文档库 最新最全的文档下载
当前位置:文档库 › 哈希表建立

哈希表建立

哈希表建立
哈希表建立

/*----------------------------------------------------------

哈希表的建立(链式解决冲突)

bluelithium 2011/12/18 15:30

哈希函数: H(k) = k % INIT_MAXSIZE;

输入样例

25

14 54 67 8 34 22 16 45 87 60 39 28 71 30 107 875 43 21 14 11 9 89 79 66 55

8

10 20 30 40 50 60 70 80

----------------------------------------------------------*/

#include

#include

#define INIT_MAXSIZE 10

typedefstructLnode

{

int data;

structLnode *next;

}Lnode, *ListLink; //建立链表结点

typedefstruct

{

intpos;

ListLinkfirstnode; //建立数组结点

}HashBox;

typedefstruct

{

HashBoxHArrary[INIT_MAXSIZE]; //建立哈希数组(哈希表的地址表头)

}HashArray;

void InitHashList(HashArray&l, int input[], int account); //建立哈希表

void VistHashList(HashArray&l); //遍历输出哈希表

int main(void)

{

int account = 0, i = 0, input[256];

HashArray l;

printf("请输入要插入哈希表元素的个数:");

scanf("%d", &account);

printf("请输入要插入哈希表的元素:");

for (i = 0; i < account; i++)

{

scanf("%d", &input[i]);

}

InitHashList(l, input, account);

printf("\n哈希表如下:\n");

VistHashList(l);

return 0;

}

void InitHashList(HashArray&l, int input[], int account) //建立哈希表

{

int i = 0, j = 0, pos = 0;

ListLink q, p;

char ch = 'A';

for (i = 0; i < INIT_MAXSIZE; i++) //初始化哈希表头

{

l.HArrary[i].pos = ch++;

l.HArrary[i].firstnode = NULL;

}

for (i = 0; i < account; i++)

{

pos = input[i] % INIT_MAXSIZE; //计算元素地址

q = new Lnode; //申请结点

q->data = input[i];

q->next = NULL;

if(l.HArrary[pos].firstnode == NULL) //判断当前地址表头是否还没有元素连入

{

l.HArrary[pos].firstnode = q;

}

else

{

p = l.HArrary[pos].firstnode;

while (p->next != NULL)

{

p = p->next; //找到链表表尾

}

p->next = q; //将要插入的结点接入表尾}

}

}

void VistHashList(HashArray&l) //输出哈希表

{

ListLink p;

int i;

for (i = 0; i < INIT_MAXSIZE; i++)

{

printf("%c. ", l.HArrary[i].pos);

p = l.HArrary[i].firstnode;

while (p != NULL)

{

printf("->%d", p->data);

p = p->next;

}

printf("\n");

}

}

哈希表实现电话号码查询系统

哈希表实现电话号码查询系统 一目的 利用《数据结构》课程的相关知识完成一个具有一定难度的综合设计题目,利用 C/C++语言进行程序设计,并规范地完成课程设计报告。通过课程设计,巩固和加深对线性表、栈、队列、字符串、树、图、查找、排序等理论知识的理解;掌握现实复杂问题的分析建模和解决方法(包括问题描述、系统分析、设计建模、代码实现、结果分析等);提高利用计算机分析解决综合性实际问题的基本能力。 二需求分析 1、程序的功能 1)读取数据 ①读取原电话本存储的电话信息。 ②读取系统随机新建电话本存储的电话信息。 2)查找信息 ①根据电话号码查询用户信息。 ②根据姓名查询用户信息。 3)存储信息 查询无记录的结果存入记录文档。 2、输出形式 1)数据文件“old.txt”存放原始电话号码数据。 2)数据文件“new.txt”存放有系统随机生成的电话号码文件。 3)数据文件“out.txt”存放未查找到的电话信息。 4)查找到相关信息时显示姓名、地址、电话号码。 3、初步测试计划 1)从数据文件“old.txt”中读入各项记录,或由系统随机产生各记录,并且把记录保存 到“new.txt”中。 2)分别采用伪随机探测再散列法和再哈希法解决冲突。 3)根据姓名查找时显示给定姓名用户的记录。 4)根据电话号码查找时显示给定电话号码的用户记录。

5)将没有查找的结果保存到结果文件Out.txt中。 6)系统以菜单界面工作,运行界面友好,演示程序以用户和计算机的对话方式进行。三概要设计 1、子函数功能 int Collision_Random(int key,int i) //伪随机数探量观测再散列法处理冲突 void Init_HashTable_by_name(string name,string phone,string address) //以姓名为关键字建立哈希表 int Collision_Rehash(int key,string str) //再哈希法处理冲突 void Init_HashTable_by_phone(string name,string phone,string address) //以电话号码为关键字建立哈希表 void Outfile(string name,int key) //在没有找到时输出未找到的记录,打开文件out.txt并将记录储存在文档中void Outhash(int key) //输出哈希表中的记录 void Rafile() //随机生成数据,并将数据保存在new.txt void Init_HashTable(char*fname,int n) //建立哈希表 int Search_by_name(string name) //根据姓名查找哈希表中的记录 int Search_by_phone(string phone) //根据电话号码查找哈希表中的记录

