文档库 最新最全的文档下载
当前位置:文档库 › 简述法拉第电磁学研究的主要成就

简述法拉第电磁学研究的主要成就

简述法拉第电磁学研究的主要成就
简述法拉第电磁学研究的主要成就

静电力平方反比律是如何建立的?

最早提出电力平方反比定律的是普瑞斯特列。普瑞斯特列的好友富兰克林曾观察到放在金属杯中的软木小球完全不受金属杯上电荷的影响,他把这现象告诉了普瑞斯特列,希望他重做此实验。1766年,普瑞斯特列做了富兰克林提出的实验,他使空腔金属容器带电,发现其内表面没有电荷,而且金属容器对放于其内部的电荷明显地没有作用力。他立刻想到这一现象与万有引力的情况非常相似。因此他猜想电力与万有引力有相同的规律,即两个电荷间的作用力应与他们之间距离的平方成反比。在1767年普瑞斯特列写了一本《电的历史和现状》。

1769年,爱丁堡的约翰·罗伯逊首先用直接测量方法确定电力的定律,他得到两个同号电荷的排斥力与其距离的2.06次方成反比。他推断正确的电力定律是平方反比律,他的研究结果是多年之后(1801年)发表才为人所知。

1772年英国物理学家卡文迪许遵循普瑞斯特列的思想以实验验证了电力平方反比定律。他将一个金属球形容器固定在一绝缘支柱上。用玻璃棒将两个金属半球固定在铰链于同一轴的两个木制框架, 使这两个半球构成与球形容器同心的绝缘导体球壳。用一根短导线连接球形容器和两个半球,利用一根系于短导线上的丝线来移动导线。卡文迪许先用短导线使球形容器与两半球相连。用莱顿瓶使两半球带电,莱顿瓶的电位可事先测定,随后通过丝线将短导线抽去。再将两半球移开,并使之放电。然后用当时最准确的木髓球静电计检测球形容器上的带电状态。静电计并未检测到球形容器上有任何带电的迹象。他用实验和计算的方法得出电力与距离成反比的方次与2的差值不大于0.02。卡文迪许的实验得出的定量结果与十三年后(1785年)库伦用扭秤直接测量所得的结果的准确度相当,但他的研究成果都没有发表。是一百年后麦克斯韦整理卡文迪许的大量手稿时才将上述结果公诸于世的。

最为著名的是法国物理学家库伦的研究工作。库伦曾从事毛发和金属丝扭转弹性的研究,这导致他在1777年发明了后来被称为库伦秤的扭转天平或扭秤。1784年库伦发表论文,介绍他发现的扭转力与线材直径、长度、扭转角度以及与线材物理特性有关的常数之间的关系,还介绍了用扭秤测量各种弱力的方法。同年,库伦响应法国科学院有赏征集研究船用罗盘,他的科学生涯开始从工程、建筑转向电、磁的研究。1785年库伦设计制作了一台精确的扭秤,用扭秤实验证明了同号电荷的斥力遵从平方反比律,用振荡法证明异号电荷的吸引力也遵从平方反比定律。库伦的研究工作得到了普遍的承认,而平方反比定律也就以库伦来命名了.

简述法拉第电磁学研究的主要成就

法拉第在物理学方面的主要贡献是对电磁学进行了比较系统的实验研究,发现了电磁感应现象,总结出电磁感应定律;发明了电磁学史上第一台电动机和发电机;发现了电解定律;提出电场、磁场第重要概念。他是十九世纪电磁域中最

伟大的实验家。

(1)制作了历史上第一台电动机. 1821年9月3日,法拉第重做了奥斯特的实验,他用小针放在放在载流铜导线周围的不同位置,发现小磁针有沿着环绕以导线为轴的圆周旋转的倾向。根据这一现象,法拉第设计制作了一种“电磁旋转器”,让载有电流的导线在一个马蹄形磁铁的磁场中转动,这就是科学史上最早的一台电动机

(2)发现了电磁感应现象.法拉第在1831年11月24日,向英国伦敦皇家学会报告了他的重大发现,归纳出产生感应电流的五种情况:一、变化着的电流;

二、变化着的磁;三、运动的稳恒电流;四、运动的磁铁;五、在磁场中运动的导线。法拉第在报告中,把他所观察的现象正式定名叫“电磁感应”。

(3)在实验基础上总结出法拉第电磁感应定律.1851年在《论磁力线》一书中正式提出电磁感应定律:“形成电流的力和所切割的磁力线根数成正比”。

(4)制成第一台圆盘发电机.在发现电磁感应现象以后,法拉第设计了圆盘发电机实验把一个铜盘放在一个大的马蹄形磁铁的两极中间,铜盘的轴和边缘各引出一根导线,同电流计相连,构成闭合回路。当铜盘旋转的时候,电流计指示出回路中有电流产生。这就是发电机的雏形。

(5)提出了电场和磁场的概念.法拉第的又一个重要成果,是提出了场的概念和力线的图象。他反对电、磁之间超距作用的说法,设想带电体、磁体或电流周围空间存在一种从电或磁激发出来的物质,它们无所不在,是一种象以太那样的连续介质,起到传递电力、磁力的媒介作用。他把这些物质称做电场、磁场。法拉第还凭借着惊人的想象力,和流体力学中的流场类比,提出电场和磁场是由力的线和力的管子组成的,正是这些力线、力管,把不同的电荷、磁体或电流连接在一起。1852年,他用铁粉显示出磁棒周围磁力线的形状。

(6)暗示了电磁波存在的可能性,并预言了光可能是一种电磁振动的传播1832年,法拉第还用极深邃的物理洞察力对光和电的关系作出了研究。他给英国伦敦皇家学会写了一封密封信,信上写着:“现在应当收藏在皇家学会的档案馆里的一些新的观点。”这封信在档案馆里躺了一百多年,直到1938年才为后人重新发现,启了封。法拉第在信中预言了磁感应和电感应的传播,暗示了电磁波存在的可能性,还预言了光可能是一种电磁振动的传播。他还发现了光的偏振面在磁场中旋转的旋光效应。

卡诺是如何得出他的热机理论的?

