文档库 最新最全的文档下载
当前位置:文档库 › 局部阻力损失实验报告解析

局部阻力损失实验报告解析

局部阻力损失实验报告解析
局部阻力损失实验报告解析

局部阻力损失实验

前言:

工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。

在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。

摘要:

本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。进而加深对局部阻力损失的理解。 三、实验原理

写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得:

1.突然扩大

采用三点法计算,下式中12

f h -由

23

f h -按流长比例换算得出。

实测 2

21

12

2

1212[()][()]22je f p p h Z Z h g

g

αυαυγ

γ

-=+

+

-+

+

+

2

1/

2e je h g

αυζ=

理论 212

(1)e A

A ζ'=-

2

,

12je e

h g

αυζ'=

2.突然缩小

采用四点法计算,下式中B 点为突缩点,4f B h -由34f h -换算得出,5fB h -由56

f h

-换算得出。

实测 2

2

5

54

4

4455[()][()]22js f B fB p p h Z h Z h g

g

αυαυγ

γ

--=+

+

--+

+

+

2

5/

2s js h g

αυζ=

经验公式,计算中的速度应取小管径中的速度值。

4

3

2

55553333' 1.2255 2.2096 1.38590.11670.5

s A A A A A A A A ζ????????

=-+--+ ? ? ? ?????????

当53/0.1A A <时,可简化为5

3

0.5(1)s A A ζ'=-

25

2js s

h g

αυζ''=

实验装置

本实验装置如图所示。

局部阻力系数实验装置图

1.自循环供水器;

2.实验台;

3.可控硅无级调速器;

4. 恒压水箱;

5. 溢流板;

6.稳水孔板;

7.突然扩大实验管段;

8.测压计;

9. 滑动测量尺;10. 测压管;11.突然收缩实验管段;12.流量调节阀;

实验管道由小→大→小三种已知管径的管道组成,共设有六个测压孔,测孔1—3和2—5分别测量突扩和突缩的局部阻力系数。其中测孔1位于突扩界面处,用以测量小管出口端压强值。 实验方法与步骤

1.测记实验有关常数。

2.打开电源开关,使恒压水箱充水,排除实验管道中的滞留气体。

3.打开出水阀至最大开度,待流量稳定后,测记测压管读数,同时用体积法测记流量。

4.改变出水阀开度3~4次,分别测记测压管读数及流量。 5.实验完成。 实验成果及要求

1.记录、计算有关常数: 实验装置台号No 4

D1=D5=1.4cm D2=D3=D4=2.0cm L1-2=20.0cm L2-3=19.8cm L3-b=6.5cm Lb-4=3.5cm L4-5=20.0cm

2

12

(1)e A A ζ'=-

= 0.2601,

432

55553333' 1.2255 2.2096 1.38590.11670.5

s A A A A A A A A ζ????????

=-+--+ ? ? ? ?????????

=0.2994

注:由于A5/A4=0.49>0.1,故采用以上经验公式计算值

2.整理记录、计算表。

3.扩张段 ζe/ζe 理论=0.2216/0.2601=85.19% 收缩段 ζs/ζs 理论=0.2453/0.2994=83.27%

实验分析与讨论

1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系。

实验结果如下图:

由式 g v h j 22

ζ=

及 )(21d d f =ζ

表明影响局部阻力损失的因素是v 和21d d ,由于有 突扩:221)1(A A e -=ζ 突缩:)1(5.021A A s -=ζ 则有 212

212115

.0)

1()1(5.0A A A A A A K e s -=--==

ζζ 当 5.021

时,突然扩大的水头损失比相应突然收缩的要大。在本实验中D1/D2=0.7,

突扩损失与突缩损失应接近,即hjs/hje=1,说明实验结果与理论推到相一致。从而我们也可得到,当21d d 接近于1时,突扩的水流形态接近于逐渐扩大管的流动,因而阻力损失显著减小。

2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失?

流动演示仪 I-VII 型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十余种内、外流的流动图谱。据此对局部阻力损失的机理分析如下:

从显示的图谱可见,凡流道边界突变处,形成大小不一的旋涡区。旋涡是产

生损失的主要根源。由于水质点的无规则运动和激烈的紊动,相互摩擦,便消耗了部分水体的自储能量。另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。这样就造成了局部阻力损失。

从流动仪可见,突扩段的旋涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,旋涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。而突缩段的旋涡在收缩断面前后均有。突缩前仅在死角区有小旋涡,且强度较小,而突缩的后部产生了紊动度较大的旋涡环区。可见产生突缩水头损失的主要部位是在突缩断面后。

从以上分析知。为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或尽量接近流线型,以避免旋涡的形成,或使旋涡区尽可能小。如欲减小本实验管道的局部阻力,就应减小管径比以降低突扩段的旋涡区域;或把突缩进口的直角改为园角,以消除突缩断面后的旋涡环带,可使突缩局部阻力系数减小到原来的1/2~1/10。突然收缩实验管道,使用年份长后,实测阻力系数减小,主要原因也在这里。

3.现备有一段长度及联接方式与调节阀(图8.1)相同,内径与实验管道相同的直管段,如何用两点法测量阀门的局部阻力系数?