哈希表的设计与实现 课程设计报告

一: 需求分析 (2) 三: 详细设计(含代码分析) (4) 1.程序描述: (4) 2具体步骤 (4) 四调试分析和测试结果 (7) 五,总结 (9) 六.参考文献; (10) 七.致谢 (10) 八.附录 (11)

一: 需求分析 问题描述:设计哈希表实现电话号码查询系统。 基本要求 1、设每个记录有下列数据项:电话号码、用户名、地址 2、从键盘输入各记录,分别以电话号码和用户名为关键字建立哈希表; 3、采用再哈希法解决冲突; 4、查找并显示给定电话号码的记录; 5、查找并显示给定用户名的记录。 6、在哈希函数确定的前提下,尝试各种不同类型处理冲突的方法(至少 两种),考察平均查找长度的变化。 二: 概要设计 进入主函数,用户输入1或者2,进入分支选择结构:选1:以链式方法建立哈希表,选2:以再哈希的方法建立哈希表,然后用户输入用户信息,分别以上述确定的方法分别以用户名为检索以及以以电话号码为检索将用户信息添加到哈希表,.当添加一定量的用户信息后,用户接着输入用户名或者电话号码分别以用户名或者电话号码的方式从以用户名或电话号码为检索的哈希表查找用户信息.程序用链表的方式存储信息以及构造哈希表。 具体流程图如下所示:

三: 详细设计(含代码分析) 1.程序描述: 本程序以要求使用哈希表为工具快速快速查询学生信息,学生信息包括电话号码、用户名、地址;用结构体存储 struct node { string phone; //电话号码 string name; //姓名 string address;//地址 node *next; //链接下一个地址的指针 }; 2具体步骤 1. 要求主要用在哈希法解决冲突,并且至少尝试用两种方法解决冲突,定义两个指针数组存储信息node *infor_phone[MAX]; node *infor_name[MAX];前者以电话号码为关键字检索哈希表中的信息,后者以姓名为关键字检索哈希表中的信息 用链式法和再哈希法解决冲突: int hash(string key) //以姓名或者电话号码的前四位运算结果作为哈{ //希码 int result=1,cur=0,i; if(key.size()<=4) i=key.size()-1; else i=4; for(;i>=0;i--) { cur=key[i]-'0'; result=result*9+cur; } result%=(MOD); return result;

哈希表查找的设计

哈希表查找的设计 一.问题描述: 哈希表查找的设计:设哈希表长为20,用除留余数法构造一个哈希函数,以开放定址法中的线性探测再散列法作为解决冲突的方法,编程实现哈希表查找、插入和建立算法。二.需求分析: 程序可实现用户与计算机的交互过程。在计算机显示提示信息后,可由用户键入运算命令以实现对应的功能,包含数据的录入、查找、删除、显示等功能。 本程序旨在实现哈希函数的构造与处理存储冲突,因而指定哈希表存储的数据类型为简单的整型数字,在实用性上还有所欠缺。但根据用户需求的变化,可以对程序的基本数据类型进行改造,以实现更为丰富的功能,进而体现哈希表在查找数据时的优越性。 三.算法思想: 在设定哈希表的抽象数据类型时,要有查找数据元素的操作。另外,插入操作和删除操作也要用到查找数据元素操作,以查看该数据元素是否存在,因此可以设计查找元素操作包括插入和删除操作的查找。 因此,查找操作就有两种情况:一种情况是插入操作时寻找空闲单元的查找;另一种情况是在查找和删除操作时寻找该元素是否在哈希表中已存在的查找。插入操作时寻找空闲单元查找的特征是哈希表中不存在该对象,设计此时查找函数返回该空闲单元位置的“正”值;查找和删除操作时寻找该元素是否在哈希表中已存在的特征是哈希表中已存在该数据元素,设计此时查找函数返回该数据单元位置的“负”值。进而执行后续操作。 为了区分哈希表中每一个表元素的当前状态,为每一个表元素设置一个“标志”定为tag。tag=0表示该元素为空;tag=1表示该元素以存放有数据元素;tag=-1表示该元素中存放的数据元素已被删除。判断当tag为0或-1时都可以进行插入操作。