卡诺以找出热机不完善性的原因作为研究的出发点,阐明从热机中获得动力的条件就能够改进热机的效率。卡诺分析了蒸汽机的基本结构和工作过程,撇开一切次要因素,由理想循环入手,以普遍理论的形式,作出关于消耗热而得到机械功的结论。

他指出,热机必须在高温热源和低温热源之间工作,“凡是有温度差的地方就能够产生动力;反之,凡能够消耗这个力的地方就能够形成温度差,就可能破坏热质的平衡。”他构造了在加热器与冷凝器之间的一个理想循环:汽缸与加热器相连,汽缸内的工作物质水和饱和蒸汽就与加热器的温度相同,汽缸内的蒸汽

如此缓慢地膨胀着,以致在整个过程中,蒸汽和水都处于热平衡。然后使汽缸与加热器隔绝,蒸汽绝热膨胀到温度降至与冷凝器的温度相同为止。然后活塞缓慢压缩蒸汽,经过一段时间后汽缸与冷凝器脱离,作绝热压缩直到回复原来的状态。这是由两个等温过程和两个绝热过程组成的循环,即后来所称的“卡诺循环”。

卡诺根据热质守恒思想和永动机不可能制成的原理,进一步证明了在相同温度的高温热源和相同温度的低温热源之间工作的一切实际热机,其效率都不会大于在同样的热源之间工作的可逆卡诺热机的效率。卡诺由此推断:理想的可逆卡诺热机的效率有一个极大值,这个极大值仅由加热器和冷凝器的温度决定,一切实际热机的效率都低于这个极值。

卡诺的研究具有多方面的意义。他的工作为提高热机效率指明了方向;他的结论已经包含了热力学第二定律的基本思想,只是热质观念的阻碍,他未能完全探究到问题的最终答案。

2010-12-16

中国古代的电磁学成就

中国古代的电磁学成就 中国古人对电和磁的知识的积累及其技术成就,在世界物理学史中占有极为重要的地位。古代人在雷电、静电、静磁学方面的知识以及在罗盘的制造方面远远地走在欧洲人前面。除了用的传统方式解释磁体极性、磁偏角之外,在其他方面的科学发现和技术成就也是令人惊叹的。对尖端放电现象的观察和研究,使古人发明了避雷器,用于高大建筑的顶端,防止雷击。特别是磁的研究与应用对中国古代的生产、军事、航海测量等技术的发展产生了重要作用。 一、摩擦起电 我国古代人在电学知识方面很早就有了“琥珀拾芥”的记载,对静电和雷电现象也有许多值得称道的见解。琥珀是一种透明的树脂化石,在古籍中也写作“虎魄”、“虎珀”。玳瑁是一种类似龟的海生爬行动物,其甲壳也叫玳瑁;汉代王充等人称它为“顿牟”。静电现象的最早记载见之于西汉成书的《春秋考异邮》:“玳瑁吸喏”。“喏”即草屑一类轻小绝缘体。王充在《论衡·乱龙篇》中写道:“顿牟掇芥,磁石引针,皆以其真是、不假他类。” 东晋郭璞在《山海经图赞》中写道:“磁石吸铁,玳瑁取芥,气有潜通,数亦宜会,物之相投,出乎意外”。明代李时珍说:“玳瑁拾芥,如草芥,即禾草也。”类似记载,举不胜举。需要指出的是,芥子比草芥稍重,只要静电力足够大,干燥的芥子也能被琥珀吸引。从以上种种记载可见:人们根据吸引现象将电和磁并列为同一类,这是后来电磁学的思想先导。在西方古代,电和磁是被分别认识的。 除了琥珀、玳瑁之外,古代人还发现了毛皮、丝绸和其他多种物质的静电现象。它们之所以被发现,是由于静电火花和放电声音引起人们的注意。西晋张华在其著《博物志》中最早记述了静电闪光和放电声。他写道:“今人梳头、脱著衣时,有随梳、解结有光者,亦有咤声。”这里描述了两个静电实验:一是用梳子梳头发;二是猛然解脱毛皮或丝绸质料衣服。在这两个实验中都能发现静电闪光和听到放电声。《晋书·五行志》记载了这样一件事:晋永康元年(300),晋惠帝司马衷纳羊氏为后。羊氏入宫就寝,侍人为其解脱衣服;“衣中忽有火,众咸怪之”。这就被当成一件怪事从后宫传出。方以智认为,所有布料都能摩擦起电。他写道:“青布衣,大红西洋布及人身之衣,气盛者皆能出火。”方以智的论断是完全正确的;他所谓“气盛”是他那时代对摩擦起电的一种流行解释而已。梳理头发和解脱衣服所发生的静电放电现象。 二、对雷电的认识 在殷商甲骨文中就有了“雷”和“电”的文字符号。从古代人分别造“雷”与“电”二字起,他们在一个较长时期里在大多数情况下将雷电看作是两种自然现象。《淮南子》说:“阴阳相薄为雷,激扬为电”。它以阴阳二气摩擦与碰撞的激烈程度来区分雷电。早在战国时期,《慎子》说:“阴与阳夹持,则磨轧有光而为电”。《慎子》一书已具有从声音与光二者区分雷电的思想。宋代陆佃在《烟雅·释天》中指出:阴阳相激,“其光为电,其声为雷”。只到此时,雷声电光作为同一现象的不同表现才被人们所认同。 汉代王充对雷电有精辟见解,曾论证雷的本质是火。他在《论衡·雷虚篇》中写道:“雷者,火也。以人中雷而死,即询其身,中头则髦发烧焦,……临其尸上闻火气,一验也。道术之家以为雷烧石色赤,投于井中,石焦井寒,激声大鸣,若雷之状,二验也。人伤于寒,寒气入腹,腹中素温,温寒分争,激气雷鸣,三验也。当雷之时,电光时见,大若火之耀,四验也。当雷之击时,或燔人室屋及地草木,五验也。言雷为天怒,无一效验。然则雷为天

