简述V max的意义。

5、简述竟争性抑制的特点。

6、简述非竟争性抑制的特点。

7、简述反竟争性抑制的特点。

【参考答案】

一、名词解释

1、酶:指由活细胞产生的,具有催化活性和高度专一性的特殊生物大分子,包括蛋白质和核酸。

2、活性中心:指酶分子中直接参与底物结合及催化作用的氨基酸残基的侧链基团按一定空间结构所组成的区域。

3、诱导楔合学说:该学说认为酶和底物结合之前,酶活性中心的结构与底物的结构并不一定完全吻合,但当二者相互作

用时,因酶活性中心具有柔性,底物与酶相互诱导发生构象变化,从而能楔合形成中间过渡态。

4、酶活力:又称酶活性,指酶催化一定化学反应的能力。在一定条件下,可用其催化的某一化学反应的反应速度来表示。

5、比活力:指每毫克酶蛋白中所含的活力单位数,代表酶制度剂的纯度。

6、转换数:指酶被底物完全饱和时,每单位时间内、每个酶分子所能转化底物的分子数,用于描述酶的催化效率。

7、别构酶:酶分子非催化部位与某些化合物可逆地非共价结合后引发酶构象改变,进而引起酶活性改变,具有这种变构

调节作用的酶称为别构酶或变构酶。

8、同工酶:能催化相同的化学反应,但酶蛋白的分子结构、理化性质和免疫学特性不同的一组酶。

9、诱导酶:在诱导物的剌激下,能大量产生的酶。

10、K m:酶促反应速度达到最大速度一半时的底物浓度。

11、天然底物:当一种酶有多种底物时,酶对每种底物均各有一个特定的K m值,K m最小的底物称为该酶的天然底物。

12、Q10:即温度系数,指T每增加10℃,υ增加的倍数。

13、可逆抑制作用:抑制剂(I)与酶非共价结合,一般用透析或超滤的方法可以除去抑制剂使酶恢复活力,这称为可逆

抑制作用。

14、不可逆抑制作用:抑制剂(I)与酶共价结合使酶丧失活性,不能用透析或超滤的方法除去抑制剂而恢复酶活力,这

称为不可逆抑制作用。

二、填空题

1、酶蛋白、辅因子,酶蛋白;

2、共价;

3、单体酶、寡聚酶、多酶复合体;

4、绝对专一性、相对专一性、立体异构专一性;

5、氧化还原酶类、转移酶类、水解酶类、裂合(或裂解)酶类、异构酶类、合成(或连接)酶类;

6、活性中心;

7、结合基团、催化基团;

8、底物浓度或[S]、酶浓度或[E]、温度或T、pH、激活剂、抑制剂;

9、竟争性抑制、非竟争性抑制、反竟争性抑制;

10、对氨基苯甲酸,二氢叶酸合成酶;

11、胆碱酯酶或羟基酶;

12、无;

13、1/4[S];

14、心肌;

15、肝脏;

16、S型、表观双曲线;

17、等于或近似于,亲和力;

18、不是,降低或下调。

三、简答题

1、高效性、专一性、可调控、易失活、与辅因子有关。

2、邻近与定向效应、张力与变形、酸碱催化、共价催化及微环境的影响

3、K m反应速度等于1/2V max的[s],单位为mmol/L;当中间产物ES解离成E和S的速度>>分解成E和P的速度时,K m值可

近似于ES的解离常数K S。此时K m值可表示酶和底物亲和力。K m值越小,酶和底物亲和力越大;K m值越大,酶和底物亲和力越小。K m值是酶的特征性常数之一,只与酶的结构、酶所催化的底物及反应温度、pH和离子强度等有关,与酶的浓度无关。各种酶的K m值大致在10-6~10-2mmol/L之间。

4、V max是酶完全被底物饱和时的反应速度,如果酶的总浓度已知,便可根据V max计算酶的转换数=[E]/ V max,其意义是:当

酶被底物充分饱和时,单位时间内每个酶分子催化底物转换变成产物的分子数。大多数酶的转换数在1-104/秒之间。

5、I与S结构相似,竞争E的结合部位,但对催化部位无影响;提高底物浓度可解除抑制作用;K m值增大,V max不变。

6、I与E的非活性中心必需基团结合,改变E构象,E催化能力下降,但不影响底物结合;ESI不能生成P,抑制程度取

决于[I];K m值不变,V max变小。

7、I不与游离E结合,而只能与ES结合;K m值变小,V max变小。

维生素

一、名词解释

1、维生素

2、维生素缺乏症

二、填空题

1、维生素的重要性在于它可作为酶的组成成分,参与体内代谢过程。

2、维生素按溶解性可分为和。

3、水溶性维生素主要包括和VC。

4、脂脂性维生素包括为、、和。

5、缺乏会导致夜盲症。

6、缺乏会导致佝偻症。

7、维生素E的别名为。

8、维生素K的别名为。

9、植物中的可以在小肠粘膜由加氧酶作用生成视黄醇,所以又将其称为VA原。

10、将VD3羟化成25-羟VD3的器官是。

11、脚气病是由于缺乏。

12、口角炎是由于缺乏。

13、遍多酸是维生素的别名。

14、VB5包括和。

15、VB6包括、和。

16、人体缺乏可导致巨幼红细胞贫血和血红素合成障碍性贫血。

17、生物素羧基载体蛋白的缩写是,四氢叶酸的缩写是。

18、怀孕头3个月缺乏可导致胎儿神经管发育缺陷。

19、硫辛酸作为辅因子参与反应时,起转移的作用。

20、维生素C的别名为,灵长类动物因缺乏而不能合成。

三、简答题

1、为什么婴儿需要经常晒晒日光?

2、列举5种富含VC的果蔬。

3、简述B族维生素与辅助因子的关系。

【参考答案】

一、名词解释

1、维生素:维持生物正常生命过程所必需,但机体不能合成,或合成量很少,必须食物供给一类小分子有机物。

2、维生素缺乏症:因维生素不足所引起的营养缺乏症的总称。

二、填空题

1、辅因子;

2、水溶性维生素、脂性维生素;

3、B族维生素;

4、VA、VD、VE、VK;

5、VA;

6、VD;

7、生育酚;

8、凝血维生素;

9、β-胡萝卜素;

10、肝脏;

11、硫胺素或VB1;

12、核黄素或VB2;

13、泛酸或遍多酸或VB3;

14、烟酸或尼克酸、烟酰胺或尼克酰胺;

15、吡哆醇、吡哆醛、吡哆胺;

16、5’-脱氧腺苷钴胺素或甲基钴胺素或VB12;

17、BCCP,FH4或THFA;

18、叶酸;

19、酰基;

20、抗坏血酸,古洛糖酸内酯氧化酶。

三、简答题

1、婴儿的发育需要机体吸收大量的钙质,VD可促进钙的吸收,而皮表的7-脱氢胆固醇经紫外线照射可转变为VD,因此

婴儿需要经常晒晒日光,使骨骼强壮。

2、青椒、西红柿、猕猴桃、橙子、桔子和草莓等。

核酸

一、名词解释

1、核酸一级结构

2、核酸变性

3、增色效应

4、减色效应

5、T m

6、DNA复性

7、退火

8、分子杂交

二、填空题

1、核酸的基本组成单位是,它们之间通过连接。

2、常见的核苷酸由和组成。

3、常见的嘌呤包括和。

4、常见的嘧啶包括、和。

5、常见的碱基中,尿嘧啶只存在于,而胸腺嘧啶只存在于。

6、核酸中的戊糖可分为和两种。

7、稀有碱基m5C代表。

8、核酸中元素的含量在9%左右,可以用于计算核酸含量。

9、已知某细菌的DNA中G的含量为30%,其A含量为。

13、双链DNA中,A与T之间形成对氢键,G与C之间形成对氢键。

14、在端粒结构之中,4个相邻的G之间可以形成对氢键。

×107,其DNA链长为μm。

16、3’,5’-环腺苷酸的缩写是。

17、Z-DNA为手螺旋,B-DNA 手螺旋。

18、tRNA的二级结构是型,三级结构是型。

19、DNA三级结构的主要形式是。

20、超螺旋有和 2种形式,天然的超螺旋为。

21、真核生物染色体DNA在组蛋白的包装下形成。

22、组蛋白包括、、、和 5种。

23、核苷酸的嘌呤和嘧啶碱中含有共轭双键,在 nm附近达到最大吸收值。

24、理论上纯RNA样品的OD260/OD280为,纯DNA样品的OD260/OD280为。

25、经典的核酸测序方法包括和。

三、简答题

1、简述组成DNA和RNA的核苷酸分别有哪些?

2、简述DNA和RNA在化学组成、结构、细胞内位置及功能上的差异。

3、简述mRNA、tRNA和rRNA的功能。

4、如何看待RNA功能的多样性?其核心作用是什么?

5、比较原核生物和真核生物核糖体分子量的差异。

6、简述原核生物与真核生物mRNA在结构上的区别。

7、为什么DNA不易被碱水解,而RNA很容易被碱水解?

8、简述B型DNA的结构特点。

9、维持DNA双螺旋结构的主要作用力有哪些?

10、描述DNA变性后主要理化性质的变化。

11、简述影响DNA复性的主要因素。

【参考答案】

一、名词解释

1、核酸一级结构:指核酸中脱氧核苷酸的排列顺序。

2、核酸变性:核酸在加热、极端pH、有机试剂、变性剂及机械力等作用下,发生氢键断裂,但不涉及共价键,仅碱基堆

积力破坏,双螺旋分子变为单链的过程。

3、增色效应:指DNA分子变性后,原先藏于螺旋内部的碱基暴露出来,使得其在260nm的光吸收值比变性前明显增加的

现象。

4、减色效应:复性后的DNA溶液在260nm处的光吸收值比复性前明显下降的现象称为减色效应。

5、T m:即解链温度,又称熔解温度、熔点或变性温度,指因热变性使DNA光吸收达到最大光吸收一半时的温度,又或是

使增色效应达到最大效应一半时的温度。

6、DNA复性:指变性DNA的两条互补单链在适当条件下重新缔合形成双螺旋结构,其理化性质也随之恢复的过程。

7、退火:热变性后的DNA单链经缓慢冷却后即可复性,此过程称之为退火。

8、分子杂交:不同来源的核酸分子放在一起热变性,然后缓慢冷却,若这些异源核酸之间存在互补或部分互补的序列,

复性时可以形成“杂交分子”,此过程即为分子杂交。

二、填空题

1、核苷酸,3’,5’-磷酸二酯键;

2、碱基、戊糖;

3、腺嘌呤或A、鸟嘌呤或G;

4、胞嘧啶或C、尿嘧啶或U、胸腺嘧啶或T;

5、核糖核酸或RNA,脱氧核糖核酸或DNA;

6、脱氧核糖、核糖;

7、5-甲基胞嘧啶;

8、磷或P;

9、20%;

10、1;

11、2,3;

12、8;

13、13;

14、cAMP;

15、左,右;

16、三叶草,倒L;

17、超螺旋;

18、正超螺旋、负超螺旋,负超螺旋;

19、核小体;

20、H1、H2A、H2B、H3、H4;

21、260;

22、Sanger双脱氧终止法、Gilbert化学裂解法。

三、简答题

1、mRNA的功能:蛋白质合成的直接模板;tRNA的功能:活化、搬运氨基酸到核糖体,参与蛋白质的翻译;rRNA的功能:

参与组成核蛋白体,作为蛋白质生物合成的场所。

2、mRNA的功能:

参与组成核蛋白体,作为蛋白质生物合成的场所。

3、RNA的功能主要有:①控制蛋白质合成;②作用于RNA转录后加工与修饰;③参与细胞功能的调节;④生物催化与其他

细胞持家功能;⑤遗传信息的加工;⑥可能是生物进化时比蛋白质和DNA更早出现的生物大分子。其核心作用是既可以作为信息分子又可以作为功能分子发挥作用。

4、原核生物核糖体分子量为70S,大亚基50S,小亚基30S;真核生物核糖体的分子量为80S,大亚基为60S,小亚基40S。

5、原核生物是多顺反子;5’先导区有SD序列。真核生物是单顺反子;5’帽子结构,有3’-polyA尾。

6、RNA易被碱水解是因为其核糖上有2’C-OH基,在碱的作用下能形成2’C,3’C-环磷酸酯,环磷酸酯继续水解即产生2’C-

核苷酸和3’C-核苷酸;而DNA的脱氧核糖上无2’C-OH基,不能形成碱水解的中间产物,故DNA不易被碱水解。

7、①反向平行双链,绕同一中心轴相互缠绕为右手螺旋;②磷酸基团与戊糖在外侧形成DNA双螺旋的骨架;碱基位于螺

旋内侧,按互补配对原则通过氢键相连;③④相邻核苷酸间的夹角为36°⑤螺旋表面具有大沟和小沟。

8、①反向平行多核苷酸双链间互补碱基对之间的氢键作用;②上下相邻碱基对中芳香环电子的相互作用即碱基堆积力,

这是一种最主要的作用力;③磷酸基团的氧原子带负电荷,与细胞中的碱性组蛋白,亚精胺以及Mg2+等阳离子化合物结合所形成的离子键,从而抵消负电荷之间的排斥作用;④双螺旋碱基对中疏水性芳香环堆积所产生的疏水作用力。

9、主要有:①天然DNA分子的双螺旋结构解链变成单链的无规则线团,生物学活性丧失;②天然的线型DNA分子水溶液

具有很大的黏度。变性后,黏度显着降低;③变性后的DNA浮力密度大大增加,故沉降系数S增加;④DNA变性后,碱基的有序堆积被破坏,碱基暴露使其紫外吸收值明显增加,即产生所谓增色效应。

10、①温度与时间:一般认为比Tm低25℃左右的温度是复性的最佳条件。温差大、降温时间太短均不利于复性。②DNA

浓度:溶液中DNA分子越多,相互碰撞结合的机会越大,有利于复性。③DNA序列的复杂度:简单的顺序,较易实现复性。

生物氧化

一、名词解释

1.生物氧化??? ???

2.呼吸链??? ???

3.氧化磷酸化??? ???

4. P/O比值

5.解偶联剂? ????

6.高能化合物??? ?

7.细胞色素?

8. 能荷

9. 高能键10. 电子传递抑制剂

11. 氧化磷酸化抑制剂

二、填空题

1.生物氧化是____ 在细胞中____,同时产生____ 的过程。

2.反应的自由能变化用____来表示,标准自由能变化用____表示,生物化学中时的标准自由能变化则表示为____。3.高能磷酸化合物通常是指水解时____的化合物,其中重要的是____,被称为能量代谢的____。

4.真核细胞生物氧化的主要场所是____ ,呼吸链和氧化磷酸化偶联因子都定位于____。

5.以NADH为辅酶的脱氢酶类主要是参与____ 作用,即参与从____到____的电子传递作用;以NADPH为辅酶的脱氢酶类主要是将分解代谢中间产物上的____转移到____反应中需电子的中间物上。

6.由NADH→O2的电子传递中,释放的能量足以偶联ATP合成的3个部位是____、____ 和____ 。

7.鱼藤酮、抗霉素A和CN-、N3-、CO的抑制部位分别是____、____ 和____。

8.解释电子传递氧化磷酸化机制的三种假说分别是____、____和____,其中____得到多数人的支持。

9.琥珀酸呼吸链的组成成分有____、____、____、____、____。

10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。

11.胞液中的NADH+H+通过____和____两种穿梭机制进入线粒体,并可进入____氧化呼吸链或____氧化呼吸链,可分别产生____分子ATP或____分子ATP。

12.ATP生成的主要方式有____和____。

13.生物体内磷酸化作用可分为____、____和____。

14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。

15.铁硫簇主要有____和____两种组成形式,通过其中的铁原子与铁硫蛋白中的____相连接。

16.呼吸链中未参与形成复合体的两种游离成分是____和____。

17.FMN或FAD作为递氢体,其发挥功能的结构是____。

18.参与呼吸链构成的细胞色素有____、____、____、____、____、____。

19.呼吸链中含有铜原子的细胞色素是____。

20.构成呼吸链的四种复合体中,具有质子泵作用的是____、____、____。

21.ATP合酶由____和____两部分组成,具有质子通道功能的是____,____具有催化生成ATP的作用。

22.呼吸链抑制剂中,____、____、____可与复合体Ⅰ结合,____、____可抑制复合体Ⅲ,可抑制细胞色素c氧化酶的物质有____、____、____。

23.因辅基不同,存在于胞液中SOD为____,存在于线粒体中的SOD为____,两者均可消除体内产生的____。24.微粒体中的氧化酶类主要有____和____。

25.人们常见的解偶联剂是____,其作用机理是____。

26.NADH经电子传递和氧化磷酸化可产生____个ATP,琥珀酸可产生____个ATP。

27.当电子从NADH经____传递给氧时,呼吸链的复合体可将____对H+从____泵到____,从而形成H+的梯度,当一对H+经____ 回到线粒体____时,可产生____个ATP。

28.F1-F0复合体由____部分组成,其F1的功能是____,F0的功能是____,连接头部和基部的蛋白质叫____ 。

可抑制该复合体的功能。

29.动物线粒体中,外源NADH可经过____系统转移到呼吸链上,这种系统有____种,分别为____ 和____;而植物的外源NADH是经过____ 将电子传递给呼吸链的。

30.线粒体内部的ATP是通过____载体,以____方式运出去的。

31.线粒体外部的磷酸是通过____ 方式运进来的。

三、问答题

1.试比较生物氧化与体外物质氧化的异同。

2.描述NADH氧化呼吸链和琥珀酸氧化呼吸链的组成、排列顺序及氧化磷酸化的偶联部位。

3.试计算NADH氧化呼吸链和琥珀酸氧化呼吸链的能量利用率。

4.试述影响氧化磷酸化的诸因素及其作用机制。

5.试述体内的能量生成、贮存和利用

6.CO2与H2O以哪些方式生成?

7.简述化学渗透学说。

8.ATP具有高的水解自由能的结构基础是什么?为什么说ATP是生物体内的“能量通货”?

【参考答案】

一、名词解释

1.物质在生物体内进行的氧化反应称生物氧化。

2.代谢物脱下的氢通过多种酶与辅酶所催化的连锁反应逐步传递,最终与氧结合为水,此过程与细胞呼吸有关故称呼吸链。

3.代谢物脱下的氢经呼吸链传递给氧生成水,同时伴有ADP磷酸化为ATP,此过程称氧化磷酸化。

4.物质氧化时每消耗1摩尔氧原子所消耗的无机磷的摩尔数,即生成ATP的摩尔数,此称P/O比值。

5.使氧化与ATP磷酸化的偶联作用解除的化学物质称解偶联剂。

6.化合物水解时释放的能量大于21KJ/mol,此类化合物称高能化合物。

7.细胞色素是一类以铁卟啉为辅基的催化电子传递的酶类,有特殊的吸收光谱而呈现颜色。

8. 能荷:能荷是细胞中高能磷酸键状态的一种数量上的衡量,能荷大小可以说明生物体中ATP-ADP-AMP系统的能量状态。

9. 高能键:指随着水解反应或基团转移反应可放出大量自由能(ΔG大于25kJ/mol)的键。主要指ATP/ADP中的焦磷酸键。各种化合物的化学键水解时释放的化学能量大于或近于ATP水解时释放的能量者均属高能键,如乙酰辅酶A的酯键。常用符号“~”表示。

10. 电子传递抑制剂:凡是能够阻断电子传递链中某部位电子传递的物质称为电子传递抑制剂。

11. 氧化磷酸化抑制剂:对电子传递和ADP磷酸化均有抑制作用的试剂称为氧化磷酸化的抑制剂,这类抑制剂抑制ATP 的合成,抑制了磷酸化也一定会抑制氧化。

二、填空题

1.有机分子氧化分解可利用的能量

2.?G ?G0 ?G0'

3.释放的自由能大于通货

4.线粒体线粒体内膜

5.生物氧化底物氧H++e- 生物合成

7.复合体I 复合体III 复合体IV

8.构象偶联假说化学偶联假说化学渗透学说化学渗透学说

9.复合体Ⅱ??? 泛醌??? 复合体Ⅲ??? 细胞色素c??? 复合体Ⅳ

10.NADH→泛醌??? 泛醌→细胞色素c??? 细胞色素

11.α-磷酸甘油穿梭????? 苹果酸-天冬氨酸穿梭?????? 琥珀酸

??? NADH???? 2???? 3

12.氧化磷酸化????? 底物水平磷酸化

13.氧化磷酸化光合磷酸化底物水平磷酸化

14.NAD+???? FAD

15.Fe2S2??? Fe4S4??? 半胱氨酸残基的硫

16.泛醌??? 细胞色素c

17.异咯嗪环

18.b560???? b562????? b566???? ??c????? c1????? aa3???

19.细胞色素aa3

20.复合体Ⅰ??? 复合体Ⅲ???? 复合体Ⅳ

21.F0????? F1????? F0????? F1

22.鱼藤酮?????? 粉蝶霉素A????? 异戊巴比妥????? 抗霉素A

??? 二巯基丙醇???? 一氧化碳????? 氰化物?????? 硫化氢

23.CuZn-SOD???? Mn-SOD???? 超氧离子

24.加单氧酶???? 加双氧酶

25. 2,4-二硝基苯酚瓦解H+电化学梯度

26. 3 2

27. 呼吸链 3 内膜内侧内膜外侧电化学F1-F0复合体内侧 1

28. 三合成ATP H+通道和整个复合体的基底OSCP 寡霉素

29. 穿梭二?-磷酸甘油穿梭系统苹果酸穿梭系统内膜外侧和外膜上的NADH脱氢酶及递体

30. 腺苷酸交换

31. 交换和协同

三、问答题

1.生物氧化与体外氧化的相同点:物质在体内外氧化时所消耗的氧量、最终产物和释放的能量是相同的。生物氧化与体外氧化的不同点:生物氧化是在细胞内温和的环境中在一系列酶的催化下逐步进行的,能量逐步释放并伴有ATP的生成,将部分能量储存于ATP分子中,可通过加水脱氢反应间接获得氧并增加脱氢机会,二氧化碳是通过有机酸的脱羧产生的。生物氧化有加氧、脱氢、脱电子三种方式,体外氧化常是较剧烈的过程,其产生的二氧化碳和水是由物质的碳和氢直接与氧结合生成的,能量是突然释放的。

2.NADH氧化呼吸链组成及排列顺序:NADH+H+→复合体Ⅰ(FMN、Fe-S)→CoQ→复合体Ⅲ(Cytb562、b566、Fe-S、c1)→Cytc→复合体Ⅳ(Cytaa3)→O2 。其有3个氧化磷酸化偶联部位,分别是NADH+H+→CoQ,CoQ→Cytc,