哈希表设计-数据结构课程设计

实习6、哈希表设计 一、需求分析 1. 问题描述 针对某个集体(比如你所在的班级)中的“人名”设计一个哈希表,使得平均查找长度均不超过R,完成相应的建表和查表顺序。 2. 基本要求 假设人名为中国人姓名的汉语拼音形式。待填入哈希表的人名共有30个,取平均查找长度的上限为2。哈希函数用除留余数法构造,用伪随机探测再散列法处理冲突。 3. 测试数据 取读者周围较熟悉的30个人的姓名。 4. 实现提示 如果随机数自行构造,则应首先调整好随机函数,使其分布均匀。人名的长度均不超过19个字符(最长的人名如:庄双双(Zhuang Shuangshuang))。字符的取码方法可直接利用C 语言中的toascii函数,并可先对过长的人名先作折叠处理。 二、概要设计 ADT Hash { 数据对象D:D是具有相同特征的数据元素的集合。各数据元素均含有类型相同,可唯一标识数据元素的关键字。 数据关系R:数据元素同属一个集合。 InitNameTable() 操作结果:初始化姓名表。 CreateHashTable() 操作结果:建立哈希表。 DisplayNameTable() 操作结果:显示姓名表。 DisplayHashTable() 操作结果:显示哈希表。 FindName() 操作结果:查找姓名。 }ADT Hash 三、详细设计(源代码) (使用C语言) #include #include//time用到的头文件 #include//随机数用到的头文件 #include//toascii()用到的头文件 #include//查找姓名时比较用的头文件 #define HASH_LEN 50//哈希表的长度 #define P 47//小于哈希表长度的P #define NAME_LEN 30//姓名表的长度 typedef struct {//姓名表 char *py; //名字的拼音 int m; //拼音所对应的 }NAME; NAME NameTable[HASH_LEN]; //全局定义姓名表 typedef struct {//哈希表 char *py; //名字的拼音

哈希表查询设计及实现

/* (1)设计哈希表,该表应能够容纳50个英文单词。 (2)对该哈希表进行查询,实现对特定单词的快速查询,并显示经过的节点内容 已经发到你邮箱里了enochwills@https://www.wendangku.net/doc/b111221989.html, */ #include #include #include #include #include #define szNAME 80 #define HASH_ROOT 47 /*用于计算哈希地址的随机数*/ #define szHASH 50 /*哈希表总长度*/ #define POPULATION 30 /*学生总数*/ /*哈希表结构体*/ struct THash { int key; /*钥匙码*/ char name[10]; /*姓名*/ int depth; /*检索深度*/ }; /*根据钥匙码和哈希根计算哈希地址*/ int GetHashAddress(int key, int root) { return key % root; }/*end GetHashAddress*/ /*冲突地址计算,如果发现地址冲突,则用当前地址和钥匙码、哈希根重新生成一个新地址*/ int GetConflictAddress(int key, int address, int root) { int addr = address + key % 5 + 1; return addr % root; }/*end GetConflictAddress*/ /*根据字符串生成哈希钥匙码,这里的方法是将串内所有字符以数值形式求累加和*/ int CreateKey(char * name) { int key = 0; unsigned char * n = (unsigned char *)name; while(*n) key += *n++; return key; }/*end CreateKey*/ /*输入一个名字,并返回哈希钥匙码*/ int GetName(char * name) { scanf("%s", name); return CreateKey(name); }/*end CreateKey*/ /*根据学生人数、长度和哈希根构造哈希表*/ struct THash * CreateNames(int size, int root, int population) { int i =0, key = 0, addr = 0, depth = 0; char name[10]; struct THash * h = 0, *hash = 0; /*哈希根和长度不能太小*/ if(size < root || root < 2) return 0; /*根据哈希表长度构造一个空的哈希表*/ hash = (struct THash *)malloc(sizeof(struct THash) * size); /*将整个表清空*/ memset(hash, 0, sizeof(struct THash) * size); for(i = 0; i < population; i++) { /*首先产生一个随机的学生姓名,并根据姓名计算哈希钥匙码,再根据钥匙码计算地址*/ key = GetName(name); addr = GetHashAddress(key, root); h = hash + addr; if (h->depth == 0) { /*如果当前哈希地址没有被占用,则存入数据*/ h->key = key; strcpy(h->name , name); h->depth ++; continue; }/*end if*/ /*如果哈希地址已经被占用了,就是说有冲突,则寻找一个新地址,直到没有被占用*/ depth = 0; while(h->depth ) { addr = GetConflictAddress(key, addr, root); h = hash + addr; depth ++; }/*end while*/ /*按照新地址存放数据,同时记录检索深度*/ h->key = key; strcpy(h->name , name); h->depth = depth + 1; }/*next*/ return hash; }/*end CreateNames*/ /*在哈希表中以特定哈希根查找一个学生的记录*/ struct THash * Lookup(struct THash * hash, char * name, int root) { int key = 0, addr = 0; struct THash * h = 0; /*不接受空表和空名称*/ if(!name || !hash) return 0; key = CreateKey(name); addr = GetHashAddress(key, root); h = hash + addr; /*如果结果不正确表示按照冲突规则继续寻找*/ while(strcmp(h->name , name)) { addr = GetConflictAddress(key, addr, root); h = hash + addr; if(h->key == 0) return 0; }/*end while*/ return hash + addr; }/*end Lookup*/ /*根据一条哈希表记录打印该记录的学生信息*/ void Print(struct THash * record) { if (!record) { printf("【查无此人】\n"); return ; }/*end if*/ if(record->depth) printf("【钥匙码】%04d\t【姓名】%s\t【检索深度】%d\n", record->key, record->name, record->depth ); else printf("【空记录】\n"); /*end if*/ }/*end Print*/ /*打印学生花名册*/ void Display(struct THash * hash, int size) { struct THash * h = 0; if (!hash || size < 1) return ; printf("学生花名册:\n"); printf("--------------------\n"); for(h = hash; h < hash + size; h++) { printf("【地址】%d\t", h - hash); Print(h); }/*next*/ printf("--------------------\n"); }/*end Display*/ /*主函数,程序入口*/ int main(void) { /*哈希表变量声明*/ struct THash * hash = 0, * h = 0; int cmd = 0; /*命令*/ char name[10]; /*学生姓名*/ /*生成30个学生用的哈希表*/ hash =