电磁学期末考试试题

电磁学期末考试 一、选择题。 1. 设源电荷与试探电荷分别为Q 、q ,则定义式q F E =对Q 、q 的要求为:[ ] (A)二者必须是点电荷。 (B)Q 为任意电荷,q 必须为正电荷。 (C)Q 为任意电荷,q 是点电荷,且可正可负。 (D)Q 为任意电荷,q 必须是单位正点电荷。 2. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元dS 的一个带电量为dS σ的电荷元,在球面内各点产生的电场强度:[ ] (A)处处为零。 (B)不一定都为零。 (C)处处不为零。 (D)无法判定 3. 当一个带电体达到静电平衡时:[ ] (A)表面上电荷密度较大处电势较高。 (B)表面曲率较大处电势较高。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 4. 在相距为2R 的点电荷+q 与-q 的电场中,把点电荷+Q 从O 点沿OCD 移到D 点(如图),则电场力所做的功和+Q 电位能的增量分别为:[ ] (A)R qQ 06πε,R qQ 06πε-。 (B)R qQ 04πε,R qQ 04πε-。 (C)R qQ 04πε-,R qQ 04πε。 (D)R qQ 06πε-,R qQ 06πε。 5. 相距为1r 的两个电子,在重力可忽略的情况下由静止开始运动到相距为2r ,从相距1r 到相距2r 期间,两电子系统的下列哪一个量是不变的:[ ] (A)动能总和; (B)电势能总和; (C)动量总和; (D)电相互作用力

6. 均匀磁场的磁感应强度B 垂直于半径为r 的圆面。今以该圆周为边线,作一半球面s ,则通过s 面的磁通量的大小为: [ ] (A)B r 22π。 (B)B r 2π。 (C)0。 (D)无法确定的量。 7. 对位移电流,有下述四种说法,请指出哪一种说法正确:[ ] (A)位移电流是由变化电场产生的。 (B)位移电流是由线性变化磁场产生的。 (C)位移电流的热效应服从焦耳—楞次定律。 (D)位移电流的磁效应不服从安培环路定理。 8.在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。问那个区域中有些点的磁感应强度可能为零:[ ] A .仅在象限1 B .仅在象限2 C .仅在象限1、3 D .仅在象限2、4 9.通有电流J 的无限长直导线弯成如图所示的3种形状,则P 、Q 、O 各点磁感应强度的大小关系为:[ ] A .P B >Q B >O B B .Q B >P B >O B C . Q B >O B >P B D .O B >Q B >P B

精选高考物理易错题专题复习法拉第电磁感应定律含答案

一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

00 B S v BLt = 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv = E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt =

电磁学发展简史

电磁学发展简史 07 电联毛华超 一.早期的电磁学研究 早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下:1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,给出了欧姆定律的理论推导。欧姆定律发现初期,许多物理学家不能正确理解和评价这一发现,并遭到怀疑和尖锐的批评。研究成果被忽视,经济极其困难,使欧姆精神抑郁。直到1841年英国皇家学会授予他最高荣誉的科普利金牌,才引起德国科学界的重视。 二.安培和法拉第奠定了电动力学基础 1820年间,奥斯特在给学生讲课时,意外地发现了电流的小磁针偏转的现象。当导线通电流时,小磁针产生了偏转。这个消息传到巴黎后,启发了法国物理学家安培。他思考,既然磁与磁之间、电流与磁之间都有作用力,那么电流与电流之间是否也存在作用力呢?他重复了奥斯特的实验,几天后向巴黎科学院提交了第一篇论文,提出了磁针转动方向与电流