Cytaa3→O2 。

??? 琥珀酸氧化呼吸链组成及排列顺序:琥珀酸→复合体Ⅱ(FAD、Fe-S、Cytb560)→CoQ→复合体Ⅲ→Cytc→复合体

Ⅳ→O2。其只有两个氧化磷酸化偶联部位,分别是CoQ→Cytc,Cytaa3→O2 。

3.NADH氧化呼吸链:NAD+/NADH+H+的标准氧化还原电位是,1/2 O2/H2O 的标准氧化还原电位,据自由能变化与电位变化的关系:ΔG0'=-nFΔE0',1 摩尔氢对经NADH 氧化呼吸链传递与氧结合为1摩尔水,其释放的自由能为,NADH 氧化呼吸链有三个氧化磷酸化偶联部位,可产生3 摩尔ATP ,每摩尔ATP生成需,能量利用率==42% 。琥珀酸呼吸链:计算过程与以上相似,其能量利用率=36%。

4.影响氧化磷酸化的因素及机制:(1)呼吸链抑制剂:鱼藤酮、粉蝶霉素A、异戊巴比妥与复合体Ⅰ中的铁硫蛋白结合,抑制电子传递;抗霉素A、二巯基丙醇抑制复合体Ⅲ;一氧化碳、氰化物、硫化氢抑制复合体Ⅳ。(2) 解偶联剂:二硝基苯酚和存在于棕色脂肪组织、骨骼肌等组织线粒体内膜上的解偶联蛋白可使氧化磷酸化解偶联。(3)氧化磷酸化抑制剂:寡

霉素可与寡霉素敏感蛋白结合,阻止质子从F0质子通道回流,抑制磷酸化并间接抑制电子呼吸链传递。(4)ADP的调节作用:ADP浓度升高,氧化磷酸化速度加快,反之,氧化磷酸化速度减慢。(5) 甲状腺素:诱导细胞膜Na+-K+-ATP酶生成,加速ATP分解为ADP,促进氧化磷酸化;增加解偶联蛋白的基因表达导致耗氧产能均增加。(6)线粒体DNA突变:呼吸链中的部分蛋白质肽链由线粒体DNA编码,线粒体DNA因缺乏蛋白质保护和损伤修复系统易发生突变,影响氧化磷酸化。

5.糖、脂、蛋白质等各种能源物质经生物氧化释放大量能量,其中约40% 的能量以化学能的形式储存于一些高能化合物中,主要是ATP。ATP的生成主要有氧化磷酸化和底物水平磷酸化两种方式。ATP是机体生命活动的能量直接供应者,每日要生成和消耗大量的ATP。在骨骼肌和心肌还可将ATP的高能磷酸键转移给肌酸生成磷酸肌酸,作为机体高能磷酸键的储存形式,当机体消耗ATP过多时磷酸肌酸可与ADP反应生成ATP,供生命活动之用。

6. CO2的生成方式为:单纯脱羧和氧化脱羧。水的生成方式为:代谢物中的氢经一酶体系和多酶体系作用与氧结合而生成水。

7.线粒体内膜是一个封闭系统,当电子从NADH经呼吸链传递给氧时,呼吸链的复合体可将H+从内膜内侧泵到内膜外侧,从而形成H+的电化学梯度,当一对H+ 经F1-F0复合体回到线粒体内部时时,可产生一个ATP。

8.负电荷集中和共振杂化。能量通货的原因:ATP的水解自由能居中,可作为多数需能反应酶的底物。

糖类代谢

一、名词解释

1.糖酵解(glycolysis)??????2.糖的有氧氧化???????3.磷酸戊糖途径4.糖异生

5.糖原的合成与分解??(glyconoegenesis)?? ?6.三羧酸循环(krebs循环)

7.丙酮酸羧化支路? 8.乳酸循环(coris循环? 9.三碳途径??? 10.糖原累积症

11.糖酵解途径12.血糖(blood sugar) 13.活性葡萄糖

二、填空题

1.葡萄糖在体内主要分解代谢途径有?? ? ?、?? ? ?和?? ? ?。

2.糖酵解反应的进行亚细胞定位是在??? ? ,最终产物为?? ??? 。

3.糖酵解途径中仅有的脱氢反应是在?? ? ?酶催化下完成的,受氢体是?? ? ?。两个

底物水平磷酸化反应分别由???? 酶和???? 酶催化。

4.肝糖原酵解的关键酶分别是????? 、????? 和丙酮酸激酶。

5.6—磷酸果糖激酶—1最强的变构激活剂是????? ,是由6—磷酸果糖激酶—2催化生成,该酶是一双功能酶同时具有????? 和????? 两种活性。

6.1分子葡萄糖经糖酵解生成??? ?? 分子ATP,净生成???? ? 分子ATP,其主要生理意义在于? ???? 。

7.由于成熟红细胞没有????? ,完全依赖????? 供给能量。

8.丙酮酸脱氢酶复合体含有维生素????? 、????? 、????? 、????? 和????? 。

9.三羧酸循环是由????? 与????? 缩合成柠檬酸开始,每循环一次有????? 次脱氢、

??? 次脱羧和???? 次底物水平磷酸化,共生成????? 分子ATP。??

10.在三羧酸循环中催化氧化脱羧的酶分别是????? 和???? ?。

11.糖有氧氧化反应的进行亚细胞定位是????? 和????? 。1分子葡萄糖氧化成CO2和H2O净生成???? 或???? 分子ATP。

12.6—磷酸果糖激酶—1有两个ATP结合位点,一是????? ATP作为底物结合,另一是???? 与ATP亲和能力较低,需较高浓度ATP才能与之结合。

13.人体主要通过?????? 途径,为核酸的生物合成提供?????? 。

14.糖原合成与分解的关键酶分别是???? 和???? 。在糖原分解代谢时肝主要受???? 的调控,而肌肉主要受???? 的调控。15.因肝脏含有???? 酶,故能使糖原分解成葡萄糖,而肌肉中缺乏此酶,故肌糖原分解增强时,生成???? 增多。

16.糖异生主要器官是??? ?? ,其次是? ???? 。

17.糖异生的主要原料为????? 、????? 和????? 。

18.糖异生过程中的关键酶分别是????? 、????? 、?????? 和?????? 。

19.调节血糖最主要的激素分别是????? 和????? 。

20.在饥饿状态下,维持血糖浓度恒定的主要代谢途径是????? 。

21.纤维素是由________________组成,它们之间通过________________糖苷键相连。

22.常用定量测定还原糖的试剂为________________试剂和________________试剂。

23.人血液中含量最丰富的糖是________________,肝脏中含量最丰富的糖是________________,肌肉中含量最丰富的糖是________________。

24.乳糖是由一分子________________和一分子________________组成,它们之间通过________________糖苷键相连。

25.鉴别糖的普通方法为________________试验。

26.蛋白聚糖是由________________和________________共价结合形成的复合物。

27.糖苷是指糖的________________和醇、酚等化合物失水而形成的缩醛(或缩酮)等形式的化合物。

28.判断一个糖的D-型和L-型是以________________碳原子上羟基的位置作依据。

29.多糖的构象大致可分为________________、________________、________________和________________四种类型,决定其构象的主要因素是________________。

三、问答题

1.简述糖酵解的生理意义。

2.试比较糖酵解与糖有氧氧化有何不同。

3.简述三羧酸循环的特点及生理意义。

4.试述磷酸戊糖途径的生理意义。

5.试述机体如何调节糖酵解及糖异生途径。

6.乳酸循环是如何形成,其生理意义是什么?

7.简述6-磷酸葡萄糖的来源、去路及在糖代谢中的作用。

8.试述机体调节糖原合成与分解的分子机制。

9.试述丙氨酸如何异生为葡萄糖的。

10.试述胰高血糖素调节血糖水平的分子机理。

【参考答案】

?? ?一、名词解释

1.缺氧情况下,葡萄糖分解生成乳酸的过程称之为糖酵解。

? 2.葡萄糖在有氧条件下彻底氧化生成CO2和H2O的反应过程称为有氧氧化。

??3.6-磷酸葡萄糖经氧化反应和一系列基团转移反应,生成CO2、NADPH、磷酸核糖、6-磷酸果糖和3-磷酸甘油醛而进入糖酵解途径称为磷酸戊糖途径(或称磷酸戊糖旁路)。

??4.由非糖物质乳酸、甘油、氨基酸等转变为葡萄糖或糖原的过程称为糖异生。

??5.由单糖(葡萄糖、果糖、半乳糖等)合成糖原的过程称为糖原的合成。由糖原分解为1-磷酸葡萄糖、6-磷酸葡萄糖、最后为葡萄糖的过程称为糖原的分解。

??6.由草酰乙酸和乙酰CoA缩合成柠檬酸开始,经反复脱氢、脱羧再生成草酰乙酸的循环反应过程称为三羧酸循环。由于Krebs正式提出三羧酸循环,故此循环又称Krebs循环。

7.丙酮酸在丙酮酸羧化酶催化下生成草酰乙酸,后经磷酸烯醇式丙酮酸羧激酶催化生成磷酸烯醇式丙酮酸的过程称为丙酮酸羧化之路。

8.肌肉收缩时经酵解产生乳酸,通过血液运输至肝,在肝脏异生成葡萄糖进入血液,又可被肌肉摄取利用称为乳酸循环。也叫Cori循环。

9.葡萄糖先分解成丙酮酸、乳酸等三碳化合物,再运往肝脏,在肝脏异生为糖原称为三碳途径或称合成糖原的简接途径。

10.由于先天性缺乏与糖原代谢有关的酶类,使体内某些器官、组织中大量糖原堆积而引起的一类遗传性疾病,称糖原累积症。

11.葡萄糖分解生成丙酮酸的过程称之为糖酵解途径。是有氧氧化和糖酵解共有的过程。

? 12.血液中的葡萄糖称为血糖,其正常值为~~110mg / dL)。

? 13.在葡萄糖合成糖原过程中,UTPG称为活性葡萄糖,在体内作为葡萄糖的供体。

??? 二、填空题

? 1.糖酵解? 有氧氧化? 磷酸戊糖途径

? 2.胞浆? 乳酸

? 3.3-磷酸甘油醛脱氢?? NAD+?? 磷酸甘油酸激?? 丙酮酸激

? 4.磷酸化酶? 6-磷酸果糖激酶-1

? 5.2、6-双磷酸果糖? 磷酸果糖激酶-2? 果糖双磷酸酶-2

? 6.4??? 2??? 迅速提供能量

? 7.线粒体? 糖酵解

? 8.B1? 硫辛酸? 泛酸? B2? PP

? 9.草酰乙酸?? 乙酰CoA?? 4?? 2?? 1?? 12

? 10.异柠檬酸脱氢酶? α-酮戊二酸脱氢酶复合体

? 11.胞浆?? 线粒体?? 36?? 38

? 12.活性中心内的催化部位?? 活性中心外的与变构效应剂结合的部位

? 13.磷酸戊糖?? 核糖

? 14.糖原合酶?? 磷酸化酶?? 胰高血糖素?? 肾上腺素

? 15.葡萄糖-6-磷酸? 乳酸

? 16.肝脏?? 肾脏

? 17.乳酸?? 甘油?? 氨基酸

? 18.丙酮酸羧化酶? 磷酸烯醇式丙酮酸羧激酶? 果糖双磷酸酶-1?? 葡萄糖-6-磷酸酶

? 19.胰岛素? 胰高血糖素

? 20.糖异生

?? 21 D-葡萄糖β-1,4

22 Fehling Benedict

23 葡萄糖糖原糖原

24 D-葡萄糖D-半乳糖β-1,4

25 Molisch

26 糖胺聚糖蛋白质

27 半缩醛(或半缩酮)羟基

28 离羰基最远的一个不对称

29 螺旋带状皱折无规卷曲糖链的一级结构

??三、问答题

??1.糖酵解的生理意义是:(1)迅速提供能量。这对肌肉收缩更为重要,当机体缺氧或剧烈运动肌肉局部血流不足时,能量主要通过糖酵解获得。(2)是某些组织获能的必要途径,如:神经、白细胞、骨髓等组织,即使在有氧时也进行强烈的酵解而获得能量。(3)成熟的红细胞无线粒体,仅靠无氧酵解供给能量。