哈希表应用

附件4: 北京理工大学珠海学院 课程设计任务书 2010 ~2011学年第二学期 学生姓名:专业班级: 指导教师:工作部门: 一、课程设计题目 哈希表应用 二、课程设计内容(含技术指标) 【问题描述】 利用哈希表进行存储。 【任务要求】 任务要求:针对一组数据进行初始化哈希表,可以进行显示哈希表,查找元素,插入元素,删除元素,退出程序操作。 设计思想:哈希函数用除留余数法构造,用线性探测再散列处理冲突。 设计目的:实现哈希表的综合操作 简体中文控制台界面:用户可以进行创建哈希表,显示哈希表,查找元素,插入元素,删除元素。 显示元素:显示已经创建的哈希表。 查找元素:查找哈希表中的元素,分为查找成功和查找不成功。 插入元素:在哈希表中,插入一个元素,分为插入成功和失败。 删除元素:在已有的数据中,删除一个元素。 退出系统:退出程序。 【测试数据】 自行设定,注意边界等特殊情况。

三、进度安排 1.初步设计:写出初步设计思路,进行修改完善,并进行初步设计。 2.详细设计:根据确定的设计思想,进一步完善初步设计内容,按要求编写出数据结构类型定义、各算法程序、主函数。编译分析调试错误。 3.测试分析:设计几组数据进行测试分析,查找存在的设计缺陷,完善程序。 4.报告撰写:根据上面设计过程和结果,按照要求写出设计报告。 5.答辩考核验收:教师按组(人)检查验收,并提出相关问题,以便检验设计完成情况。 四、基本要求 1.在设计时,要严格按照题意要求独立进行设计,不能随意更改。若确因条件所限,必须要改变课题要求时,应在征得指导教师同意的前提下进行。 2.在设计完成后,应当场运行和答辩,由指导教师验收,只有在验收合格后才能算设计部分的结束。 3.设计结束后要写出课程设计报告,以作为整个课程设计评分的书面依据和存档材料。设计报告以规定格式的电子文档书写、打印并装订,报告格式严格按照模板要求撰写,排版及图、表要清楚、工整。 从总体来说,所设计的程序应该全部符合要求,问题模型、求解算法以及存储结构清晰;具有友好、清晰的界面;设计要包括所需要的辅助程序,如必要的数据输入、输出、显示和错误检测功能;操作使用要简便;程序的整体结构及局部结构要合理;设计报告要符合规范。 课程负责人签名: 年月日

散列表(哈希表)

1. 引言 哈希表(Hash Table)的应用近两年才在NOI(全国青少年信息学奥林匹克竞赛)中出现,作为一种高效的数据结构,它正在竞赛中发挥着越来越重要的作用。 哈希表最大的优点,就是把数据的存储和查找消耗的时间大大降低,几乎可以看成是常数时间;而代价仅仅是消耗比较多的内存。然而在当前可利用内存越来越多的情况下,用空间换时间的做法是值得的。另外,编码比较容易也是它的特点之一。 哈希表又叫做散列表,分为“开散列” 和“闭散列”。考虑到竞赛时多数人通常避免使用动态存储结构,本文中的“哈希表”仅指“闭散列”,关于其他方面读者可参阅其他书籍。 2. 基础操作 2.1 基本原理 我们使用一个下标范围比较大的数组来存储元素。可以设计一个函数(哈希函数,也叫做散列函数),使得每个元素的关键字都与一个函数值(即数组下标)相对应,于是用这个数组单元来存储这个元素;也可以简单的理解为,按照关键字为每一个元素“分类”,然后将这个元素存储在相应“类”所对应的地方。 但是,不能够保证每个元素的关键字与函数值是一一对应的,因此极有可能出现对于不同的元素,却计算出了相同的函数值,这样就产生了“冲突”,换句话说,就是把不同的元素分在了相同的“类”之中。后面我们将看到一种解决“冲突”的简便做法。 总的来说,“直接定址”与“解决冲突”是哈希表的两大特点。 2.2 函数构造 构造函数的常用方法(下面为了叙述简洁,设h(k) 表示关键字为k 的元素所对应的函数值): a) 除余法: 选择一个适当的正整数p ,令h(k ) = k mod p ,这里,p 如果选取的是比较大