两点法是测量局部阻力系数的简便有效办法。它只需在被测流段(如阀门)前后的直管段长度大于(20~40)d 的断面处,各布置一个测压点便可。先测出整个被测流段上的总水头损失21-w h ,有

212121--++???++???++=f ji jn j j w h h h h h h

式中:ji h — 分别为两测点间互不干扰的各个局部阻力段的阻力损失;

jn h — 被测段的局部阻力损失; 21-f h — 两测点间的沿程水头损失。

然后,把被测段(如阀门)换上一段长度及联接方法与被测段相同,内径与

管道相同的直管段,再测出相同流量下的总水头损失'

21-w h ,同样有

2112121'---++???++=f ji j j w h h h h h

所以 '2121---=w w jn h h h

☆4.实验测得突缩管在不同管径比时的局部阻力系数(510e R >)如下:

利用Excel 中最小二乘法线性拟合可以得到: ξ=-0.6(d2/d1)+0.64

其中R2 = 0.9626,说明拟合效果很好。

若采用A2/A1为参数,则结果如下:

ξ=0.5(1-(A2/A1))

显然,采用A2/A1作为变量推导出的公式更符合实际情况。

理论推导过程如下:

由实验数据求得等差)/(12d d x x =?令相应的差分)(ζ=?y y 令,其一、二级差

二级差分y 2?为常数,故此经验公式类型为:

2210x b x b b y ++= (1)

(2)用最小二乘法确定系数

流体阻力实验报告

. 北京化工大学化工原理实验报告 实验名称:流体阻力实验 班级:化工11 姓名: 学号:2011011 序号: 同组人: 设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第套实验日期:2013-11-4

一、实验摘要 本实验使用104实验室UPRS Ⅲ型第7套实验设备,测量了水流经不锈钢管、镀锌管、突扩管、阀门、层流管的阻力损失。确定了摩擦系数和局部阻力系数的变化规律和影响因素。该实验提供了一种测量实际管路阻力系数的方法,其结果可为管路实际应用和工艺设计提供重要的参考。 关键词:流量,压降,雷诺数,摩擦系数,局部阻力系数 二、实验目的 1、测量湍流直管道的阻力,确定摩擦阻力系数。 2、测量湍流局部管道的阻力,确定局部阻力系数。 3、测量层流直管道的阻力,确定摩擦阻力系数。 三、实验原理 1、直管道和局部管道阻力损失e f h u p gZ u p gZ h +++-++=)2()2(2 2 22211 1ρρ (1) 其中h e =0,z 1=z 2,所以测出管道上下游截面的静压能、动能,代入方程即可求得阻力。 2、根据因次分析法可得: (1)直管道阻力损失2 2 u d l h f ?=λ……(2)。其中,l 为管道长度,d 为管道内 径,u 为管内平均流速。只要测定l ,d ,u ,和λ,代入方程即可求得阻力h f 。

其中,λ的理论值计算方法为:25 .0Re 3163.0=湍流λ ; Re 64 = 层流λ。 对于水平无变径直管道,根据式(1)、(2)可得到摩擦系数的计算方法 为221) (2u l p p d ??-=ρλ测量。 (2)管道局部阻力损失2 2 1 u h f ?=ζ……(3)。其中,ζ为管道局部阻力系数, u 为平均流速(突扩管对应细管流速u 1)。将ζ和u 代入方程即可求得局部阻力h f 。 其中,ζ的理论值计算方法为:2 2 1)1(A A - =突扩管ζ ;常数截止阀=ζ;常数球阀=ζ。 对于水平放置的管件,根据式(1)、(3)可得到局部阻力系数的计算方 法为2 21) 2u p p ?-=ρζ(阀门;2 1 122 2) (2-1u p p u ρ ζ-+ =突扩管。 四、实验流程和设备

阻力损失的计算方法

1.5阻力损失 1.5.1两种阻力损失 直管阻力和局部阻力 化工管路主要由两部分组成:一种是直管,另一种是弯头、三通、阀门等各种管件。 直管造成的机械能损失称为直管阻力损失(或称沿程阻力损失) 管件造成的机械能损失称为局部阻力 注意 将直管阻力损失与固体表面间的摩擦损失相区别 阻力损失表现为流体势能的降低 由机械能衡算式(1-42)可知: ρρρ212211P P g z p g z p h f -=??? ? ??+-???? ??+= (1-71) 层流时直管阻力损失 流体在直管中作层流流动时,因阻力损失造成的势能差可直接由式(1-68)求出: 232d lu μ?= ? (1-72) 此式称为泊稷叶(Poiseuille)方程。层流阻力损失遂为: 232d lu h f ρμ= (1-73) 1.5.2湍流时直管阻力损失的实验研究方法 实验研究的基本步骤如下: (1)析因实验-寻找影响过程的主要因素