2009级电磁场理论期末试题-1(A)-题目和答案--房丽丽

课程编号:INF05005 北京理工大学2011-2012学年第一学期 2009级电子类电磁场理论基础期末试题A 卷 班级________ 学号________ 姓名________ 成绩________ 一、简答题(共12分)(2题) 1.请写出无源、线性各向同性、均匀的一般导电(0<σ<∞)媒质中,复麦克斯韦方程组的限定微分形式。 2.请写出谐振腔以TE mnp 模振荡时的谐振条件。并说明m ,n ,p 的物理意义。 二、选择题(每空2分,共20分)(4题)(最好是1题中各选项为同样类型) 1. 在通电流导体(0<σ<∞)内部,静电场( A ),静磁场(B ),恒定电流场(B ),时变电磁场( C )。 A. 恒为零; B. 恒不为零; C.可以为零,也可以不为零; 2. 以下关于全反射和全折射论述不正确的是:( B ) A.理想介质分界面上,平面波由光密介质入射到光疏介质,当入射角大于某一临界角时会发生全反射现象; B.非磁性理想介质分界面上,垂直极化波以某一角度入射时会发生全折射现象; C.在理想介质与理想导体分界面,平面波以任意角度入射均可发生全反射现象; D.理想介质分界面上发生全反射时,在两种介质中电磁场均不为零。 3. 置于空气中半径为a 的导体球附近M 处有一点电荷q ,它与导体球心O 的距离为d(d>a),当导体球接地时,导体球上的感应电荷可用球内区域设置的(D )的镜像电荷代替;当导体球不接地且不带电荷时,导体球上的感应电荷可用(B )的镜像电荷代替; A. 电量为/q qd a '=-,距球心2/d a d '=;以及一个位于球心处,电量为q aq d ''=; B. 电量为/q qa d '=-,距球心2/d a d '=;以及一个位于球心处,电量为q aq d ''=; C. 电量为/q qd a '=-,距球心2/d a d '=; D. 电量为/q qa d '=-,距球心2/d a d '=; 4.时变电磁场满足如下边界条件:两种理想介质分界面上,( C );两种一般导电介质(0<σ<∞)分界面上,(A );理想介质与理想导体分界面上,( D )。 A. 存在s ρ,不存在s J ; B. 不存在s ρ,存在s J ; C. 不存在s ρ和s J ; D. 存在s ρ和s J ; 三、(12分)如图所示,一个平行板电容 器,极板沿x 方向长度为L ,沿y 方向宽 度为W ,板间距离为z 0。板间部分填充 一段长度为d 的介电常数为ε1的电介质,如两极板间电位差为U ,求:(1)两极板 间的电场强度;(2)电容器储能;(3)电 介质所受到的静电力。

物理法拉第电磁感应定律的专项培优练习题及答案

物理法拉第电磁感应定律的专项培优练习题及答案 一、法拉第电磁感应定律 1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。求: (1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离; (3)ab 棒开始下滑至EF 的过程中回路中产生的热量。 【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。 【解析】 【详解】 (1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。 (2)ab 棒在到达区域Ⅱ前做匀加速直线运动, a = sin mg m θ =gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得: 1Blv t ?Φ =? 2(sin )x x B l I BI g t t θ??= 解得 2sin x l t g θ = ab 棒在区域Ⅱ中做匀速直线运动的速度

电磁学发展史简述

绪论 一、电磁学发展史简述 1概述 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。

电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。 和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。 2电学发展简史 “电”一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。自从18世纪中叶以来,对电的研究逐渐蓬勃开展。它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。 现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。电学又可称为电磁学,是物理学中颇具重要意义的基础学科。