的素数,效果比较好。而且此法非常容易实现,因此是最常用的方法。 b) 数字选择法: 如果关键字的位数比较多,超过长整型范围而无法直接运算,可以选择其中数字分布比较均匀的若干位,所组成的新的值作为关键字或者直接作为函数值。 2.3 冲突处理 线性重新散列技术易于实现且可以较好的达到目的。令数组元素个数为S ,则当h(k)已经存储了元素的时候,依次探查(h(k)+i) mod S , i=1,2,3…… ,直到找到空的存储单元为止(或者从头到尾扫描一圈仍未发现空单元,这就是哈希表已经满了,发生了错误。当然这是可以通过扩大数组范围避免的)。 2.4 支持运算 哈希表支持的运算主要有:初始化(makenull)、哈希函数值的运算(h(x))、插入元素(i nsert)、查找元素(member)。设插入的元素的关键字为x ,A 为存储的数组。初始化比较容易,例如: const empty=maxlongint; // 用非常大的整数代表这个位置没有存储元素 p=9997; // 表的大小 procedure makenull; var i:integer; begin for i:=0 to p-1 do A[i]:=empty; End; 哈希函数值的运算根据函数的不同而变化,例如除余法的一个例子:

数据结构哈希表设计

一、问题描述 针对某个集体(比如你所在的班级)中的“人名”设计一个哈希表,使得平均查找长度均不超过R,完成相应的建表和查表顺序。 二、基本要求 假设人名为中国人姓名的汉语拼音形式。待填入哈希表的人名共有30个,取平均查找长度的上限为2。哈希函数用除留余数法构造,用伪随机探测再散列法处理冲突。 三、概要设计 1.构造结构体:typedef struct{}; 2.姓名表的初始化:void InitNameTable(); 3.建立哈希表:void CreateHashTable(); 4.显示姓名表:void DisplayNameTable(); 5.姓名查找:void FindName(); 6.主函数:void main() ; 四、详细设计 1.姓名表的初始化 void InitNameTable() { NameTable[0].py="louyuhong"; NameTable[1].py="shenyinghong"; NameTable[2].py="wangqi"; NameTable[3].py="zhuxiaotong"; NameTable[4].py="zhataotao"; NameTable[5].py="chenbinjie"; NameTable[6].py="chenchaoqun"; NameTable[7].py="chencheng"; NameTable[8].py="chenjie"; NameTable[9].py="chenweida";

NameTable[10].py="shanjianfeng"; NameTable[11].py="fangyixin"; NameTable[12].py="houfeng"; NameTable[13].py="hujiaming"; NameTable[14].py="huangjiaju"; NameTable[15].py="huanqingsong"; NameTable[16].py="jianghe"; NameTable[17].py="jinleicheng"; NameTable[18].py="libiao"; NameTable[19].py="liqi"; NameTable[20].py="lirenhua"; NameTable[21].py="liukai"; NameTable[22].py="louhanglin"; NameTable[23].py="luchaoming"; NameTable[24].py="luqiuwei"; NameTable[25].py="panhaijian"; NameTable[26].py="shuxiang"; NameTable[27].py="suxiaolei"; NameTable[28].py="sunyubo"; NameTable[29].py="wangwei"; for (i=0;i

哈希表的查找 2

华北电力大学 实验报告 实验名称哈希表的设计 课程名称算法与数据结构实验 专业班级:学生姓名: 学号:成绩: 指导教师: 实验日期:

一、实验目的及要求 1.内容描述 设计哈希表实现电话号码查询系统: 1)设每个记录有如下数据项:电话号码、用户名、地址; 2)从键盘输入各个记录,以电话号码为关键字建立哈希表(至少要有12个以上的记录,哈希表的哈希表的长度为8); 3)用链地址法解决冲突; 4)显示建立好的哈希表,并且对其进行查找,删除和插入给定关键字值得记录。 二、所用仪器、设备 VC++ 6.0环境 三、实验说明 1.采用除留余数法进行哈希表的散列,即以电话号码作为主关键字,将电话号码的11位相加,按照模7取余; 2.解决冲突用链地址法。 3.将用户信息包装在结构体节点中 struct node //建节点 { char name[8],address[20]; char num[11]; node * next; }; 4.对于用户信息的查找,这里运用了以姓名和电话号码两种查找标准进行查找,链地址的存在使得冲突消除,同时查找实现。 5.清空的实现是设立了一个清空函数,是哈希表的所有成员内容为空,在主函数中进行调用,实现全部信息删除功能。 四、实验源代码 #include using namespace std; #include "string.h" #include "fstream" #define NULL 0 unsigned int key; unsigned int key2; int *p; struct node //建节点 { char name[8],address[20]; char num[11]; node * next; };