对所研究的过程作初步的实验和经验的归纳,尽可能的列出影响过程的主要因素。对湍流时直管阻力损失f h ,经分析和初步实验获知诸影响因素为: 流体性质:密度ρ、粘度μ; 流动的几何尺寸:管径d 、管长l 、管壁粗糙度ε(管内壁表面高低不平): 流动条件:流速u 。 于是待求的关系式为: ) ,,,,,(ερμu l d f h f = (1-74) (2)规划实验-减少实验工作量 因次分析法的基础是:任何物理方程的等式两边或方程中的每一项均具有相同的因次,此称为因次和谐或因次的一致性。 以层流时的阻力损失计算式为例,式(1-73)可写成如下形式 ???? ????? ??=??? ? ??dup d l u h f μ322 (1-75) 式中每一项都为无因次项,称为无因次数群。 换言之,未作无因次处理前,层流时阻力的函数形式为: ) ,,,,(u l d f h f ρμ= (1-76) 作无因次处理后,可写成

沿程阻力 中国石油大学(华东)流体力学实验报告

实验七、沿程阻力实验 一、实验目的填空 1.掌握测定镀锌铁管管道沿程阻力系数的方法; 2.在双对数坐标纸上绘制λ-Re的关系曲线; 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 在图1-7-1下方的横线上正确填写实验装置各部分的名称 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文秋利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-7-1 管流综合实验装置流程图 三、实验原理在横线正确写出以下公式 本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头

损失计算公式: 2 2f L v h D g λ = (1-7-1) 式中: λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失,由压差计测定。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 2 2f h D g L v λ= (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。 当实验管路粗糙度保持不变时,可得出该管的λ-Re 的关系曲线。 四、实验要求 填空 1.有关常数 实验装置编号:No. 7 管路直径:D = 1.58 cm ; 水的温度:T = 13.4 ℃; 水的密度:ρ= 0.999348g/cm 3; 动力粘度系数:μ= 1.19004 mPa ?s ; 运动粘度系数:ν= 0.011908 cm 2/s ; 两测点之间的距离:L = 500 cm

局部阻力系数测定(给学生)

局部阻力系数测定 实 验 报 告 班级:___________ 学号:___________ 姓名:___________ 课程:___________

一、实验目的 1、学会量测突扩、突缩圆管局部阻力损失系数的方法。 2、加深对局部阻力损失的感性认识 3、加深局部阻力损失机理的理解。 二、实验原理 1、有压管道恒定流遇到管道边界局部突变的情况时,流动会分离形成剪切层, 剪切层流动不稳定,引起流动结构的重新调整,并产生旋涡,造成不可逆的能量耗散。与沿程因摩擦造成的分布损失不同,这部分损失可以看成是集中在管道边界的突变处,单位质量流体的能量损失称为局部水头损失,参见图1。 2、局部水头损失系数是局部水头损失与速度水头的比例系数,即 2 h j ζ= 当上下游断面平均流速不同时,应明确它对应的是那个速度水头。例如对于 突扩圆管就有 =ζj h 1和2h j ζ=之分。其他情况的局部水头损失系数在查表或使用经验公式确定时也应该注意这一点。通常情况下对应下游的速度水头。 3、局部水头损失的机理复杂,除了突扩圆管的情况以外,一般难于用解析

方法确定,而要通过实测来得到各种局部水头损失系数。 对于突扩圆管,在不考虑突扩段沿程阻力损失的前提下,可推导出局部阻力损失因数的表达式 ( )-1=1ζ2 , 2ζ2=1 -A 2 ( )1 2 1A 对于突缩圆管,局部阻力损失因数的经验公式: 1-( )=ζ1 2 0.5 三、实验步骤 1、做好实验前的各项准备工作,记录与实验有关的常数。 2、往恒压水箱中充水,排除实验管道中的滞留气体。待水箱溢流后,检查泄水阀全关时,各测压管液面是否齐平,若不平,则需排气调平。 3、打开泄水阀至最大开度,等流量稳定后,测记测压管读数,同时用体积法测量流量。 4、调整泄水阀不同开度,重复上述过程5次,分别测记测压管读数及流量。 5、实验完成后关闭泄水阀,检查测压管液面是否齐平,如平齐,关闭电源实验结束,否则,需重做。 四、实验数据及整理 1、基础数据:d 1= m; d 2= m; d 3= m ; 水温= ℃

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

局部阻力损失实验报告

局部阻力损失实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

局部阻力损失实验 前言: 工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。 在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。 摘要: 本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。进而加深对局部阻力损失的理解。 三、实验原理 写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: 1.突然扩大 采用三点法计算,下式中12 f h -由 23 f h -按流长比例换算得出。 实测 2 2 1 12 21212[()][()]22je f p p h Z Z h g g αυαυγ γ -=+ + -+ + + 理论 212 (1)e A A ζ'=-