??2.糖酵解与有氧氧化的不同

? 3.三羧酸循环的反应特点:(1)TAC是草酰乙酸和乙酰CoA缩合成柠檬酸开始,每循环一次消耗1分子乙酰基。反应过程中有4次脱氢(3分子NADH+H+、1分子FADH2)、2次脱羧,1次底物水平磷酸化,产生12分子ATP。(2)TAC 在线粒体进行,有三个催化不可逆反应的关键酶,分别是异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体、柠檬酸合成酶。(3)TAC的中间产物包括草酰乙酸在循环中起催化剂作用,不会因参与循环而被消耗,但可以参与其它代谢而被消耗,因此草酰乙酸必需及时的补充(可由丙酮酸羧化或苹果酸脱氢生成)才保证TAC的进行。

????? 三羧酸循环的生理意义:(1)TAC是三大营养素(糖、脂肪、蛋白质)在体内彻底氧化的最终代谢通路。(2)TAC 是三大营养素互相转变的枢纽。(3)为其它物质合成提供小分子前体物质,为氧化磷酸化提供还原当量。

?4.磷酸戊糖途径的生理意义是:(1)提供5-磷酸核糖作为体内合成各种核苷酸及核酸的原料。(2)提供细胞代谢所需的还原性辅酶Ⅱ(即NADPH)。NADPH的功用①作为供氢体在脂肪酸、胆固醇等生物合成中供氢。②作为谷胱苷肽(GSH)还原酶的辅酶维持细胞中还原性GSH的含量,从而对维持细胞尤其是红细胞膜的完整性有重要作用。③参与体内生物转化作用。

?5.糖酵解和糖异生途径是方向相反的两条代谢途径。若机体需要时糖酵解途径增强,则糖异生途径受到抑制。而在空腹或饥饿状态下糖异生作用增强,抑制了糖酵解。这种协调作用依赖于变构效应剂对两条途径中关键酶的相反作用及激素的调节作用。(1)变构效应剂的调节作用:①AMP及2、6-双磷酸果糖激活6-磷酸果糖激酶-1,而抑制果糖双磷酸酶-1。②ATP 及柠檬酸激活果糖双磷酸酶-1,而抑制6—磷酸果糖激酶-1。③ATP激活丙酮酸羧化酶,抑制了丙酮酸激酶。④乙酰CoA 激活丙酮酸羧化酶,而抑制了丙酮酸脱氢酶复合体。(2)激素的调节:胰岛素能增强糖酵解的关键酶,己糖激酶、6-磷酸果糖激酶-1、丙酮酸激酶等活性,同时抑制糖异生关键酶的活性。胰高血糖素能抑制2、6-双磷酸果糖的生成及丙酮酸激酶的活性。并能诱导磷酸烯醇式丙酮酸羧激酶基因表达,酶合成增多。因而促糖异生,抑制糖酵解。

?6.乳酸循环的形成是因肝脏和肌肉组织中酶的特点所致。肝内糖异生活跃,又有葡萄糖6-磷酸酶水解6-磷酸葡萄糖生成葡萄糖;而肌肉中除糖异生活性很低外还缺乏葡萄糖6-磷酸酶,肌肉中生成的乳酸即不能异生为糖,更不能释放出葡萄糖。但肌肉内酵解生成的乳酸通过细胞膜弥散进入血液运输入肝,在肝内异生为葡萄糖再释放入血又可被肌肉摄取利用,这样就构成乳酸循环。其生理意义在于避免损失乳酸以及防止因乳酸堆积而引起酸中毒。

??7.6-磷酸葡萄糖的来源:(1)糖的分解途径,葡萄糖在己糖激酶或葡萄糖激酶的催化下磷酸化生成6-磷酸葡萄糖。(2)糖原的分解,在磷酸化酶催化下糖原分解成1-磷酸葡萄糖后转变为6-磷酸葡萄糖。(3)糖异生,由非糖物质乳酸、甘油、氨基酸异生为6-磷酸果糖异构为6-磷酸葡萄糖。

? 6-磷酸葡萄糖的去路:(1)进行酵解生成乳酸。(2)进行有氧氧化彻底分解生成CO2和H2O、释放出能量。(3)在磷酸葡萄糖变位酶催化下转变成1-磷酸葡萄糖,去合成糖原。(4)在肝葡萄糖6-磷酸酶的催化下脱磷酸重新生成葡萄糖。(5)经6-磷酸葡萄糖脱氢酶催化进入磷酸戊糖途径,生成5-磷酸核糖和NADPH。总之6-磷酸葡萄糖是糖酵解、有氧氧化、糖异生、磷酸戊糖途径以及糖原合成与分解的共同中间产物。是各代谢途径的交叉点。如果体内己糖激酶(葡萄糖激酶)或磷酸葡萄糖变位酶活性低生成的6-磷酸葡萄糖减少。以上各代谢途径则不能顺利进行。当然各途径中的关键酶活性的强弱也会决定6-磷酸葡萄糖的代谢去向。

? 8.糖原合成与分解的限速酶分别是糖原合酶和磷酸化酶,即可进行变构调节,又可进行共价修饰。均具有活性和无活性两种形式。磷酸化酶有a、b两种形式,a是有活性的磷酸型,b是无活性的去磷酸型。磷酸化酶b激酶催化磷酸化酶b转

变成磷酸化酶a;磷蛋白磷酸酶则水解磷酸化酶a上的磷酸基转变为b。糖原合酶亦有a、b两型,与磷酸化酶相反,a为去磷酸型有活性,b为磷酸型的无活性,二者在蛋白激酶和磷蛋白磷酸酶的催化下互变。机体各种调节因素一般都是通过改变这两种酶的活性状态,而实现对糖原的合成与分解的调节作用。其调节方式是通过同一个信号使一个酶处于活性状态,而另一个酶处于非活性状态。如:胰高血糖素、肾上腺素能激活腺苷酸环化酶,使ATP转变为cAMP,后者激活蛋白激酶,使糖原合酶磷酸化而活性降低,同时蛋白激酶又使磷酸化酶b激酶磷酸化而有活性,催化磷酸化酶b磷酸化为a,其结果是促进糖原分解,抑制糖原合成,使血糖升高。此外,葡萄糖是磷酸化酶的变构调节剂,当血糖浓度升高时葡萄糖与磷酸化酶a变构部位结合,构象改变暴露出磷酸化的第14位丝氨酸在磷蛋白磷酸酶催化下脱磷酸而失活。因此,当血糖浓度升高时,降低肝糖原的分解。???????????????? ????????????????????????????????????????

? 9.丙氨酸异生为糖反应如下:(1)丙氨酸在谷丙转氨酶催化下转氨基生成丙酮酸。(2)在线粒体内丙酮酸羧化酶催化下丙酮酸羧化成草酰乙酸,后者经苹果酸脱氢酶作用还原成苹果酸,通过线粒体内膜进入胞液,再由胞液中的苹果酸脱氢酶将其氧化为草酰乙酸,后经磷酸烯醇式丙酮酸羧激酶催化生成磷酸烯醇式丙酮酸。(3)磷酸烯醇式丙酮酸循糖酵解途径逆向生成1、6-双磷酸果糖,后经果糖双磷酸酶-1催化脱磷酸生成6-磷酸果糖,异构为6-磷酸葡萄糖。(4)6-磷酸葡萄糖由葡萄糖6-磷酸酶催化生成葡萄糖。

? 10.胰高血糖素主要通过促进肝脏和肌肉糖原的分解,抑制糖原的合成,从而使血糖水平升高。其分子机制如下:当胰高血糖素与肝及肌细胞膜的特异受体结合后,活化的受体促使G蛋白与GDP解离并结合GTP,释放出有活性的αs—GTP,αs—GTP激活腺苷酸环化酶使ATP脱去焦磷酸生成cAMP。CAMP又激活依赖cAMP的蛋白激酶A,有活性的蛋白激酶A 可使细胞中的许多酶和功能蛋白磷酸化产生生理效应。

(1)蛋白激酶A使糖原合成酶磷酸化转变成无活性,糖原合成降低,使血糖升高。

(2)蛋白激酶A激活磷酸化酶b激酶,磷酸化酶b激酶又催化磷酸化酶b磷酸化为有

活性的磷酸化酶a,促进糖原的分解,使血糖升高。

(3)蛋白激酶A还可激活磷蛋白磷酸酶抑制剂,后者与磷酸酶1结合抑制其活性,使糖原合成酶b及磷酸化酶a不能脱磷酸,磷酸化酶处于高活性状态,糖原合成酶处于无活性状态,糖原合成降低,分解增强血糖升高。

(4)cAMP-蛋白激酶系统可通过改变糖代谢中关键酶的活性调节血糖水平。如:丙酮酸激酶磷酸化失活,抑制2、6-双磷酸果糖的合成,使6-磷酸果糖激酶-1活性降低,糖的分解减慢。诱导磷酸烯醇式丙酮酸羧基酶基因表达,酶的合成增多糖异生作用增强。

脂类代谢

一、名词解释

????? 1.脂酸的β-氧化???? 2.酮体???? 3.必需脂肪酸?????????????? 4.载脂蛋白

???? 5.酰基载体蛋白(ACP)???????? 6.磷脂?????? 7.脂蛋白脂肪酶??? 8.丙酮酸柠檬酸循环????

9. 乙醛酸循环

二、填空题

1.合成胆固醇的原料是?? ? ?,递氢体是?? ? ?,限速酶是?? ? ?,胆固醇在体内可转化

为?? ? ?、?? ? ?、?? ? ?。

2.乙酰CoA的去路有?? ? ?、?? ? ?、?? ? ?、?? ? ?。

3.脂肪酰CoA的β-氧化经过?? ? ?、?? ? ?、?? ? ?和?? ? ?四个连续反应步骤,每次β-氧化生成一分子?? ? ?和比原来少两个碳原子的脂酰CoA,脱下的氢由?? ? ?和?? ? ?携带,进入呼吸链被氧化生成水。

4.酮体包括?? ? ?、?? ? ?、?? ? ?。酮体主要在??? ? ?以?? ? ?为原料合成,并在?? ? ?被氧化利用。

5.肝脏不能利用酮体,是因为缺乏?? ? ?和?? ? ?酶。

6.脂肪酸合成的主要原料是?? ? ?,递氢体是?? ? ?,它们都主要来源于?? ? ?。

7.脂肪酸合成酶系主要存在于?? ? ?,??? 内的乙酰CoA需经?? ? ?循环转运至?? ? ?而用于合成脂肪酸。

8.脂肪酸合成的限速酶是?? ? ?,其辅助因子是?? ? ?。

9.在磷脂合成过程中,胆碱可由食物提供,亦可由?? ? ?及?? ? ?在体内合成,胆碱及乙醇胺由活化的??? ? ?及?? ? ?提供。

10.人体含量最多的鞘磷脂是??? ? ?,由?? ? ?、?? ? ?及?? ? ???所构成。

11.在所有细胞中乙酰基的主要载体是?? ? ?,ACP是?? ? ?,它在体内的作用是?? ? ?。

12.脂肪酸在线粒体内降解的第一步反应是?? ? ?脱氢,该反应的载氢体是?? ? ?。

13.发芽油料种子中,脂肪酸要转化为葡萄糖,这个过程要涉及到三羧酸循环,乙醛酸循环,糖降解逆反应,也涉及到细胞质,线粒体,乙醛酸循环体,将反应途径与细胞部位配套并按反应顺序排序为?? ? ?。14.?? ? ?是动物和许多植物的主要能量贮存形式,是由?? ? ?与3分子?? ? ?脂化而成的。