哈希表及其应用-课程设计

课程设计题目哈希表及其应用 教学院计算机学院 专业 班级 姓名 指导教师 年月日

课程设计任务书 2010 ~2010 学年第 1 学期 一、课程设计题目哈希表及其应用 二、课程设计内容 建立一个小型信息管理系统(可以是图书、人事、学生、物资、商品等任何信息管理系统)。要求: 1.使用哈希查找表存储信息; 2.实现查找、插入、删除、统计、输出等功能; 三、进度安排 1.初步完成总体设计,搭好框架; 2.完成最低要求:尝试使用多种哈希函数和冲突解决方法,并通过实际运行测试给出自己的评价 四、基本要求 1.界面友好,函数功能要划分好 2.程序要加必要的注释 3.要提供程序测试方案 教研室主任签名: 年月日

1 概述 (4) 2 设计目的 (4) 3 设计功能说明 (4) 4 详细设计说明 (5) 5 流程图 (5) 6 程序代码 (6) 7 程序运行结果 (15) 8 总结 (19) 参考文献 (19) 成绩评定表 (20)

数据结构是一门理论性强、思维抽象、难度较大的课程,是基础课和专业课之间的桥梁,只有进行实际操作,将理论应用于实际中,才能确实掌握书中的知识点。通过课程设计,不仅可以加深学生对数据结构基本概念的了解,巩固学习成果,还能够提高实际动手能力。为学生后继课程的学习打下良好的基础。 2 设计目的 《数据结构》课程设计是在教学实践基础上进行的一次大型实验,也是对该课程所学理论知识的深化和提高。因此,要求学生能综合应用所学知识,设计与制造出具有较复杂功能的应用系统,并且在实验的基本技能方面上进行一次全面的训练。通过程序的编译掌握对程序的调试方法及思想,并且让学生学会使用一些编程技巧。促使学生养成良好的编程习惯。 1.使学生能够较全面地巩固和应用课堂中所学的的基本理论和程序设计方法,能够较熟练地完成程序的设计和调试。 2.培养学生综合运用所学知识独立完成程序课题的能力。 3.培养学生勇于探索、严谨推理、实事求是、有错必改,用实践来检验理论,全方位考虑问题等科学技术人员应具有的素质。 4.提高学生对工作认真负责、一丝不苟,对同学团结友爱,协作攻关的基本素质。 5.培养学生从资料文献、科学实验中获得知识的能力,提高学生从别人经验中找到解决问题的新途径的悟性,初步培养工程意识和创新能力。 6.对学生掌握知识的深度、运用理论去处理问题的能力、实验能力、课程设计能力、书面及口头表达能力进行考核。 3 设计功能分析 本设计的功能如下: 1、利用哈希函数来实现一个小型信息管理系统,其中信息包含用户名,地址,电话等。 2、能添加用户信息,并能保存该信息。 3、查询管理系统中的信息:可通过姓名查找,也可通过电话查找等两种方式。

哈希表查找成功和不成功的算法

哈希表查找不成功怎么计算? 解答:先建好表,然后可以算出每个位置不成功时的比较次数之和,再除以表空间个数! 例如:散列函数为hash(x)=x MOD 13,用线性探测,建立了哈希表之后,如何求查找不成功时的平均查找长度!? 地址:0 1 2 3 4 5 6 7 8 9 10 11 12 数据: 39 1228154244 625-- 36- 38 成功次数: 1 3 1 2 2 1 191 1 不成功次数:98 7 65 4 3 2 1 1 2 110 查找成功时的平均查找长度:ASL=(1+3+1+2+2+1+1+9+1+1)/10 =2.2 查找不成功时的平均查找长度:ASL=(9+8+7+6+5+4+3+2+1+1+2+1+10)/13=4.54 说明: 第n个位置不成功时的比较次数为,第n个位置到第1个没有数据位置的距离。至少要查询多少次才能确认没有这个值。 (1)查询hash(x)=0,至少要查询9次遇到表值为空的时候,才能确认查询失 败。 (2)查询hash(x)=1,至少要查询8次遇到表值为空的时候,才能确认查询失 败。 (3)查询hash(x)=2,至少要查询7次遇到表值为空的时候,才能确认查询失 败。 (4)查询hash(x)=3,至少要查询6次遇到表值为空的时候,才能确认查询失 败。 (5)查询hash(x)=4,至少要查询5次遇到表值为空的时候,才能确认查询失 败。 (6)查询hash(x)=5,至少要查询4次遇到表值为空的时候,才能确认查询失 败。