管路阻力实验报告

实验三 管路阻力的测定 一、实验目的 1.学习管路阻力损失h f ,管子摩擦系数λ及管件、阀门的局部阻力系数ζ的测定方法,并通过实验了解它们的变化,巩固对流体阻力基本理论的认识; 2.测定直管摩擦系数λ与雷诺数Re 的关系; 3.测定管件、阀门的局部阻力系数。 二、基本原理 流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会产生流体阻力损失。流体在流动时的阻力有直管摩擦阻力(沿程阻力)和局部阻力(流体流经管体、阀门、流量计等所造成的压力损失。 1.λ-Re 关系的测定: 流体流经直管时的阻力损失可用下式计算: 2 2u d L h f ?= λ ;-直管阻力损失,式中:kg J h f / L -直管长度,m ; d -直管内径,m ; u -流体的流速,m/s ; λ-摩擦系数,无因次。 已知摩擦系数λ是雷诺数与管子的相对粗糙度(△/d )的函数,即 λ=(Re ,△/d )。为了测定λ-Re 关系,可对一段已知其长度、管径及相对粗糙度的直管,在一定流速(也就是Re 一定)下测出阻力损失,然后按下式求出摩擦系数λ: 为: 对于水平直管,上式变: 可根据伯努利方程求出阻力损失=2 )(2 22 212 1212 u u p p g Z Z h h u L d h f f f -+ -+ -=?ρ λ ρ 2 1p p h f -= J/kg 其中,21p p -为截面1与2间的压力差,Pa ;ρ流体的密度,kg/m 3。 用U 形管压差计测出两截面的压力,用温度计测水温,并查出其ρ、μ值,即可算出h f ,并进而算出λ。由管路上的流量计可知当时的流速,从而可计算出此时的Re 数;得到一个λ-Re 对应关系,改变

流体阻力实验报告

北京化工大学化工原理实验报告 实验名称:流体流动阻力测定 班级:化工10 学号:2010 姓名: 同组人: 实验日期:2012.10.10

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式2 2u l p d ρλ?=,其中ρ为实验温度下流体的密度;流体流速 24d q u v π= ,以及雷诺数μ ρdu =Re (μ为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式2 22 1 21p u u ρζ?+ =- 可求出突然扩大管的局部阻力系数,以及由 Re 64= λ求出层流时的摩擦阻力系数λ,再和雷诺数Re 作图得出层流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。 三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z )

局部阻力系数测定实验

局部阻力系数的测定 一、实验目的 1、用实验方法测定两种局部管件(实扩、突缩)在流体流经管路时的局部阻力系数。 2、学会局部水头损失的测定方法。 1、实验原理及实验装置 局部阻力系数测定的主要部件为局部阻力实验管路,它由细管和粗管组成一个突扩和一个突缩组件,并在等直细管的中间段接入一个阀门组件。每个阻力组件的两侧一定间距的断面上都设有测压孔,并用测压管与测压板上相应的测压管相联接。当流体流经实验管路时,可以测出各测压孔截面上测压管的水柱高度及前后截面的水柱高度差 h。实验时还需要测定实验管路中的流体流量。由此可以测算出水流流经各局部阻力组件的水头损失hζ,从而最后得出各局部组件的局部阻力系数ζ。 ①突然扩大:

2 1-A 2 1( )=ζ2g 1 V 2 ( )1 2 A A -1=j h 理论上: 在实验时,由于管径中即存在局部阻力,又含有沿程阻力,当对突扩前后两断面列能量方程式时,可得hw=hj+hf ,其中hw 可由(h 1-h 3)测读,hf 可由(h 2-h 3)测读,按流长比例换算后,hj=hw-h f 。由此得出: 2 h j ζ=② 突然收缩: 理论上,ζ缩=0.5(1-A 2/A 1),实验时,同样,在读得突缩管段的水头损失后,按流长比例换算,分别将两端沿程损失除去,由此得: 缩 缩 2 h j ζ= 二、实验操作 1、实验前的准备 ①熟悉实验装置的结构及其流程。 ②进行排气处理。 ③启动水泵,然后慢慢打开出水阀门时水流经过实验管路。在此过程中(并关闭其他实验管的进水阀和出水阀),观察和检查管路系统和测压管及其导管中有无气泡存在,应尽可能利用试验管路上的放气阀门或用其它有效措施将系统中存在的气体排尽。 2、进行实验,测录数据 ①调节进水阀门和出水阀门,使各组压差达到测压管可测量的最大高度。 ②在水流稳定时,测读测压管的液柱高和前后的压差值。 ③在此工况下测定流量。 ④调节出水阀门,适当减小流量,测读在新的工况下的实验结果。 如此,可做3~5个实验点。(注意:实验点的压差值不宜太接近)。 三、实验数据处理 1、将实验所得测试结果及实验装置的必要技术数据记入如下附表1中。