20世纪重要科学成就

20世纪重要科学成就 原子1900年,德国科学家普朗克发现,原子在裂变时,会释放出巨大的能量,他把这种能量称为“夸特”,这一发现被誉为世纪性发现。不锈钢1903年前,钢不仅易锈,而且易被腐蚀。1903年到1912年间,不锈钢一出现便成了杰出的工业金属。而今,不锈钢已不仅仅用于工业,还广泛地应用于医疗与人体。空调以前,中国皇帝夏日纳凉要取高山之冰,1911年,美国人W·卡里尔发明了空调,人开始胜天。阿司匹林1897年,德国人费利克斯·霍夫曼合成乙酰水杨酸,两年后登记的商品名为阿司匹林,一个世纪后成为最大众化的药品。汽车1913年,美国汽车制造商亨利·福特正式启用他的汽车组装流水线,降低了成本,提高了效率,使汽车进入寻常百姓家,成了这个世纪拥有决定性影响的一件大事。飞机1901年8月14日,第一架动力飞机开始飞行。1933年,世界上第一条正规航线开通,大大拓展了人类的活动空间。电灯1913年.钨丝取得专利后,电灯开始大放光明。传真1902年,传真第一次传送,传真用于商业始于1926年。电影电影成为一种娱乐始于1895年12月28日,最早流行的有声电影《爵士歌唱家》l927年10月在纽约上映,第一部彩色电影《虚荣城市》1935年在英美同时上映,第一部宽银幕电影1953年问世。复印机1907年,世界上最早的照相复印机在美国纽约出现,1959年,施乐914型静电复印机面市后复印机开始被广为应用。彩色相片上个世纪就有了彩色照相的原理,但直到本世纪40年代才有了第一批彩色胶卷,彩色相片走过了漫长的跨世纪之路。电视当今世界上人均拥有量极高的电视(平均每10人拥有一部) 始于1927年,始于美国人之手。因特网本世纪发明的全球最大的由众多网络互相连接而成的计算机网络,与电视机一起,让每天发生的世界性新闻及时传播到地球的每一个角落,拉开了信息时代的大幕。激光1960年第一台激光器诞生。隐形眼镜发明于中世纪的眼镜,直到1945年隐形眼镜的出现才有了实质性的进展,1964年,软质隐形眼镜发明。心动记录器1958年,瑞典人奥克·森宁发明了心动记录器,60年代开始应用,至今,被它挽救的生命不计其数。电子计算机第二次世界大战时开始研制,1943年制造出第一台类似于现今电子计算机的计算机。盘尼西林1929年,英国的弗莱明首次研制,1941年用于第二次世界大战中受伤的士兵,被誉为仅次于原子弹的发明。避孕药1959年避孕药被研制出,人类开始控制自身的出生率。塑料在本世纪前不存在的塑料已成了我们这个世纪不可少的东西,它始于1909年美国人L·贝克兰发明的酚醛塑料的制作方法。雷达从1935年起,人们开始利用极短的无线电波测定远距离的或看不见的目标。无线电1901年意大利人马克尼成功地进行了第一次无线电通讯,1948年半导体收音机被发明。X光从1895年就存在的X射线到本世纪的头10年才应用于医疗,才发挥出了它巨大的能量。核能1939年实现,1956年始用于发电。手表人类历史上改变次数较多的发明之一,能戴起来的较舒适的手表出现于1904年。人工肾维伦·科夫1945年设计了第一个人工肾,这种血液透析装置延长了无数肾功能衰竭者的生命。机器人1983年,联邦德国沃尔夫斯堡大众汽车股份公司制造生产了第一个机器人。人造卫星1957年10月4日,前苏联发射的第一颗人造卫星开辟了人类的航天时代。信用卡金钱史上,信用卡的出现是自货币出现后的最大革命。首张信用卡是20年代印发的,普遍使用的信用卡是1950年印发的。输血1900年卡尔·兰德发现人的血型后使输血成了可能。克隆技术1997年,英国科学家成功地培育出克隆绵羊“多利”。在此之前,人类充满想象力的所有创造中,唯一的缺憾是“人不能造人”,所以人类长期以来把这项最神奇的制造归功于看不见、摸不着的神秘力量。克隆技术的诞生,使20世纪的最后神话开始走向破灭。除了上述的一些重要发明外,本世纪人类的另外两个巨大成就也将名垂史册: 联合国这个世纪最伟大的另一个成就就是,人类找到了通向和平的道路,由于两次世界大战血的教训,联合国应运而生。我们已在波黑战争、柬埔寨内战、中东和谈中看到了这一作用。世界贸易过去的许多国际争端大都是为了争夺资源,战争的代价常常昂贵到得不偿失。国际贸易使全球资

北大电磁学2011期末-试题+答案

北京大学信息科学技术学院考试试卷考试科目:电磁学姓名:学号: 考试时间:2011 年6 月23 日任课教师: 以下为试题和答题纸,共8 页。

一、(30分) 1.(10分) 请写出以下定律或概念的数学表达式: (1)毕奥-萨伐尔定律: 2 0? 4r r l Id B d ?= πμ (2)安培力公式:B l Id F d ?= (3)由电势计算电场强度的公式: U E -?= (4)传导电流密度与载流子漂移速度间的关系式: v nq j = (5)分别写出电感L 、电容C 的复阻抗的e 指数形式: 2 π ωj Le ;21π ωj e C - 2. (6分)如下图所示,原本不带电的空心金属球壳内偏离球心的一个位置放置一个点电荷,该点电荷为正电荷,在图上画出电场线的示意图。(要求:电场线的关键特征画得要明显,可使用文字注释说明其关键特征。)

3. (4分)如下图所示,在外磁场 0B 中有顺磁质的圆棒1,抗磁质的圆 棒2,请在1、2棒的侧面画上磁化电流方向的示意图。 4. (10分)填空:有电阻R 、电容C 和电感L 构成的串联电路, (1)该电路的固有频率 10LC =ω (2)该电路的时间常数R L = τ (3) 假设t=0时的初条件是电容上有一定电荷量Q ,然后接通电路开关,接通串联的R 和L ,则t=0时电阻上的电压的大小 = ___0____ (4) 假设如上(3)所述,接通开关后,电流方向始终不变,则电路的 R 、L 、C 必然满足的条件为: 5.01 ≤R C L (5) 如果电路不满足(4)中的条件,则电路中的电流随时间如何变化(文字描述即可): _阻尼振荡,__________ 1 2 B

物理法拉第电磁感应定律的专项培优练习题及答案

一、法拉第电磁感应定律 1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力. (1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少? (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少? (3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少? 【答案】(1)1.2 V(2)3.2 J(3)0.9 J 【解析】 【详解】 (1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为: 10.44V=1.6 V E BLv ==?? 因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压: U eb=3 4 E=1.2 V. (2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力: F安=BLI 根据闭合电路欧姆定律有: I=E R 联立解得解得F安=4 N