15.三脂酰甘油是由?? ? ?和?? ? ?在磷酸甘油转酰酶作用下,先生成磷脂酸再由磷酸酶转变成?? ? ?,最后在?? ? ?催化下生成三脂酰甘油。

16.每分子脂肪酸被活化为脂酰-CoA需消耗?? ? ?个高能磷酸键。

17.一分子脂酰-CoA经一次?-氧化可生成?? ? ?和比原来少两个碳原子的脂酰-CoA。

18.一分子14碳长链脂酰-CoA可经?? ? ?次?-氧化生成?? ? ?个乙酰-CoA, ?? ? ?个NADH+H+,?? ? ?个FADH2 。

19.真核细胞中,不饱和脂肪酸都是通过?? ? ?途径合成的。

20.脂肪酸的合成,需原料?? ? ?、?? ? ?、和?? ? ?等。

21.脂肪酸合成过程中,乙酰-CoA来源于?? ? ?或?? ? ?,NADPH主要来源于?? ? ?。

22.乙醛酸循环中的两个关键酶是?? ? ?和?? ? ?,使异柠檬酸避免了在?? ? ?循环中的两次

反应,实现了以乙酰-CoA合成?? ? ?循环的中间物。

23.脂肪酸合成酶复合体I一般只合成?? ? ?,碳链延长由?? ? ?或?? ? ?酶系统催化,植物Ⅱ型脂肪酸碳链延长的酶系定位于?? ? ?。

24.脂肪酸?-氧化是在?? ? ?中进行的,氧化时第一次脱氢的受氢体是?? ? ?,第二次脱氢的受氢体?? ? ?。

三、问答题

1.简述脂类的消化与吸收。

2.何谓酮体?酮体是如何生成及氧化利用的?

3.简述体内乙酰CoA的来源和去路。

4.为什么吃糖多了人体会发胖(写出主要反应过程)?脂肪能转变成葡萄糖吗?为什么?

生物化学测试题及答案.

生物化学第一章蛋白质化学测试题 一、单项选择题 1.测得某一蛋白质样品的氮含量为0.40g,此样品约含蛋白质多少?B(每克样品*6.25) A.2.00g B.2.50g C.6.40g D.3.00g E.6.25g 2.下列含有两个羧基的氨基酸是:E A.精氨酸B.赖氨酸C.甘氨酸 D.色氨酸 E.谷氨酸 3.维持蛋白质二级结构的主要化学键是:D A.盐键 B.疏水键 C.肽键D.氢键 E.二硫键(三级结构) 4.关于蛋白质分子三级结构的描述,其中错误的是:B A.天然蛋白质分子均有的这种结构 B.具有三级结构的多肽链都具有生物学活性 C.三级结构的稳定性主要是次级键维系 D.亲水基团聚集在三级结构的表面 E.决定盘曲折叠的因素是氨基酸残基 5.具有四级结构的蛋白质特征是:E A.分子中必定含有辅基 B.在两条或两条以上具有三级结构多肽链的基础上,肽链进一步折叠,盘曲形成 C.每条多肽链都具有独立的生物学活性 D.依赖肽键维系四级结构的稳定性 E.由两条或两条以上具在三级结构的多肽链组成 6.蛋白质所形成的胶体颗粒,在下列哪种条件下不稳定:C A.溶液pH值大于pI B.溶液pH值小于pI C.溶液pH值等于pI D.溶液pH值等于7.4 E.在水溶液中 7.蛋白质变性是由于:D A.氨基酸排列顺序的改变B.氨基酸组成的改变C.肽键的断裂D.蛋白质空间构象的破坏E.蛋白质的水解 8.变性蛋白质的主要特点是:D A.粘度下降B.溶解度增加C.不易被蛋白酶水解

D.生物学活性丧失 E.容易被盐析出现沉淀 9.若用重金属沉淀pI为8的蛋白质时,该溶液的pH值应为:B A.8 B.>8 C.<8 D.≤8 E.≥8 10.蛋白质分子组成中不含有下列哪种氨基酸?E A.半胱氨酸 B.蛋氨酸 C.胱氨酸 D.丝氨酸 E.瓜氨酸二、多项选择题 1.含硫氨基酸包括:AD A.蛋氨酸 B.苏氨酸 C.组氨酸D.半胖氨酸2.下列哪些是碱性氨基酸:ACD A.组氨酸B.蛋氨酸C.精氨酸D.赖氨酸 3.芳香族氨基酸是:ABD A.苯丙氨酸 B.酪氨酸 C.色氨酸 D.脯氨酸 4.关于α-螺旋正确的是:ABD A.螺旋中每3.6个氨基酸残基为一周 B.为右手螺旋结构 C.两螺旋之间借二硫键维持其稳定(氢键) D.氨基酸侧链R基团分布在螺旋外侧 5.蛋白质的二级结构包括:ABCD A.α-螺旋 B.β-片层C.β-转角 D.无规卷曲 6.下列关于β-片层结构的论述哪些是正确的:ABC A.是一种伸展的肽链结构 B.肽键平面折叠成锯齿状 C.也可由两条以上多肽链顺向或逆向平行排列而成 D.两链间形成离子键以使结构稳定(氢键) 7.维持蛋白质三级结构的主要键是:BCD A.肽键B.疏水键C.离子键D.范德华引力 8.下列哪种蛋白质在pH5的溶液中带正电荷?BCD(>5) A.pI为4.5的蛋白质B.pI为7.4的蛋白质 C.pI为7的蛋白质D.pI为6.5的蛋白质 9.使蛋白质沉淀但不变性的方法有:AC A.中性盐沉淀蛋白 B.鞣酸沉淀蛋白 C.低温乙醇沉淀蛋白D.重金属盐沉淀蛋白

生物化学试题及答案

第五章脂类代谢 【测试题】 一、名词解释 1.脂肪动员 2.脂酸的β-氧化 3.酮体 4.必需脂肪酸 5.血脂 6.血浆脂蛋白 7.高脂蛋白血症 8.载脂蛋白 受体代谢途径 10.酰基载体蛋白(ACP) 11.脂肪肝 12.脂解激素 13.抗脂解激素 14.磷脂 15.基本脂 16.可变脂 17.脂蛋白脂肪酶 18.卵磷脂胆固醇脂酰转移酶(LCAT) 19.丙酮酸柠檬酸循环 20.胆汁酸 二、填空题 21.血脂的运输形式是,电泳法可将其为、、、四种。 22.空腹血浆中含量最多的脂蛋白是,其主要作用是。 23.合成胆固醇的原料是,递氢体是,限速酶是,胆固醇在体内可转化为、、。 24.乙酰CoA的去路有、、、。 25.脂肪动员的限速酶是。此酶受多种激素控制,促进脂肪动员的激素称,抑制脂肪动员的激素称。 26.脂肪酰CoA的β-氧化经过、、和四个连续反应步骤,每次β-氧化生成一分子和比原来少两个碳原子的脂酰CoA,脱下的氢由和携带,进入呼吸链被氧化生成水。 27.酮体包括、、。酮体主要在以为原料合成,并在被氧化利用。 28.肝脏不能利用酮体,是因为缺乏和酶。 29.脂肪酸合成的主要原料是,递氢体是,它们都主要来源于。 30.脂肪酸合成酶系主要存在于,内的乙酰CoA需经循环转运至而用 于合成脂肪酸。 31.脂肪酸合成的限速酶是,其辅助因子是。 32.在磷脂合成过程中,胆碱可由食物提供,亦可由及在体内合成,胆碱及乙醇胺由活化的及提供。 33.脂蛋白CM 、VLDL、 LDL和HDL的主要功能分别是、,和。 34.载脂蛋白的主要功能是、、。 35.人体含量最多的鞘磷脂是,由、及所构成。

生物化学期末考试试题及答案

《生物化学》期末考试题 A 一、判断题(15个小题,每题1分,共15分) ( ) 1、蛋白质溶液稳定的主要因素就是蛋白质分子表面形成水 化膜,并在偏离等电点时带有相同电荷 2、糖类化合物都具有还原性 ( ) 3、动物脂肪的熔点高在室温时为固体,就是因为它含有的不 饱与脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键就是二硫键。 ( ) 5、ATP含有3个高能磷酸键。 ( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的 结合。 ( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。 ( ) 8、氰化物对人体的毒害作用就是由于它具有解偶联作用。 ( ) 9、血糖基本来源靠食物提供。 ( )

10、脂肪酸氧化称β-氧化。( ) 11、肝细胞中合成尿素的部位就是线粒体。( ) 12、构成RNA的碱基有A、U、G、T。( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。( ) 15、脂溶性较强的一类激素就是通过与胞液或胞核中受体的

1、下列哪个化合物就是糖单位间以α-1,4糖苷键相连: () A、麦芽糖 B、蔗糖 C、乳糖 D、纤维素 E、香菇多糖 2、下列何物就是体内贮能的主要形式 ( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、脂酰甘油 3、蛋白质的基本结构单位就是下列哪个: ( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基 酸 E、以上都不就是 4、酶与一般催化剂相比所具有的特点就是 ( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的 时间 C、具有高度的专一性 D、反应前后质与量无改 E、对 正、逆反应都有催化作用 5、通过翻译过程生成的产物就是: ( ) A、tRNA B、mRNA C、rRNA D、多肽链 E、DNA

生化习题及答案

期中答案 一、单项选择题(每小题0.5分,共10分) 1.Watson-Crick的DNA结构为: B.DNA双链呈反平行排列 2.已知某酶的Km为0.05mol/L,使此酶催化的反应速度达到最大反应速度80%时的底物浓度是:C. 0.2mol/L 3.tRNA的作用是:B.把氨基酸带到mRNA的特定位置上 4.下列哪一种物质是琥珀酸脱氢酶辅酶:B.FAD 5.若电子通过下列过程传递,释放能量最多的是: A.NADH-->Cytaa3 6.氨基酸与蛋白质都具有的理化性质是:B.两性性质 7.稀有核苷酸主要存在于:C.tRNA 8.在寡聚蛋白中,亚基间的立体排布、相互作用及接触部位间的空间结构称之为:D.别构现象 9.下列哪种氨基酸是极性酸性氨基酸:D.Glu 10.DNA一级结构的连接键是:B. 肽键 11.定位于线粒体内膜上的反应是:D、呼吸链 12.属于解偶联剂的物质是:A.2,4-二硝基苯酚 13.关于酶催化反应机制哪项不正确:D.酶-底物复合物极稳定 14.酶在催化反应中决定专一性的部分是:B.辅基或辅酶 15.核酸分子储存和传递遗传信息是通过:D.碱基顺序 16.核酸对紫外线吸收是由哪种结构产生的:C.嘌呤、嘧啶环上共轭双键 17.关于氧化磷酸化叙述错误的是:A.线粒体内膜外侧pH比线粒体