过滤器阻力损失计算及滤网规格

过滤器阻力损失计算 ΔP--阻力损失,Pa λ--摩擦系数,无因次 Re-雷诺数,Re=(ω·dn)/u,无因次 ω-流体速度,m/s ρ-流体密度,kg/m3 μ-动力粘度,kg/m·s u-运动粘度u=μ/ρ,m2/s L-当量直管段长度,m,类管件过滤器查阅下表“类管件过滤器公称直径与当量直管段长度关系” D-类管件过滤器内径,m dn-当量直径m,类管件过滤器取管件内径"D",筒壳式过滤器取‘4s/c’ S-液体流通面积,m2 C-液体湿周(湿润周长),C=2X(筒体内径+筒体高度)m ξ-入口阻力系数,取1.1 ξ-出口阻力系数,取0.5 类管件过滤器公称直径与当量直管段长度关系 公称直径DN 50 80 100 150 200 当量直管段长度L 25∽30 18∽23 15∽20 22∽38 32∽40 (×103mm) 公称直径DN 250 300 350 400 450 当量直管段长度L 27~43 58~65 48~85 60~95 62~98 (×103mm) 对于‘筒壳’类过滤器,按下式计算: 过滤面积及孔目数 过滤面积通常指丝网的有效流通面积,可以查阅下表“滤网规格”得知有效面积,滤网总面积与有效面积率的乘积即为过滤面积(有效流通面积)。通常,考虑过滤面积按过滤器公称通径的20倍设计,已足够满足使用场合。除非在非常见的特殊环境使用,才予以特殊考虑。 孔目数(目数/英寸)的选择,主要考虑需拦截的杂质粒径,依据介质流程工艺要求而定。各种规格丝网可拦截的粒径尺寸查下表“滤网规格”。 滤网规格

不锈钢丝网的技术特性一般金属丝网的技术特性 孔目数目英寸丝径mm 可拦截的 粒径um 有效面积%孔目数目 英寸 丝径mm 可拦截的 粒径um 有效面积% 10 0.508 2032 64 10 0.559 1981 61 12 0.475 1660 61 12 0.457 1660 61 14 0.376 1438 63 14 0.367 1438 63 16 0.315 1273 65 16 0.315 1273 65 18 0.315 1096 61 18 0.315 1096 61 20 0.273 955 57 20 0.274 996 62 22 0.234 882 59 22 0.274 881 59 24 0.234 785 56 24 0.254 804 58 26 0.234 743 59 26 0.234 743 59 28 0.234 673 56 28 0.234 673 56 30 0.234 614 53 30 0.234 614 53 32 0.234 560 50 32 0.213 581 54 36 0.234 472 46 36 0.213 534 52 38 0.234 455 46 38 0.213 493 50 40 0.193 442 49 40 0.173 462 54 50 0.152 356 50 50 0.152 356 50 60 0.122 301 51 60 0.122 301 51 80 0.102 216 47 80 0.102 216 47 100 0.081 173 46 100 0.08 174 50 120 0.081 131 38 120 0.07 142 50 (1)金属材料温度适用范围 铸铁-10~200℃碳钢-20~400℃低合金钢-40~400℃不锈钢-190~400℃(2)辅助密封材料温度适用范围 丁晴橡胶-30~100℃氟橡胶-30~150℃石棉板报≤300℃石墨金属缠绕垫≤650℃ 公称压力:按照过滤管路可能出现的最高压力确定过滤器的压力等级,也可通过技术协议要求,考虑进出口管路的统一性,选择与出口管路中最高压力相匹配的压力等级过滤器实际适用最高压力与介质 P--过滤器所能承受的最高工作压力Mpa P--过滤器的公称压力Mpa T--过滤器使用工作温度(应考虑裕度)℃ ΔT--温度偏差ΔT=T-200 ℃ K--强度减弱系数Mpa/℃ K值按如下原则选取: ①工作温度≤200℃时,K=0; ②铸铁过滤器(200-300℃),K=0-0.004; ③碳钢过滤器(200-400℃),K=0.0016-0.008; ④低合金钢过滤器(200-400℃),K=0.0006-0.006; ⑤不锈钢过滤器(200-400℃),K=0.00018-0.006;

流体流动阻力的测定实验报告

银纳米粒子制备及光谱和电化学性能表征 - 1 - 流体流动阻力的测定 王晓鸽 一、实验目的 1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。 2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。 3. 测定流体流经管件、阀门时的局部阻力系数ξ。 4. 学会流量计和压差计的使用方法。 5. 识辨组成管路的各种管件、阀门,并了解其作用。 二、实验原理 流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力摩擦系数 的测定 流体在水平等径直管中稳定流动时,阻力损失为: 即, 式中: —直管阻力摩擦系数,无因次; —直管内径, ; —流体流经 米直管的压力降, ; —单位质量流体流经 米直管的机械能损失, ;