电磁学的开始

电磁学的开始 1785年,法国物理学家库仑用扭秤实验测定了静电与静磁之间的相互作用,从而发现了库仑定律。但包括库仑在内的一大批科学家都怀疑电和磁之间存在相互联系;库仑甚至断言,电与磁是两种完全不同的实体,它们不会有什么联系,尽管它们的作用规律在数学形式上相同,但它们的本质却完全不同的东西。就连光的波动学说的创立者托马斯·杨(T.Young,1773~1829)和超距论电动力学的奠基人安培也都赞同库仑的观点。1820年,丹麦物理学家奥斯特(Hans Christian Oersted,1777~1851年)向科学界宣布了电流的磁效应的发现,这一重大发现第一次揭示了电与磁的联系,开创了电磁学研究的新纪元,从而宣告了电磁学的开始。 1、奥斯特电流磁效应的发现 奥斯特是丹麦一个小镇上药店商人的儿子,十二岁时他已受过很好的教育,在他父亲的店里担任助手,这项工作激发了他的科学兴趣。后来他在哥本哈根大学学习医学、物理学和天文学;当他听到了伏打的发现后,立即开始电流实验。1801年,他进行传统的欧洲游历,到了法国、德国和荷兰。他在德国会见了哲学家谢林(Schelig)、物理学家伦福德伯爵和其他科学家。1803年他回到了哥本哈根,1806年,他成为哥本哈根大学实验物理学教授。19世纪初,德国哲学家康德(I.Kant,1724~1804)的基本力和基本力向其他种类的力转化的哲学思想,对促进物理学家去寻找电与磁的本质联系起了积极的作用。奥斯特深受康德哲学的影响,坚信自然力统一的思想,认为电、磁、光、热等现象之间存在着某种内在的联系。为了寻找电与磁之间的联系,奥斯特做出了不懈的努力。 1812年,奥斯特在《关于化学力和电力的统一的研究》的著作中提 出了这样的设想:如果使电流通过直径较小的导线,导线就会发热;若 进一步缩小导线的直径,电流会使导线发光;进而推知,当导线直径小 到一定程度,电流将会产生磁效应。虽这条思路本身有着明显的错误, 但他的电能转化为磁的思想却是可贵的。此后几年,他一直关注这一课 题。奥斯特猜想:如果电流能够产生磁效应的话,那么这种效应不可能 在电流的方向上发生,因为许多人在这个方面所作努力的失败已经证明 了这一点;这种作用很可能是横向的。在没有证实他的假想之前,他不 愿在课堂上公开他的思想。1820年4月,奥斯特在给具有相当物理学知 识的学者讲授电、伽伐尼电和磁课程时做了一个实验,他用一个小伽伐 尼电池的电流通过一条细铂丝,铂丝放在一个带玻璃罩的指南针上,结 果盒中的磁针被扰动了,尽管效应很弱,看上去也不规则,并未给听众留下强烈的印象,但奥斯特深知这种扰动背后所包含的巨大意义,他为此兴奋不已。 在以后的三个月中,奥斯特深入地进行了实验研究。奥斯特将玻璃、木头、水、松脂、瓦片、石块等非磁性物体插在导线与罗盘之间,没有发现偏转的磁针与没有插入这些物体之前有什么不同。甚至当磁针浸在装有水的铜盆里的时候,磁针在电流的作用下仍然偏转,因此他得出结论:“电流冲击只作用在磁性粒子上,所有非磁性物体对于电流冲击是可以忽略 的。由于磁性物质或者磁性粒子阻止这种冲击通过,因而它们被电流冲击的冲力带动而发生偏转。”奥斯特又发现,磁针分别放在导体的上面和下面时,它的偏转方向正好相反。如图3-1所示奥斯特实验,实验发现在载流长直导线附近平行放置的磁针受力沿垂直于导线的方向偏转,即磁针的N极垂直于由导线和磁针构成的平面(图中用虚线画出) 图6-7为奥斯特电流磁效应的 发现

法拉第电磁感应专题大题

法拉第电磁感应定律专题 1.如图所示,宽度L二的足够长的平行光滑金属导轨固定在绝缘水平面上,导 轨的一端连接阻值R=Q的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度B=.—根质量m=10g的导体棒MN放在导轨上,并与导轨始终接触良好,导轨和导体棒的电阻均可忽略不计。现用垂直MN的水平拉力F拉动导体棒使其沿导轨向右匀速运动,速度v=s,在运动过程中始终保持导体棒与导轨垂直。求: (1)在闭合回路中产生感应电流I的大小; (2)作用在导体棒上拉力F的大小; (3)当导体棒移动50cm时撤去拉力,求整个过程中电阻R上产生的热量Q。 X X 乂MX XXX Q, R2=6Q,整个装置放在磁感应强度为B=的匀强磁场中,磁场方向垂直与整个导轨平面,现用外力F拉着AB向右以v=5m/s速度作匀速运动.求: (1)导体棒AB产生的感应电动势E和AB棒上的感应电流方向, (2)导体棒AB两端的电压U. 3.如图所示,半径为R的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应 强度为B,方向垂直于纸面向内。一根长度略大于导轨直径的导体棒MN以速率v在圆导轨上从左端滑到右端,电路中的定值电阻为r,其余电阻不计, 导体棒与圆形导轨接触良好。求: (1)在滑动过程中通过电阻r的电流的平均值; (2)MN从左端到右端的整个过程中,通过r的电荷量; (3)当MN通过圆导轨中心时,通过r的电流是多大 2.如图所示,两个光滑金属导轨(金属导轨电阻忽略不计)相距L=50cm, 导体棒AB的电阻为r=1 Q,且可以在光滑金属导轨上滑动,定值电阻R1=3 4?如图(a)所示,平行金属导轨MN、PQ光滑且足够长,固定在同一水平面上,两导轨间距L=,电阻R=Q,导轨上停放一质量m =、电阻r =Q的金属杆, 导轨 X X n n XXX F X X X [x X XXX X X i/ X X X

经典电磁场理论发展简史..