基质中高

18.具有下列特征的DNA中Tm最高的是:B.T为15% 19.底物水平磷酸化涵义:C.底物分子重排后形成高能磷酸键,经磷酸基团转移使ADP磷酸化为ATP 20.三羧酸循环,哪条不正确:C.无氧条件不能运转氧化乙酰COA 二、多项选择题(选错或未选全不得分。号码填于卷头答题卡内;)1.属于酸性氨基酸的是:C.天冬E.谷 2.EMP中,发生底物水平磷酸化的反应步骤是:P208 A.甘油酸-1,3-二磷酸→甘油酸-3-磷酸E.磷酸烯醇式丙酮酸→丙酮酸 3.蛋白质二级结构中包括下列哪几种形式:P27 A.α-螺旋 B.β-折叠D.β-转角 E.无规则卷曲 4.下列哪些是呼吸链组成成份:P177 A.辅酶Q B.乙酰CoA C.细胞色素类D.铁硫蛋白E.钼铁蛋白5.下列属于高能化合物的是:A.磷酸烯醇式 B.ATP C.柠檬酸 D.磷酸二羟丙酮 E.3-磷酸甘油酸 6.蛋白质变性后: B.次级键断裂 D.天然构象解体 E.生物活性丧失 7.维持蛋白质三级结构稳定的作用力是: A.疏水作用 B.氢键 C.离子键 D.范德华作用力

生物化学试题及标准答案(糖代谢部分)

糖代谢 一、选择题 1.果糖激酶所催化的反应产物就是: A、F-1-P B、F-6-P C、F-1,6-2P D、G-6-P E、G-1-P 2.醛缩酶所催化的反应产物就是: A、G-6-P B、F-6-P C、1,3-二磷酸甘油酸 D、3-磷酸甘油酸 E、磷酸二羟丙酮 3.14C标记葡萄糖分子的第1,4碳原子上经无氧分解为乳酸,14C应标记在乳酸的: A、羧基碳上 B、羟基碳上 C、甲基碳上 D、羟基与羧基碳上 E、羧基与甲基碳上 4.哪步反应就是通过底物水平磷酸化方式生成高能化合物的? A、草酰琥珀酸→α-酮戊二酸 B、α-酮戊二酸→琥珀酰CoA C、琥珀酰CoA→琥珀酸 D、琥珀酸→延胡羧酸 E、苹果酸→草酰乙酸 5.糖无氧分解有一步不可逆反应就是下列那个酶催化的? A、3-磷酸甘油醛脱氢酶 B、丙酮酸激酶 C、醛缩酶 D、磷酸丙糖异构酶 E、乳酸脱氢酶 6.丙酮酸脱氢酶系催化的反应不需要下述那种物质? A、乙酰CoA B、硫辛酸 C、TPP D、生物素 E、NAD+ 7.三羧酸循环的限速酶就是: A、丙酮酸脱氢酶 B、顺乌头酸酶 C、琥珀酸脱氢酶 D、异柠檬酸脱氢酶 E、延胡羧酸酶 8.糖无氧氧化时,不可逆转的反应产物就是: A、乳酸 B、甘油酸-3-P C、F-6-P D、乙醇 9.三羧酸循环中催化琥珀酸形成延胡羧酸的琥珀酸脱氢酶的辅助因子就是: A、NAD+ B、CoA-SH C、FAD D、TPP E、NADP+ 10.下面哪种酶在糖酵解与糖异生作用中都起作用: A、丙酮酸激酶 B、丙酮酸羧化酶 C、3-磷酸甘油酸脱氢酶 D、己糖激酶 E、果糖-1,6-二磷酸酯酶 11.催化直链淀粉转化为支链淀粉的酶就是: A、R酶 B、D酶 C、Q酶 D、α-1,6糖苷酶 12.支链淀粉降解分支点由下列那个酶催化? A、α与β-淀粉酶 B、Q酶 C、淀粉磷酸化酶 D、R—酶 13.三羧酸循环的下列反应中非氧化还原的步骤就是: A、柠檬酸→异柠檬酸 B、异柠檬酸→α-酮戊二酸 C、α-酮戊二酸→琥珀酸 D、琥珀酸→延胡羧酸 14.一分子乙酰CoA经三羧酸循环彻底氧化后产物就是: A、草酰乙酸 B、草酰乙酸与CO2 C、CO2+H2O D、CO2,NADH与FADH2 15.关于磷酸戊糖途径的叙述错误的就是: A、6-磷酸葡萄糖转变为戊糖 B、6-磷酸葡萄糖转变为戊糖时每生成1分子CO2,同时生成1分子NADH+H C、6-磷酸葡萄糖生成磷酸戊糖需要脱羧 D、此途径生成NADPH+H+与磷酸戊糖 16.由琥珀酸→草酰乙酸时的P/O就是: A、2 B、2、5 C、3 D、3、5 E、4 17.胞浆中1mol乳酸彻底氧化后,产生的ATP数就是:

生物化学试题及答案(6)

生物化学试题及答案(6) 默认分类2010-05-15 20:53:28 阅读1965 评论1 字号:大中小 生物化学试题及答案(6) 医学试题精选2010-01-01 21:46:04 阅读1957 评论0 字号:大中小 第六章生物氧化 【测试题】 一、名词解释 1.生物氧化 2.呼吸链 3.氧化磷酸化 4. P/O比值 5.解偶联剂 6.高能化合物 7.细胞色素 8.混合功能氧化酶 二、填空题 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。 10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。 11.胞液中的NADH+H+通过____和____两种穿梭机制进入线粒体,并可进入____氧化呼吸链或____氧化呼 吸链,可分别产生____分子ATP或____分子ATP。 12.ATP生成的主要方式有____和____。 13.体内可消除过氧化氢的酶有____、____和____。 14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。 15.铁硫簇主要有____和____两种组成形式,通过其中的铁原子与铁硫蛋白中的____相连接。 16.呼吸链中未参与形成复合体的两种游离成分是____和____。 17.FMN或FAD作为递氢体,其发挥功能的结构是____。 18.参与呼吸链构成的细胞色素有____、____、____、____、____、____。 19.呼吸链中含有铜原子的细胞色素是____。 20.构成呼吸链的四种复合体中,具有质子泵作用的是____、____、____。 21.ATP合酶由____和____两部分组成,具有质子通道功能的是____,____具有催化生成ATP 的作用。 22.呼吸链抑制剂中,____、____、____可与复合体Ⅰ结合,____、____可抑制复合体Ⅲ,可抑制细胞色 素c氧化酶的物质有____、____、____。 23.因辅基不同,存在于胞液中SOD为____,存在于线粒体中的 SOD为____,两者均可消除体内产生的 ____。 24.微粒体中的氧化酶类主要有____和____。 三、选择题

生物化学期末考试试题及答案

《生物化学》期末考试题 A 一、判断题(15个小题,每题1分,共15分) ( ) 1、蛋白质溶液稳定的主要因素是蛋白质分子表面形成水化膜,并在偏离等电点时带有相同电荷 2、糖类化合物都具有还原性 ( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。 ( ) 5、ATP含有3个高能磷酸键。 ( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。 ( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。 ( )

9、血糖基本来源靠食物提供。 ( ) 10、脂肪酸氧化称β-氧化。 ( ) 11、肝细胞中合成尿素的部位是线粒体。 ( ) 12、构成RNA的碱基有A、U、G、T。 ( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。 ( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。 ( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将 二、单选题(每小题1分,共20分)

1、下列哪个化合物是糖单位间以α-1,4糖苷键相连:() A、麦芽糖 B、蔗糖 C、乳糖 D、纤维素 E、 香菇多糖 2、下列何物是体内贮能的主要形式 ( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、 脂酰甘油 3、蛋白质的基本结构单位是下列哪个: ( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是 ( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是: ( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA

生化习题及答案

一.选择题 1.唾液淀粉酶应属于下列那一类酶( D ); A 蛋白酶类 B 合成酶类 C 裂解酶类 D 水解酶类 2.酶活性部位上的基团一定是( A ); A 必需基团 B 结合基团 C 催化基团 D 非必需基团 3.实验上,丙二酸能抑制琥珀酸脱氢酶的活性,但可用增加底物浓度的方法来消除其抑制,这种抑制称为( C ); A 不可逆抑制 B 非竟争性抑制 C 竟争性抑制 D 非竟争性抑制的特殊形式 4.动物体肝脏内,若葡萄糖经糖酵解反应进行到3-磷酸甘油酸即停止了,则此过程可净生成( A )ATP; A 0 B -1 C 2 D 3 5.磷酸戊糖途径中,氢受体为( B ); A NAD+ B NADP+ C FA D D FMN 6.高等动物体内NADH呼吸链中,下列那一种化合物不是其电子传递体( D ); A 辅酶Q B 细胞色素b C 铁硫蛋白 D FAD 7.根据化学渗透假说理论,电子沿呼吸链传递时,在线粒体内产生了膜电势,其中下列正确的是( A ); A 内膜外侧为正,内侧为负 B 内膜外侧为负,内侧为正 C 外膜外侧为正,内侧为负 D 外膜外侧为负,内侧为正 8.动物体内,脂酰CoA经β-氧化作用脱氢,则这对氢原子可生成( B )分子ATP; A 3 B 2 C 4 D 1 9.高等动物体内,游离脂肪酸可通过下列那一种形式转运( C ); A 血浆脂蛋白 B 高密度脂蛋白 C 可溶性复合体 D 乳糜微粒 10.对于高等动物,下列属于必需氨基酸的是(B ); A 丙氨酸 B 苏氨酸 C 谷氨酰胺 D 脯氨酸 11.高等动物体内,谷丙转氨酶(GPT)最可能催化丙酮酸与下列那一种化合物反应( D );

生物化学试题及标准答案(糖代谢部分)

糖代谢 一、选择题 1.果糖激酶所催化的反应产物是: A、F-1-P B、F-6-P C、F-1,6-2P D、G-6-P E、G-1-P 2.醛缩酶所催化的反应产物是: A、G-6-P B、F-6-P C、1,3-二磷酸甘油酸 D、3-磷酸甘油酸 E、磷酸二羟丙酮 3.14C标记葡萄糖分子的第1,4碳原子上经无氧分解为乳酸,14C应标记在乳酸的: A、羧基碳上 B、羟基碳上 C、甲基碳上 D、羟基和羧基碳上 E、羧基和甲基碳上 4.哪步反应是通过底物水平磷酸化方式生成高能化合物的? A、草酰琥珀酸→α-酮戊二酸 B、α-酮戊二酸→琥珀酰CoA C、琥珀酰CoA→琥珀酸 D、琥珀酸→延胡羧酸 E、苹果酸→草酰乙酸 5.糖无氧分解有一步不可逆反应是下列那个酶催化的? A、3-磷酸甘油醛脱氢酶 B、丙酮酸激酶 C、醛缩酶 D、磷酸丙糖异构酶 E、乳酸脱氢酶 6.丙酮酸脱氢酶系催化的反应不需要下述那种物质? A、乙酰CoA B、硫辛酸 C、TPP D、生物素 E、NAD+ 7.三羧酸循环的限速酶是: A、丙酮酸脱氢酶 B、顺乌头酸酶 C、琥珀酸脱氢酶 D、异柠檬酸脱氢酶 E、延胡羧酸酶 8.糖无氧氧化时,不可逆转的反应产物是: A、乳酸 B、甘油酸-3-P C、F-6-P D、乙醇 9.三羧酸循环中催化琥珀酸形成延胡羧酸的琥珀酸脱氢酶的辅助因子是: A、NAD+ B、CoA-SH C、FAD D、TPP E、NADP+ 10.下面哪种酶在糖酵解和糖异生作用中都起作用: A、丙酮酸激酶 B、丙酮酸羧化酶 C、3-磷酸甘油酸脱氢酶 D、己糖激酶 E、果糖-1,6-二磷酸酯酶 11.催化直链淀粉转化为支链淀粉的酶是: A、R酶 B、D酶 C、Q酶 D、α-1,6糖苷酶 12.支链淀粉降解分支点由下列那个酶催化? A、α和β-淀粉酶 B、Q酶 C、淀粉磷酸化酶 D、R—酶 13.三羧酸循环的下列反应中非氧化还原的步骤是: A、柠檬酸→异柠檬酸 B、异柠檬酸→α-酮戊二酸 C、α-酮戊二酸→琥珀酸 D、琥珀酸→延胡羧酸 14.一分子乙酰CoA经三羧酸循环彻底氧化后产物是: A、草酰乙酸 B、草酰乙酸和CO2 C、CO2+H2O D、CO2,NADH和FADH2 15.关于磷酸戊糖途径的叙述错误的是: A、6-磷酸葡萄糖转变为戊糖 B、6-磷酸葡萄糖转变为戊糖时每生成1分子CO2,同时生成1分子NADH+H C、6-磷酸葡萄糖生成磷酸戊糖需要脱羧 D、此途径生成NADPH+H+和磷酸戊糖 16.由琥珀酸→草酰乙酸时的P/O是: A、2 B、2.5 C、3 D、3.5 E、4 17.胞浆中1mol乳酸彻底氧化后,产生的ATP数是:

生物化学试题及答案期末用

生物化学试题及答案 维生素 一、名词解释 1、维生素 二、填空题 1、维生素的重要性在于它可作为酶的组成成分,参与体内代谢过程。 2、维生素按溶解性可分为和。 3、水溶性维生素主要包括和VC。 4、脂脂性维生素包括为、、和。 三、简答题 1、简述B族维生素与辅助因子的关系。 【参考答案】 一、名词解释 1、维生素:维持生物正常生命过程所必需,但机体不能合成,或合成量很少,必须食物供给一类小分子 有机物。 二、填空题 1、辅因子; 2、水溶性维生素、脂性维生素; 3、B族维生素; 4、VA、VD、VE、VK; 三、简答题 1、

生物氧化 一、名词解释 1.生物氧化 2.呼吸链 3.氧化磷酸化 4. P/O比值 二、填空题 1.生物氧化是____ 在细胞中____,同时产生____ 的过程。 3.高能磷酸化合物通常是指水解时____的化合物,其中重要的是____,被称为能量代谢的____。 4.真核细胞生物氧化的主要场所是____ ,呼吸链和氧化磷酸化偶联因子都定位于____。 5.以NADH为辅酶的脱氢酶类主要是参与____ 作用,即参与从____到____的电子传递作用;以NADPH 为辅酶的脱氢酶类主要是将分解代谢中间产物上的____转移到____反应中需电子的中间物上。 6.由NADH→O2的电子传递中,释放的能量足以偶联ATP合成的3个部位是____、____ 和____ 。 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。

10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。 12.ATP生成的主要方式有____和____。 14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。 16.呼吸链中未参与形成复合体的两种游离成分是____和____。 26.NADH经电子传递和氧化磷酸化可产生____个ATP,琥珀酸可产生____个ATP。 三、问答题 1.试比较生物氧化与体外物质氧化的异同。 2.描述NADH氧化呼吸链和琥珀酸氧化呼吸链的组成、排列顺序及氧化磷酸化的偶联部位。 7.简述化学渗透学说。 【参考答案】 一、名词解释 1.物质在生物体内进行的氧化反应称生物氧化。 2.代谢物脱下的氢通过多种酶与辅酶所催化的连锁反应逐步传递,最终与氧结合为水,此过程与细胞呼吸有关故称呼吸链。 3.代谢物脱下的氢经呼吸链传递给氧生成水,同时伴有ADP磷酸化为ATP,此过程称氧化磷酸化。 4.物质氧化时每消耗1摩尔氧原子所消耗的无机磷的摩尔数,即生成ATP的摩尔数,此称P/O比值。 二、填空题 1.有机分子氧化分解可利用的能量 3.释放的自由能大于20.92kJ/mol ATP 通货 4.线粒体线粒体内膜 5.生物氧化底物氧H++e- 生物合成 6.NADH-CoQ Cytb-Cytc Cyta-a3-O2 9.复合体Ⅱ泛醌复合体Ⅲ细胞色素c 复合体Ⅳ 10.NADH→泛醌泛醌→细胞色素c 细胞色素aa3→O2 30.5 12.氧化磷酸化底物水平磷酸化 14.NAD+ FAD

生物化学题库及答案

生物化学试题库 蛋白质化学 一、填空题 1.构成蛋白质的氨基酸有 20 种,一般可根据氨基酸侧链(R)的 大小分为非极性侧链氨基酸和极性侧 链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有 疏水性;而后一类氨基酸侧链(或基团)共有的特征是具有亲水 性。碱性氨基酸(pH6~7时荷正电)有两3种,它们分别是赖氨 基酸和精。组氨基酸;酸性氨基酸也有两种,分别是天冬 氨基酸和谷氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋 白质分子中含有苯丙氨基酸、酪氨基酸或 色氨基酸。 3.丝氨酸侧链特征基团是-OH ;半胱氨酸的侧链基团是-SH ;组氨酸的侧链基团是 。这三种氨基酸三字母代表符号分别是 4.氨基酸与水合印三酮反应的基团是氨基,除脯氨酸以外反应产物 的颜色是蓝紫色;因为脯氨酸是 —亚氨基酸,它与水合印三酮的反 应则显示黄色。 5.蛋白质结构中主键称为肽键,次级键有、 、

氢键疏水键、范德华力、二硫键;次级键中属于共价键的是二硫键键。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子β亚基的第六位 谷氨酸被缬氨酸所替代,前一种氨基酸为极性侧链氨基酸,后者为非极性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.Edman反应的主要试剂是异硫氰酸苯酯;在寡肽或多肽序列测定中,Edman反应的主要特点是从N-端依次对氨基酸进行分析鉴定。 8.蛋白质二级结构的基本类型有α-螺旋、、β-折叠β转角无规卷曲 和。其中维持前三种二级结构稳定键的次级键为氢 键。此外多肽链中决定这些结构的形成与存在的根本性因与氨基酸种类数目排列次序、、 有关。而当我肽链中出现脯氨酸残基的时候,多肽链的αa-螺旋往往会中断。 9.蛋白质水溶液是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别是分子表面有水化膜同性电荷斥力 和。

生化试题及答案,推荐文档

一、填空题 2.蛋白质分子表面的_电荷层______ 和__水化膜_ 使蛋白质不易聚集,稳定地分散在水溶 液中。 5. 写出下列核苷酸的中文名称: ________________________ ATP__三磷酸腺苷—和dCDP_脱氧二磷酸胞苷 _____________________________________________ 。6.结合蛋白质酶类是由__酶蛋白__和__辅助因子_____ 相结合才有活性。 7.竞争性抑制剂与酶结合时,对Vm 的影响__不变_______ ,对Km 影响_是增加 _______ 。有机磷杀虫剂中毒是因为它可以引起酶的___不可逆______ 抑制作用。 & 米氏方程是说明—底物浓度―和—反应速度—之间的关系,Km的定义—当反应速度为最大速度的1/2 时的底物的浓度__________________________ 。 9. FAD含维生素B2 _____ ,NAD+含维生素 _____ P P _______ 。 12. 磷酸戊糖途径的主要生理意义是__生成磷酸核糖__和 __NADPH+H_ 。 13. 糖酵解的主要产物是乳酸___。 14. 糖异生过程中所需能量由高能磷酸化合物 _ATP__和__GTP__供给。 15?三羧酸循环过程的限速酶—柠檬酸合酶__、一异柠檬酸脱氢酶、_a—酮戊二酸脱氢酶复合体。 16.糖酵解是指在无氧条件下,葡萄糖或糖原分解为_乳酸________ 的过程,成熟的_红细胞 ____ 靠糖酵解获得能量。 17?乳糜微粒(CM )在__小肠粘膜细胞__合成,其主要功能是_转运外源性甘油三酯 ______________________________________________________________________________________ 。 极低密度脂蛋白在__肝脏_合成。 18?饱和脂酰CoA 氧化主要经过脱氢、_ 加水__、—再脱氢—、__硫解—四步反应。 19. _________________________________________ 酮体是由__乙酰乙酸___、__2---_羟基丁酸___________________________________________ 、__丙酮 ___ 三者的总称。 20. ____________________________ 联合脱氨基作用主要在__肝、_肾__、__脑___等组织中进行。 21. ______________________________________________ 氨在血液中主要是以__谷氨酰胺__和__丙氨酸____________________________________________ 的形式被运输的。 22. ATP的产生有两种方式,一种是作用物水平磷 _酸化 _____ ,另一种—氧化磷酸化 _____ 。 23. 线粒体外NADH的转运至线粒体内的方式有_苹果酸-天冬氨酸—和_a_---磷酸甘油___。 24. ___________________________________________________________________________ 携带一碳单位的主要载体是_四氢叶酸__,一碳单位的主要功用是_合成核苷酸等 ______________________________________________________________________________________ 。 25. 脂肪酸的合成在__肝脏进行,合成原料中碳源是_乙酰CoA__;供氢体是 _NADPH+H_ ,它主要来自_磷酸戊糖途径_____。 26. 苯丙酮酸尿症患者体内缺乏__苯丙氨酸氧化_酶,而白化病患者是体内缺乏_酪氨酸_______ 酶。使血糖浓度下降的激素是_胰岛素___。 27. 某些药物具有抗肿瘤作用是因为这些药物结构与酶相似,其中氨甲嘌呤(MTX )与__

(完整版)生物化学试题及答案(4)

生物化学试题及答案(4) 第四章糖代谢 【测试题】 一、名词解释 1.糖酵解(glycolysis) 11.糖原累积症 2.糖的有氧氧化 12.糖酵解途径 3.磷酸戊糖途径 13.血糖 (blood sugar) 4.糖异生(glyconoegenesis) 14.高血糖(hyperglycemin) 5.糖原的合成与分解 15.低血糖(hypoglycemin) 6.三羧酸循环(krebs循环) 16.肾糖阈 7.巴斯德效应 (Pastuer效应) 17.糖尿病 8.丙酮酸羧化支路 18.低血糖休克 9.乳酸循环(coris循环) 19.活性葡萄糖 10.三碳途径 20.底物循环 二、填空题 21.葡萄糖在体内主要分解代谢途径有、和。 22.糖酵解反应的进行亚细胞定位是在,最终产物为。 23.糖酵解途径中仅有的脱氢反应是在酶催化下完成的,受氢体是。两个 底物水平磷酸化反应分别由酶和酶催化。 24.肝糖原酵解的关键酶分别是、和丙酮酸激酶。 25.6—磷酸果糖激酶—1最强的变构激活剂是,是由6—磷酸果糖激酶—2催化生成,该酶是一双功能酶同时具有和两种活性。 26.1分子葡萄糖经糖酵解生成分子ATP,净生成分子ATP,其主要生理意义在于。 27.由于成熟红细胞没有,完全依赖供给能量。 28.丙酮酸脱氢酶复合体含有维生素、、、和。29.三羧酸循环是由与缩合成柠檬酸开始,每循环一次有次脱氢、 - 次脱羧和次底物水平磷酸化,共生成分子ATP。 30.在三羧酸循环中催化氧化脱羧的酶分别是和。 31.糖有氧氧化反应的进行亚细胞定位是和。1分子葡萄糖氧化成CO2和H2O净生成或分子ATP。 32.6—磷酸果糖激酶—1有两个ATP结合位点,一是 ATP作为底物结合,另一是与ATP亲和能力较低,需较高浓度ATP才能与之结合。 33.人体主要通过途径,为核酸的生物合成提供。 34.糖原合成与分解的关键酶分别是和。在糖原分解代谢时肝主要受的调控,而肌肉主要受的调控。 35.因肝脏含有酶,故能使糖原分解成葡萄糖,而肌肉中缺乏此酶,故肌糖原分解增强时,生 成增多。 36.糖异生主要器官是,其次是。 37.糖异生的主要原料为、和。 38.糖异生过程中的关键酶分别是、、和。 39.调节血糖最主要的激素分别是和。 40.在饥饿状态下,维持血糖浓度恒定的主要代谢途径是。