—流体密度,; —直管长度,; —流体在管内流动的平均流速,。 层流流时, 湍流时是雷诺准数和相对粗糙度的函数,须由实验确定。 欲测定,需确定、,测定、、、等参数。、为装置参数(装置参数表格中给出),、通过测定流体温度,再查有关手册而得,通过测定流体流量,再由管径计算得到。可用型管、倒置型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。求取和后,再将和标绘在双对数坐标图上。 2.局部阻力系数的测定 局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。本实验采用阻力系数法。 流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。即: 因此, 式中:—局部阻力系数,无因次; -局部阻力压强降,;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。)—流体密度,; —流体在管内流动的平均流速,。 根据连接阀门两端管径,流体密度,流体温度(查流体物性、),

化工原理实验~流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管与阀门的局部阻力系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re与相对粗糙度的函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性与涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度与方向突然变化,产 生局部阻力。影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得 到在一定条件下具有普遍意义的结果,其方法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。 雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/ d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l / d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法直接测定。 h f=△P/ρ=λ(l / d)u2/2 ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根据伯努利方程找出静压强差 与摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速可测出不同Re下的摩擦 阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数 在湍流区内λ=f(Re,ε/d)。对于光滑管,大量实验证明,当Re在3×103~105范围内,λ与Re的关系遵循Blasius关系式,即λ=0、3163 / Re0、25 对于粗糙管,λ与Re的关系均以图来表示。 2、局部阻力

流体流动阻力实验报告

西南民族大学学生实验报告 课程名称:化工原理实验教师:实验室名称:BS-305 教学单位:化环学院专业:中药学班级:1101班 姓名:学号:实验日期:10.31 实验成绩:批阅教师:日期: 一.实验名称:实验一流体流动阻力的测定 二.实验目的: ① 握测定流体流动阻②测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。③测定层流管的摩擦阻 力。④验证湍流区内摩擦系数λ为雷诺数Re和相对粗糙度的函数。⑤识别组成管路的各种管件、阀门,并了解其作用。 三.基本原理: 1.直管摩擦阻力系数λ测定 流体在水平等径直管中稳定流动时,阻力损失为: 2 2 f p l u h d λ ρ ? ==?即, 2 2 lu p d ρ λ? = 式中 f h——直管阻力,J/kg;l——被测管长,m;d——被测管内径,m;u——平均流速,m/s;λ——摩擦阻力系数。 滞流(层流)时, 64 Re λ=湍流时,雷诺数 du Re ρ μ = A q u v = 2.局部阻力系数ξ的测定: 2 2 f u hξ =,即 2 2 u p ρ ξ ' ? = 四.实验装置与流程: 1、装置组成部分 本实验装置如图1;装置相关参数在化工原理实验指导书上p21的表2-1所示。由于管子的材质存在批次的差异,所以可能会产生管径的不同,所以表2-1中管内径只能做参考。

图1:流体阻力实验装置图 1—水箱;2—离心泵;3—压力表;4—孔板流量计;5—上水阀;6—高位水槽 7—曾流光流量调节阀;8—阀门管线开关阀;9—球阀;10—截止阀;11—光滑管开关阀 12—粗糙管开关阀;13—突然扩大管开关阀;14—流量调节阀 2、开车前准备 3、流体流动阻力实验步骤 ①启动离心泵,打开被测管线上的开关阀及面板上与其对应的切换阀,关闭其他开关阀和切换阀,确 保测压点一一对应。 ②系统要排净气体使液体连续流动。设备和测压管线中的气体都要排净,检验的方法是当流量为零时, 观察U形压差计的两液面是否水平。 ③读取数据时,应注意稳定后再读数。测定直管摩擦阻力时,流量由大到小,充分利用面板量程测取 7组数据。本次实验层流管不做测定。 ④测完一根管数据后,应将流量调节阀关闭,观察压差计的两液面是否水平,水平时才能更换另一条 管路,否则全部数据无效。同时要了解各种阀门的特点,学会使用阀门,注意阀门的切换,同时要 关严,防止内漏。 4、停车操作 五、实验数据处理 1、原始数据记录表如下: 根据金属温度计读出来的温度,然后通过查表找出对应水的密度以及粘度并且填入下表: 数据记录与处理表 光滑管 水流量/ m3.h-1 1.0 1.2 1.5 1.7 2.0 2.5 3.0 水温/℃15.5 15.8 16.0 16.2 16.5 16.7 17.0 密度ρ(kg/m3 999.0 998.9 998.9 998.9 998.8 998.8 998.7 粘度 μ(3 10- ?Pa·s) 1.1258 1.1111 1.1111 1.1111 1.0970 1.0970 1.0828 管内径:20.0 mm 粗糙管 水流量/m3.h-1 1.0 1.2 1.5 1.7 2.0 2.5 3.0 水温/℃12.0 12.5 13.0 13.5 14.0 14.2 14.8 密度ρ(kg/m3999.5 999.4 999.3 999.2 999.2 999.2 999.1 粘度μ(3 10- ? Pa·s) 1.2363 1.2195 1.2028 1.1869 1.1709 1.1700 1.1404 管内径:21.0 mm 局部阻力 水流量/ m3.h-1 1.0 1.2 1.5 1.7 2.0 2.5 3.0 水温/℃17.8 18 18.1 18.2 18.2 18.2 18.2 密度ρ(kg/m3998.6 粘度μ( 3 10- ? Pa·s) 1.0559