电磁场理论发展史 ——著名实验和相关科学家 纲要: 一、定性研究 1、吉尔伯特的研究 2、富兰克林 二、定量研究 1、反平方定律的提出 2、电流磁效应的发现 3、电磁感应定律及楞次定律 4、麦克斯韦方程 5、电磁波的发现 三、小结 一、定性研究 1、吉尔伯特的研究 他发现不仅摩擦过的琥珀有吸引轻小物体的性质,而且一系列其他物体如金刚石、水晶、硫磺、明矾等也有这种性质,他把这种性质称为电性,他是第一个用“电力”、“电吸引”、“磁极”等术语的人。吉尔伯特把电现象和磁现象进行比较,发现它们具有以下几个截然不同的性质: 1.磁性是磁体本身具有的,而电性是需要用摩擦的方法产生; 2.磁性有两种——吸引和排斥,而电性仅仅有吸引(吉尔伯特不知道有排斥); 3.磁石只对可以磁化的物质才有力的作用,而带电体可以吸引任何轻小物体; 4.磁体之间的作用不受中间的纸片、亚麻布等物体的影响,而带电体之间的作用要受到中间这些物质的影响。当带电体浸在水中,电力的作用可以消失,而磁体的磁力在水中不会消失; 5.磁力是一种定向力,而电力是一种移动力。

2、富兰克林的研究 富兰克林(公元1706一1790)原来是费城的印刷商,他通过书本和科学上的来往获得了丰富知识,他利用莱顿瓶做出的第一项重要工作,是根据莱顿瓶内外两种电荷的相消性,在杜菲的“玻璃电”和“树脂电”的基础上提出正电和负电的概念。 富兰克林所做的第二项重要工作是统一了天电和地电。 二、定量研究 1、反平方定律的提出 1750年前后,彼得堡科学院院士埃皮努斯在实验中发现;当发生相互作用的电荷之间的距离缩短时,两者之间的吸引力和排斥力便增加。1766年富兰克林写信给他在德国的一位朋友普利斯特利(公元1733一1804),介绍了他在实验中发现在金属杯中的软木球完全不受金属杯电性的影响的现象。他请普利斯特利给予验证。 英国科学家卡文迪许在1772年做了一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。 法国物理学家库仑(公元1736—1806),起先致力于扭转和摩擦方面的研究。由于发表了有关扭力的论文,于1781年当选为国家科学院院士。他从事研究毛发和金属丝的扭转弹性。1784年法国科学院发出船用罗盘最优结构的悬奖征文,库仑转而研究电力和磁力问题。 1785年库仑自制了一台精巧的扭秤,作了电的斥力实验,建立了著名的库仑定律:两电荷之间的作用力与其距离的平方成反比,和两者所带电量的乘积成正比。 公式:F=k*(q1*q2)/r^2 2、电流磁效应的发现 丹麦物理学家奥斯特(公元1777—1851)首次发现电流磁效应,揭开了电和磁两种现象的内在联系,从此开始了电磁学的真正研究。 1820年4月在一次关于电和磁的讲课快结束时,他抱着试试看的心情做了实验,在一根根细的铂丝导线的下面放一个用玻璃罩罩着的小磁针,用伽伐尼电池将铂丝通电,他发现磁针偏转,这现象虽然未引起听讲人的注意,却使他非常激

电磁学期末考(B)

一、 计算题:(共70分) 1. 半径为R 的圆面均匀带电,电荷的面密度为e σ。 ⑴求轴线上离圆心的坐标为x 处的场强; ⑵在保持e σ不变的情况下,当0→R 和∞→R 时的结果各如何? ⑶在保持总电荷e R Q σπ2=不变的情况下,当0→R 和∞→R 时的结果各如何? ⑷求轴线上电势)(x U 的分布,并画出x U -曲线。 2. 一对同轴无穷长直的空心导体圆筒,内、外半径分别为1R 和2R (筒壁厚度可以忽略)。电流I 沿内筒流去,沿外筒流回(见本题图) ⑴计算两筒间的磁感应强度B ; ⑵通过长度为L 的一段截面(图中阴影区)的磁通量B Φ; ⑶计算磁矢势A 在两筒间的分布。 3. 只有一根辐条的轮子在均匀外磁场B 中转动,轮轴与B 平行,如本题图所示。轮子和辐条都是导体,辐条长为R ,轮子每秒转N 圈。两根导线a 和b 通过各自的刷子分别与轮轴和轮边接触。 ⑴求a 、b 间的感应电动势ε; ⑵若在a 、b 间接一个电阻,使辐条中的电流为I ,问I 的方向 如何? ⑶求这时磁场作用在辐条上的力矩的大小和方向; ⑷当轮反转时,I 是否也会反向? ⑸若轮子的辐条是对称的两根或更多根,结果如何? 4. ⑴求无限长同轴线单位长度内的自感系数(图8),已知内、外半径分别 是1R 和2R (12R R >),其间介质的磁导率为μ,电流分布在两导体 表面。 ⑵若电流在内柱横截面上均匀分布,结果有何变化?