生物化学考试试卷及答案

生物化学考试试卷及答 案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

河南科技学院 2014-2015学年第二学期期终考试 生物化学试题(A ) 适用班级:园林131-134 注意事项:1.该考试为闭卷考试; 2.考试时间为考试周; 3.满分为100分,具体见评分标准。 ) 1、蛋白质的变性作用: 氨基酸的等点: 3、氧化磷酸化: 4、乙醛酸循环: 5、逆转录: 二、选择题(每题1分,共15分) 1、蛋白质多肽链形成α-螺旋时,主要靠哪种次级键维持( ) A :疏水键; B :肽键: C :氢键; D :二硫键。 2、在蛋白质三级结构中基团分布为( )。 A :疏水基团趋于外部,亲水基团趋于内部; B :疏水基团趋于内部,亲水基团趋于外部; C :疏水基团与亲水基团随机分布; D :疏水基团与亲水基团相间分布。 3、双链DNA 的Tm 较高是由于下列哪组核苷酸含量较高所致( ) A :A+G ; B :C+T : C :A+T ; D :G+C 。 4、DNA 复性的重要标志是( )。 A :溶解度降低; B :溶液粘度降低; C :紫外吸收增大; D :紫外吸收降低。 5、酶加快反应速度的原因是( )。 A :升高反应活化能; B :降低反应活化能; C :降低反应物的能量水平; D :升高反应物的能量水平。 6、鉴别酪氨酸常用的反应为( )。 A 坂口反应 B 米伦氏反应 C 与甲醛的反应 D 双缩脲反应 7、所有α-氨基酸都有的显色反应是( )。 A 双缩脲反应 B 茚三酮反应 C 坂口反应 D 米伦氏反应 8、蛋白质变性是由于( )。 A 蛋白质一级结构的改变 B 蛋白质空间构象的破环 C 辅基脱落 D 蛋白质发 生水解 9、蛋白质分子中α-螺旋构象的特征之一是( )。

生物化学试题及答案范文

生物化学试题及答案(6) 第六章生物氧化 【测试题】 一、名词解释 1.生物氧化 2.呼吸链 3.氧化磷酸化 4. P/O 比值 5.解偶联剂 6.高能化合物 7.细胞色素 8.混合功能氧化酶 二、填空题 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。 10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。11.胞液中的NADH+H+通过____和____两种穿梭机制进入线粒体,并可进入____氧化呼吸链或____氧化呼 吸链,可分别产生____分子ATP 或____分子ATP。 12.ATP 生成的主要方式有____和____。 13.体内可消除过氧化氢的酶有____、____和____。 14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。 15.铁硫簇主要有____和____两种组成形式,通过其中的铁原子与铁硫蛋白中的____相连接。 16.呼吸链中未参与形成复合体的两种游离成分是____和____。 17.FMN 或FAD 作为递氢体,其发挥功能的结构是____。 18.参与呼吸链构成的细胞色素有____、____、____、____、____、____。 19.呼吸链中含有铜原子的细胞色素是____。 20.构成呼吸链的四种复合体中,具有质子泵作用的是____、____、____。 21.ATP 合酶由____和____两部分组成,具有质子通道功能的是____,____具有催化生成ATP 的作用。 22.呼吸链抑制剂中,____、____、____可与复合体Ⅰ结合,____、____可抑制复合体Ⅲ,可抑制细胞色素c 氧化酶的物质有____、____、____。 23.因辅基不同,存在于胞液中SOD 为____,存在于线粒体中的SOD 为____,两者均可消除体内产生的 ____。 24.微粒体中的氧化酶类主要有____和____。

生物化学试题及答案

生物化学试题及答案 试题一 一、选择(20×2=40分) 1.正常成人每天的尿量为(C) A 500ml B 1000 ml C 1500 ml D2000 ml 2:下列哪种氨基酸属于亚氨基酸(B) A丝氨酸B脯氨酸C亮氨酸D组氨酸 3:维持蛋白质二级结构稳定的主要作用力是(C) A盐键B疏水键C氢键D二硫键 4处于等电点状态的蛋白质(C) A分子不带电荷B分子最不稳定,易变C总电荷为零D溶解度最大 5.试选出血浆脂蛋白密度由低到高的正确顺序(B) A.LDL、VLDA、CM B.CM、VLDL、LDL、HDL C. CM、VLDL、LDL、IDL D. VLDL、LDL、CM、HDL 6.一碳单位不包括(C) A.—CH3 B.—CH2— C. CO2 D.—CH=NH 7.不出现蛋白质中的氨基酸是(B) A.半胱氨基酸 B.瓜氨酸 C.精氨酸 D.赖氨酸 8.维系蛋白质一级结构的最主要的化学键是(C) A.离子键 B.二硫键 C.肽键 D.氢键 9、关于α—螺旋的概念下列哪项是错误的(D) A.一般为右手螺旋 B. 3.6个氨基酸为一螺旋 C.主要以氢键维系 D.主要二硫键维系

10.结合酶在下列哪种情况下才有活性( D) A.酶蛋白单独存在 B.辅酶单独存在 C.酶基单独存在 D.全酶形式存在 E.有激动剂存在 11.关于Km值的意义,不正确的是( C) A.Km是酶的特性常数 B.Km值与酶的结构有关 C.Km等于反应为最大速度一半时的酶的浓度 D.Km值等于反应速度为最大度一半时的底物浓度 12.维生素B2是下列哪种辅基或辅酶的组成成分(D) A .NAD B.NADPH C.磷酸吡哆醛 D. FAD 13、1 mol乙酰CoA彻底氧化生成多少mol ATP(B) A. 11 B.1 2 C.13 D.14 14、合成DNA的原料是( A) A、dATP、dGTP、dCTP、dTTP B、ATP、dGTP、CTP、TTP C、ATP、UTP、CTP、TTP D、dATP、dUTP、dCTP、dTTP 15、合成RNA的原料是( A) A、ATP、GTP、UTP、CTP B、dATP、dGTP、dUTP、dCTP C、ATP、GTP、UTP、TTP D、dATP、dGTP、dUTP、dTTP 16、嘌呤核苷酸分解的最终产物是( C)

生物化学试卷及答案

一、名词解释(每题2分,共20分) 1、同工酶 2、酶活性中心 3、蛋白质等电点 4、底物水平磷酸化 5、葡萄糖异生作用 6 7 8 9 10 ( ) 10、考马斯亮蓝染料与蛋白质(多肽)结合后形成颜色化合物,在534nm波长下具有最大吸收光。 三、选择题(每题1分,共10分) ( ) 1、Watson和Crlick的DNA双股螺旋中,螺旋每上升一圈的碱基对和距离分别是: A. 11bp, 2.8nm B. 10bp, 3.4nm C. 9.3bp, 3.1nm D. 12bp, 4.5nm

( ) 2、哪一种情况可用增加底物浓度的方法减轻抑制程度: A. 不可逆抑制作用 B. 非竞争性可逆抑制作用 C. 竞争性可逆抑制作用 D. 反竞争性可逆抑制作用 ( ) 3、米氏动力学的酶促反应中,当底物浓度([S])等于3倍Km时,反应速度等于最大反应速度的百分数(%)为: A. 25% B. 50% C. 75% D. 100%( ) 4、TCA循环中发生底物水平磷酸化的化合物是: A. α-酮戊二酸 B. 琥珀酸 C. 琥珀酰CoA D. 苹 A. 考马斯亮蓝试剂 B. 二苯胺试剂 C. 地衣酚试剂 D. DNS试剂 四、填空题(每空1分,共30分) 1、20种天然氨基酸中_____和色氨酸只有一个密码子。 2、某一种tRNA的反密码子是UGA,它识别的密码子序列是 ___ 。 3、pI为4.88的蛋白质在pH8.6的缓冲液将向电场的 _______ 极移动。

4、核酸的基本结构单元是 __ ,蛋白质的基本结构单元是 _ _ 。 5、糖酵解途径的限速酶是 _ _、_ _、__ 。 6、大肠杆菌RNA聚合酶全酶由 ___????____ 组成;参与识别起始信号的是 __?___ 因子。 7、3-磷酸甘油穿梭和苹果酸-天冬氨酸穿梭可将 ___ 产生的___所携带的电子转 入线粒体内膜。 8、某DNA模板链核酸序列为5’ TTACTGCAATGCGCGATGCAT-3’,其转录产物mRNA的核苷 酸排列顺序是____,此mRNA编码的多肽链N-端第一个氨基酸为 ___,此多 9 10 O O ( CH 3 CH 2 ) 11 _____________________ 五、简答题(30分) 1、请写出米氏方程,并解释各符号的含义(5分) 2、计算1mol丙酮酸彻底氧化为CO 2和H 2 O时产生ATP的mol数。(6分) 3、按下述几方面,比较软脂酸氧化和合成的差异:发生部位、酰基载体、二碳片段供 体、电子供体(受体)、底物穿梭机制、合成方向。(6分) 4、简述三种RNA在蛋白质生物合成过程中所起的作用。(6分) 5、请写出参与原核生物DNA复制所需要的主要酶或蛋白,并简要解释其功能。(7分)

生物化学期末考试题及答案

《生物化学》期末考试题A 1、蛋白质溶液稳定的主要因素是蛋白质分子表面形成水化膜,并在偏离等电点时带有相同电荷 2、糖类化合物都具有还原性( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。( ) 5、ATP含有3个高能磷酸键。( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。( ) 9、血糖基本来源靠食物提供。( ) 10、脂肪酸氧化称β-氧化。( ) 11、肝细胞中合成尿素的部位是线粒体。( ) 12、构成RNA的碱基有A、U、G、T。( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将激素信号传递发挥其生物() 1、下列哪个化合物是糖单位间以α-1,4糖苷键相连:( ) A、麦芽糖 B、蔗糖 C、乳糖 D、纤维素 E、香菇多糖 2、下列何物是体贮能的主要形式( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、脂酰甘油

3、蛋白质的基本结构单位是下列哪个:( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是:( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA 6、物质脱下的氢经NADH呼吸链氧化为水时,每消耗1/2分子氧可生产ATP分子数量( ) A、1B、2C、3 D、4.E、5 7、糖原分子中由一个葡萄糖经糖酵解氧化分解可净生成多少分子ATP?( ) A、1 B、2 C、3 D、4 E、5 8、下列哪个过程主要在线粒体进行( ) A、脂肪酸合成 B、胆固醇合成 C、磷脂合成 D、甘油分解 E、脂肪酸β-氧化 9、酮体生成的限速酶是( ) A、HMG-CoA还原酶 B、HMG-CoA裂解酶 C、HMG-CoA合成酶 D、磷解酶 E、β-羟丁酸脱氢酶 10、有关G-蛋白的概念错误的是( ) A、能结合GDP和GTP B、由α、β、γ基组成 C、亚基聚合时具有活性 D、可被激素受体复合物激活 E、有潜在的GTP活性 11、鸟氨酸循环中,合成尿素的第二个氮原子来自( ) A、氨基甲酰磷酸 B、NH3 C、天冬氨酸 D、天冬酰胺 E、谷氨酰胺

相关文档