实验四 摩擦系数和局部阻力系数的测定

汕 头 大 学 实 验 报 告 学院:工学院系:机电系年级:2014级 姓名:成吉祥学号:2014124089 成绩: 实验四 摩擦系数和局部阻力系数的测定 一、实验目的 摩擦系数和局部阻力系数是管道系统设计中用以计算能量损耗的重要参数,它的数值大小,遵循着一定的规律,实验的目的是通过测定,了解和掌握这些系数的规律。 二、实验原理 流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起流体压力损失。流体在流动时所产生的阻力有直管摩擦阻力和局部阻力。 1、直管阻力 流体流过直管时的摩擦系数与阻力损失之间的关系可用下式表示 2 2 u d l h f ??=λ 式中:f h :直管阻力损失,J/kg ; l :直管长度,m ; d :直管内径,m ; u :流体的速度,m/s ; λ:摩擦系数。 在一定的流速和雷诺数下,测出阻力损失,按下式即可求出摩擦系数λ。 2 2 u l d h f ? ?=λ 阻力损失f h 可通过对两截面间作机械能衡算求出 2 )(2 2 21 2 121u u p p g z z h f -+-+ -=ρ 对于水平等径直管21z z =,21u u =,上式可简化为 ρ 2 1p p h f -=

式中:f h :两截面的压强差,N/m2; ρ:流体的密度,kg/m3。 只要测出两截面上静压强的差即可算出f h 。两截面上静压强的差可用U 形管或倒U 型管压差计测出。流速由流量计测得,在已知d 、u 的情况下只需测出流体的温度t ,查出该温度下流体的ρ、μ,则可求出雷诺数Re ,从而得出流体流过直管的摩擦系数λ与雷诺数Re 的关系。 2、局部阻力 流体流过阀门、扩大、缩小等管件时,所引起的阻力损失可用下式计算 )2 (2 u h f ζ=(J/kg ) (5) 式中z 为局部阻力系数, z 的值一般都由实验测定。计算局部阻力系数时应注意扩大、缩小管件的阻力损失f h 的计算。 三、实验注意事项 1、各自循环供水实验均需注意:计量后的水必须倒回原实验装置的水斗内,以保持自循环供水(此注意事项后述实验不再提示)。 2、稳压筒内气腔越大,稳压效果越好。但稳压筒的水位必须淹没连通管的进口,以免连通管进气,否则需拧开稳压筒排气螺丝提高筒内水位;若稳压筒的水位高于排气螺丝口,说明有漏气,需检查处理。 3、传感器与稳压筒的连接管要确保气路通畅,接管及进气口均不得有水体进入,否则需清除。 四、实验原始数据记录 1、2 号测头距离0.25米,3、4号测头距离0.5米,规格:大管内径:21.2mm , 水温:20℃,零流速水位:580.0mm ,左小管内径12.9mm ,右小管内径:13.4mm 序号 各测点水位(mm ) 流量 流量(升/秒) 1 2 3 4 5 6 体积(升) 时间(秒) 1 541.9 526.0 529.5 527.8 516.5 474.0 1.05 16.09 0.0653 2 529.6 510.0 515.7 513.0 498.0 444.5 1.15 15.56 0.0739 3 505.5 482.0 489.4 486.6 464.0 389.3 1.15 12.90 0.0891 4 495.0 465.0 475.0 470.1 445.0 357.5 1.10 11.24 0.0979 5 484.4 452.0 462.0 458.1 427.8 331.2 1.20 11.80 0.1017 6 438.0 394.0 420.0 412.1 357.5 223.0 1.15 9.40 0.1223

流体阻力实验报告(借鉴材料)

化工原理实验报告 实验名称:流体流动阻力测定 班级: 学号: 姓名: 同组人: 实验日期:

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式22u l p d ρλ?=,其中ρ为实验温度下流体的密度;流 体流速24d q u v π= ,以及雷诺数μ ρdu =Re (μ为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式2 22 1 21p u u ρζ ?+ =- 可求出突然扩大管的局 部阻力系数,以及由Re 64=λ求出层流时的摩擦阻力系数λ,再和雷诺数Re 作图得出层 流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。 三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1], l [L] ,d [L],ε[L],u [LT -1], h f [L 2 T -2] 3)选基本变量(独立,含M ,L ,T ) d ,u ,ρ(l ,u ,ρ等组合也可以) 4)无量纲化非基本变量 μ:π1=μρa u b d c [M 0L 0T 0] =[ML -1 T -1][ML -3]a [LT -1]b [L]c ? a=-1,b=-1,c=-1

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、 二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部 障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 ()() 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张 处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地 有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械 能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开 始到消失的一段距离上。 图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的 压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。 在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示