5. 如本题图所示,一平行板电容器两极板的面积都是S ,相距为d ,今在其间平行地插入 厚度为t 、介电常量为ε的均匀电介质,其面积为2/S ,设两板分别带电荷Q 和Q -,略去边缘效应,求 ⑴两板电势差U ; ⑵电容C ; ⑶介质的极化电荷面密度'e σ。 6. 本题图是一个正在充电的圆形平行板电容器,设边缘效应可以忽略,且电路是准恒的。 求证: ⑴坡印亭矢量H E S ?=处处与两极板间圆柱形空间的侧面垂直; ⑵电磁场输入的功率??∑??d H E 等于电容器内静电能的增加率,即dt dq C 2 21,式中C 是电容量,q 是极板上的电量。

法拉第电磁感应定律高三物理一轮专题.docx

法拉第电磁感应定律 例 1. 如图 3 所示,边长为 a 的正方形闭合线框 ABCD 在匀强磁场中绕 AB 边匀速转动,磁感应强度为 B,初时刻线框所在平面与磁感应线垂直,经过 t 时间转 过 120°角,求:(1)线框内感应电动势在 t 时间内 的平均值; ( 2)转过 120°角时感应电动势的瞬时值 . 例 2 A 、B 两闭合圆形导线环用相同规格的导线制成,他们的半径之比为 rA:rB = 2:1 ,在导线环保会的匀强磁场区域,磁场方向垂直于导线环平面,如图,当磁场的磁感应强度随时间均匀增大过程中,求两导线 环内产生的感应电动势之比和流过两导线环的感 应电流大小之比 例 3.. 如图 5 所示,闭合导线框的质量可以忽略不计,将它从图示位置匀速拉出匀强磁场。若第一次用 0.3s 时间拉出,外力所做的功为 W1,通过导线截面 的电 量为 q 1;第二次用 0.9s 时间拉出,外力所做的功为W2,通过导线截面的电量为 q 2,则() A. W1W2,q1q2 B. W 1W2,q1q2 C. W1W2,q1q2 D.W1W2, q1q2 例 4. 一直升机停在南半球的地磁极上空,该处地磁场叶片的长度为 l,螺旋桨转动的频率为 f ,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动 .螺 旋桨叶片的近轴端为 a ,远轴端为 b ,如图所示 . 如果 忽略 a 到转轴中心线的距离,用 E 表示每个叶片 中的感应电动势,则() A.E=πfl2B, 且 a 点电势低于 b 点电势 B.E=2πfl2B ,且 a 点电势低于 b 点电势 C.E=πfl2B ,且 a 点电势高于 b 点电势 D.E=2πfl2B ,且 a 点电势高于 b 点电势 例5 如图所示,一导线弯成半径为a 的半圆形闭合回路。虚线 MN 右侧有磁感应强度为 B 的匀强磁场。方向垂直 于回路所在的平面。回路以速度 v 向右匀速进入磁场,直径 CD 始络与 MN 垂直。从 D 点到达 边界开始到 C 点进入磁场为止,下列结论正确的是 () A 感应电流方向不变 B .CD段直线始 终不受安培力 C 感应电动势最大值 E=Bav D 感应电动势平均 值 E=0.25πBav y v R B O x

(计算题)法拉第电磁感应定律及其应用专题训练

法拉第电磁感应定律及其应用专题训练 计算题部分 1.如图所示,MN和PQ为竖直方向的两平行长直金属导轨,间距L为1m,电阻不计.导轨所在的平面与磁感应强度B为1T的匀强磁场垂直.质量m=0.2kg、电阻r=1Ω的金属杆ab始终垂直于导轨并与其保持光滑接触,导轨的上端有阻值为R=3Ω的灯泡.金属杆从静止下落, 当下落高度为h=4m后灯泡保持正常发光.重力加速度为g=10m/s2.求: (1)灯泡的额定功率; (2)金属杆从静止下落4m的过程中通过灯泡的电荷量; (3)金属杆从静止下落4m的过程中所消耗的电能 2.如图所示,两根足够长的光滑直金属导轨MN、PQ平行固定在倾角θ=37°的绝缘斜面上,两导轨间距L=1m,导轨的电阻可忽略.M、P两点间接有阻值为R的电阻.一根质量m=1kg、电阻r=0.2Ω的均匀直金属杆ab放在两导轨上,与导轨垂直且接触良好.整套装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直斜面向下.自图示位置起,杆ab受到大小为F=0.5v+2(式中v为杆ab运动的速度,力F的单位为N)、方向平行导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R的电流随时间均匀增大.g取10m/s2,sin37°=0.6. (1)试判断金属杆ab在匀强磁场中做何种运动,并请写出 推理过程; (2)求电阻R的阻值; (3)求金属杆ab自静止开始下滑通过位移x=1m所需的时 间t. 3.如图,两根相距l=0.4m、电阻不计的平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连。导轨x>0一侧存在沿x方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k=0.5T/m,x=0处磁场的磁感应强度B0=0.5T。一根质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直。棒在外力作用下从x=0处以初速度v0=2m/s沿导轨向右运动,运动过程中电阻上消耗的功率不变。求: (1)电路中的电流; (2)金属棒在x=2m处的速度; (3)金属棒从x=0运动到x=2m过程中安培力做功的大小; (4)金属棒从x=0运动到x=2m过程中外力的平均功率

电磁学的历史

电磁学发展简史 一. 早期的电磁学研究 早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下:1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学(图1)的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。 1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤,如图2所示。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律。

在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。 欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,给出了欧姆定律的理论推导。

相关文档