(7)查询hash(x)=6,至少要查询3次遇到表值为空的时候,才能确认查询失败。 (8)查询hash(x)=7,至少要查询2次遇到表值为空的时候,才能确认查询失败。 (9)查询hash(x)=8,至少要查询1次遇到表值为空的时候,才能确认查询失败。 (10)查询hash(x)=9,至少要查询1次遇到表值为空的时候,才能确认查询失败。 (11)查询hash(x)=10,至少要查询2次遇到表值为空的时候,才能确认查询失败。 (12)查询hash(x)=11,至少要查询1次遇到表值为空的时候,才能确认查询失败。 (13)查询hash(x)=12,至少要查询10次遇到表值为空(循环查询顺序表)的时候,才能确认查询失败。 下面看下2010年2010年全国硕士研究生入学统一考试计算机科学与技术学科联考计算机学科专业基础综合试题中一个考哈希表的题。 Question1: 将关键字序列(7、8、30、11、18、9、14)散列存储到散列表中。散列表的存储空间是一个下标从0开始的一维数组,散列函数为:H(key) = (keyx3) MOD 7,处理冲突采用线性探测再散列法,要求装填(载)因子为0.7。 (1) 请画出所构造的散列表。 (2) 分别计算等概率情况下查找成功和查找不成功的平均查找长度。 Ans: (1).首先明确一个概念装载因子,装载因子是指所有关键子填充哈希表后饱和的程度,它等于关键字总数/哈希表的长度。根据题意,我们可以确定哈希表的长度为 L = 7/0.7 = 10;因此此题需要构建的哈希表是下标为0~9的一维数组。根据散列函数可以得到如下散列函数值表。 H(Key) = (keyx3) MOD 7, 例如key=7时, H(7) = (7x3)%7 = 21%7=0,其他关键字同理。

Java哈希表及其应用

Java哈希表及其应用 哈希表也称为散列表,是用来存储群体对象的集合类结构。 什么是哈希表 数组和向量都可以存储对象,但对象的存储位置是随机的,也就是说对象本身与其存储位置之间没有必然的联系。当要查找一个对象时,只能以某种顺序(如顺序查找或二分查找)与各个元素进行比较,当数组或向量中的元素数量很多时,查找的效率会明显的降低。 一种有效的存储方式,是不与其他元素进行比较,一次存取便能得到所需要的记录。这就需要在对象的存储位置和对象的关键属性(设为k)之间建立一个特定的对应关系(设为f),使每个对象与一个唯一的存储位置相对应。在查找时,只要根据待查对象的关键属性k 计算f(k)的值即可。如果此对象在集合中,则必定在存储位置f(k)上,因此不需要与集合中的其他元素进行比较。称这种对应关系f 为哈希(hash)方法,按照这种思想建立的表为哈希表。 Java 使用哈希表类(Hashtable)来实现哈希表,以下是与哈希表相关的一些概念: ?容量(Capacity):Hashtable 的容量不是固定的,随对象的加入其容量也可以自动增长。?关键字(Key):每个存储的对象都需要有一个关键字,key 可以是对象本身,也可以是对象的一部分(如某个属性)。要求在一个Hashtable 中的所有关键字都是唯一的。 ?哈希码(Hash Code):若要将对象存储到Hashtable 上,就需要将其关键字key 映射到一个整型数据,成为key 的哈希码。 ?项(Item):Hashtable 中的每一项都有两个域,分别是关键字域key 和值域value(存储的对象)。Key 和value 都可以是任意的Object 类型的对象,但不能为空。 ?装填因子(Load Factor):装填因子表示为哈希表的装满程度,其值等于元素数比上哈希表的长度。 哈希表的使用 哈希表类主要有三种形式的构造方法: Hashtable(); //默认构造函数,初始容量为101,最大填充因子0.75 Hashtable(int capacity);

数据结构哈希查找源代码

数据结构哈希查找 源代码: #include #include using namespace std; #define SUCCESS 1; #define UNSUCCESS 0; #define NULLKEY -1; #define TableLength 13; #define p 13;// H(key)=key % p typedef int T; template struct ElemType { T key;//关键字 /* //其它 .... */ }; template class LHSearch { private: ElemType *HT; //开放定址哈希表 int count; //当前数据元素个数 int size; //哈希表长度 public: LHSearch(); // ~LHSearch(); // void InitHashTable(int n);// int Hash(T key); //计算哈希地址 void Collision(int &s);//冲突,计算下一个地址 int Search(T key,int &s);//哈希查找 int Insert(ElemType e); //元素插入 void Display(); //显示哈希表 }; template LHSearch::LHSearch()

{ HT=NULL; size=0; count=0; } template LHSearch::~LHSearch() { delete [] HT; count=0; } template int LHSearch::Hash(T key) {//由哈希函数求哈希地址 return key%p; } template void LHSearch::Collision(int &s) {//开放定址法解决冲突 s=s++; } template int LHSearch::Search(T key,int &s) {//查找,找到返回 //int s; s=Hash(key); while((HT[s].key!=-1) && (key!=HT[s].key)) Collision(s); if(HT[s].key==key) return 1; else return 0; } template int LHSearch::Insert(ElemType e) {//插入元素 int s; if(count==size) { cout<<"表满,不能插入!"<