局部阻力损失实验报告

局部阻力损失实验 前言: 工农业生产的迅速发展, 使石油管路、给排水管路、机械液压管路等, 得到了越来越广泛的应用。为了使管路的设计比较合理, 能满足生产实际的要求, 管路设计参数的确定显得更为重要。管路在工作过程中存在沿程损失和局部阻力损失,合理确定阻力系数是使设计达到实际应用要求的关键。但是由于扩张、收缩段的流动十分复杂,根据伯努利方程和动量方程推导出的理论值往往与具体的管道情况有所偏差,一般需要实验测定的局部水头损失进行修正或者得出经验公式用于工业设计。 在管路中, 经常会出现弯头, 阀门, 管道截面突然扩大, 管道截面突然缩小等流动有急剧变化的管段, 由于这些管段的存在, 会使水流的边界发生急剧变化, 水流中各点的流速, 压强都要改变, 有时会引起回流, 旋涡等, 从而造成水流机械能的损失。例如,流体从小直径的管道流往大直径的管道, 由于流体有惯性, 它不可能按照管道的形状突然扩大, 而是离开小直径的管道后逐渐地扩大。因此便在管壁拐角与主流束之间形成漩涡, 漩涡靠主流束带动着旋转, 主流束把能量传递给漩涡、漩涡又把得到的能量消耗在旋转中( 变成热而消散) 。此外, 由于管道截面忽然变化所产生的流体冲击、碰撞等都会带来流体机械能的损失。 摘要: 本实验利用三点法测量扩张段的局部阻力系数,用四点法量测量收缩段的局部阻力系数,然后与圆管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式中的经验值进行对比分析,从而掌握用理论分析法和经验法建立函数式的技能。进而加深对局部阻力损失的理解。 三、实验原理 写出局部阻力前后两断面的能量方程,根据推导条件,扣除沿程水头损失可得: 1.突然扩大 采用三点法计算,下式中12 f h -由 23 f h -按流长比例换算得出。 实测 2 2 1 12 21212[()][()]22je f p p h Z Z h g g αυαυγ γ -=+ + -+ + + 理论 212 (1)e A A ζ'=- 2.突然缩小 采用四点法计算,下式中B 点为突缩点,4f B h -由 34 f h -换算得出, 5 fB h -由 56 f h -换算 得出。 实测 2 2 5 54 44455[()][()]22js f B fB p p h Z h Z h g g αυαυγ γ --=+ + --+ + +

化工原理流体阻力实验报告北京化工大学

化工原理-流体阻力实验报告(北京化工大学)

————————————————————————————————作者:————————————————————————————————日期: ?

北京化工大学 化工原理实验报 告 实验名称: 流体阻力实验 班级:化工1305班 姓名:张玮航 学号: 2013011132 序号: 11 同组人:宋雅楠、陈一帆、陈骏 设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第4套实验日期:2015-11-27

一、实验摘要 首先,本实验使用U PRS Ⅲ型第4套实验设备,通过测量不同流速下水流经不锈钢管、镀锌管、层流管、突扩管、阀门的压头损失来测定不同管路、局部件的雷诺数与摩擦系数曲线。确定了摩擦系数和局部阻力系数的变化规律和影响因素,验证在湍流区内λ与雷诺数Re 和相对粗糙度的函数。该实验结果可为管路实际应用和工艺设计提供重要的参考。 结果,从实验数据分析可知,光滑管、粗糙管的摩擦阻力系数随Re 增大而减小,并且光滑管的摩擦阻力系数较好地满足Bl asui s关系式:0.25 0.3163Re λ= 。 突然扩大管的局部阻力系数随Re 的变化而变化。 关键词:摩擦系数,局部阻力系数,雷诺数,相对粗糙度 二、实验目的 1、掌握测定流体流动阻力实验的一般实验方法: ①测量湍流直管的阻力,确定摩擦阻力系数。 ②测量湍流局部管道的阻力,确定摩擦阻力系数。 ③测量层流直管的阻力,确定摩擦阻力系数。 2、验证在湍流区内摩擦阻力系数λ与雷诺数Re 以及相对粗糙度的关系。 3、将实验所得光滑管的λ-Re 曲线关系与B lasiu s方程相比较。 三、实验原理 1、 直管阻力 不可压缩流体在圆形直管中做稳定流动时,由于黏性和涡流的作用会产生摩擦阻力(即直管阻力);流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,会产生局部阻力。由于分子的流动过程的运动机理十分复杂,目前不能用理论方法来解决流体阻力的运算问题,必须通过实验研究来掌握其规律。为了减少实验的工作量、化简工作难度、同时使实验的结果具有普遍的应用意义,应采用基于实验基础的量纲分析法来对直管阻力进行测量。 利用量纲分析的方法,结合实际工作经验,流体流动阻力与流体的性质、流体流经处的几何尺寸、流体的运动状态有关。可表示为:()u l d f p ,,,,,μρε=?。 通过一系列的数学过程推导,引入以下几个无量纲数群:

相关文档