哈希表

哈希表(hashtable) 注:哈希表为1.24及以上版本才有的功能,以下版本是无法使用的说~ (在1.24之前,游戏缓存(ganecache)+return bug起到了相同的作用,124之后它们即被哈希表取代, 并且return bug在1,24之后,被修复了) 本演示侧重于hashtable,仅仅会顺带提到hashtable与gamecache两种方式的等价代码转换~ ☆哈希表的特点与优势~ 散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。 当然这个概念可能过于深奥,我们不必了解那么深入,只需要了解它的功能以及如何使用~(当然有能力的童鞋,推荐去百度寻找详解) 先简单介绍下好了~hashtable就相当于一个存储数据的仓库,其具有容量大以及存储速度稳定的特点~ 使用hashtable与GetHandleId函数,能够非常轻易地实现一个技能的多人无冲突使用~ ☆先来认识下这货~ 首先,我们先来声明一个哈希表对象~ 由于哈希表通常起到全局范围内的数据存储以及传递~ 所以我们绝大多数情况(和所有基本没区别)都是将其作为一个全局变量来声明(几乎没有局部变量的 哈希表,只有在某些特殊需求下,才会罕见地出现;如果你明确知道自己创建局部hashtable的目的,并 且知道如何妥善掌控,那么是毫无问题的) jass globals hashtable ht=InitHashtable() //函数InitHashtable,无参数,返回一个新建的哈希表对象 //在向一个哈希表中存入数据之前,必须先通过此函数创建哈希表,否则无效(好比你无法往一个根本 不存在的容器中倒水一样的说~) endglobals 很简单,这样就创建了一个哈希表,你可以在地图中的任何地方(没错,任何地方)访问它~ Tips: (显式声明globals块(也就是上面)的方式,其实是Vjass才有的功能~如果你的编辑器UI没有这个,请 在T的变量管理器中,创建一个哈希表对象,但别忘了加上udg_前缀以及调用InitHashtable函数进行初 始化~) 然后我们可以试着,在其中存并且读取一些数据~ jass function Trig_Init_Actions takes nothing returns nothing local integer i=5 local integer ret//两个整数变量

数据结构课程设计--哈希表实验报告

福建工程学院 课程设计 课程:算法与数据结构 题目:哈希表 专业:网络工程 班级:xxxxxx班 座号:xxxxxxxxxxxx 姓名:xxxxxxx 2011年12 月31 日 实验题目:哈希表 一、要解决的问题 针对同班同学信息设计一个通讯录,学生信息有姓名,学号,电话号码等。以学生姓名为关键字设计哈希表,并完成相应的建表和查表程序。 基本要求:姓名以汉语拼音形式,待填入哈希表的人名约30个,自行设计哈希函数,用线性探测再散列法或链地址法处理冲突;在查找的过程中给出比较的次数。完成按姓名查询的操作。 运行的环境:Microsoft Visual C++ 6.0 二、算法基本思想描述 设计一个哈希表(哈希表内的元素为自定义的结构体)用来存放待填入的30个人名,人名为中国姓名的汉语拼音形式,用除留余数法构造哈希函数,用线性探查法解决哈希冲突。建立哈希表并且将其显示出来。通过要查找的关键字用哈希函数计算出相应的地址来查找人名。通过循环语句调用数组中保存的数据来显示哈希表。 三、设计 1、数据结构的设计和说明 (1)结构体的定义 typedef struct //记录 { NA name; NA xuehao; NA tel; }Record;

{ Record *elem[HASHSIZE]; //数据元素存储基址 int count; //当前数据元素个数 int size; //当前容量 }HashTable; 哈希表元素的定义,包含数据元素存储基址、数据元素个数、当前容量。 2、关键算法的设计 (1)姓名的折叠处理 long fold(NA s) //人名的折叠处理 { char *p; long sum=0; NA ss; strcpy(ss,s); //复制字符串,不改变原字符串的大小写 strupr(ss); //将字符串ss转换为大写形式 p=ss; while(*p!='\0') sum+=*p++; printf("\nsum====================%d",sum); return sum; } (2)建立哈希表 1、用除留余数法构建哈希函数 2、用线性探测再散列法处理冲突 int Hash1(NA str) //哈希函数 { long n; int m; n=fold(str); //先将用户名进行折叠处理 m=n%HASHSIZE; //折叠处理后的数,用除留余数法构造哈希函数 return m; //并返回模值 }Status collision(int p,int c) //冲突处理函数,采用二次探测再散列法解决冲突{ int i,q; i=c/2+1; while(i=0) return q; else i=c/2+1; } else{ q=(p-i*i)%HASHSIZE; c++;

相关文档