文档库 最新最全的文档下载
当前位置:文档库 › 21-Arm star polymers with different cationic groups based on cyclodextrin core for DNA delivery

21-Arm star polymers with different cationic groups based on cyclodextrin core for DNA delivery

21-Arm star polymers with different cationic groups based on cyclodextrin core for DNA delivery
21-Arm star polymers with different cationic groups based on cyclodextrin core for DNA delivery

21-Arm star polymers with different cationic groups based on cyclodextrin core for DNA delivery

Jianshu Li a ,Zhizhang Guo a ,Jianyu Xin a ,Guanglei Zhao b ,Huining Xiao c,*

a

College of Polymer Science and Engineering,Sichuan University,Chengdu 610065,China

b

College of Light Ind.and Food Sci.,South China University of Technology,Guangzhou 510640,China c

Department of Chemical Engineering,University of New Brunswick,P.O.Box 4400,Fredericton,Canada NB E3B 5A3

a r t i c l e i n f o Article history:

Received 1July 2009

Received in revised form 24July 2009Accepted 3August 2009

Available online 9August 2009Keywords:

b -Cyclodextrin Star polymer

Gene delivery system Cell transfection Cytotoxicity

a b s t r a c t

A series of cationic star polymers with 21arms (21ACSPs)were synthesized through atom transfer radical polymerization using a b -cyclodextrin initiator with 21initiation sites.Monomers containing primary,tertiary amino and quaternary ammonium groups were polymerized using 21Br-b -CD,Cu(I)Br and 2,20-dipyridyl as initiator,catalyst and ligand,respectively.It was found that a co-solvent of 1-methyl-2-pyrrolidione and water (1:1)could facilitate the reaction,resulting in a well-controlled living polymer-ization.The conversion was up to 95%compared to the previously reported method (60%).AFM and DLS measurement revealed that 21ACSPs have the ability to condense the plasmid DNA (pCMV-Luc)to 80–180nm.21ACSPs with primary and tertiary amino groups exhibited higher cell transfection ef?ciency to CHSE-214cells than 21ACSPs with quaternary ammonium groups.Meanwhile,all of the reported star polymers have no obvious cytotoxicity.The ?ndings from this work are expected to be helpful for the development of ef?cient DNA delivery system.

ó2009Elsevier Ltd.All rights reserved.

1.Introduction

It has been realized that the lack of non-toxic and ef?cacious delivery systems is the greatest hurdle in exploiting the full poten-tial of gene therapy.Over the past decade,nonviral DNA vectors have been demonstrated to be a safety-reliable substitute of viral vector for use in gene therapy (Li &Loh,2008;Ooya et al.,2006;Opanasopit et al.,2009;Pack,Hoffman,Pun,&Stayton,2005;Shen,Li,Tu,&Zhu,2009).In addition to cationic lipids,cationic polymer is one of the typical kinds of nonviral DNA vector due to its capa-bility to condense DNA into small particles termed polyplexes through electrostatic self-assembly (Merdan,Kopecek,&Kissel,2002).The polyplex can bind to cell surfaces and be internalized into the cell through endocytosis.However,both extracellular and intracellular biological barriers can inhibit the approach of the therapeutic gene into the cell nucleus.Currently,the identi?ed biological barriers include the systemic barriers (e.g.,the gene tar-geting (Bellocq,Pun,Jensen,&Davis,2003))and the cellular barri-ers (e.g.,the endosomal escape after endocytosis (Kichler,Leborgne,Coeytaux,&Danos,2001)and the nuclear barrier (Brem-ner,Seymour,Logan,&Read,2004)).

Synthetic cationic polymers can be tailored for various applica-tions by choosing appropriate molecular weight (Yang,Li,Goh,&

Li,2007),suitable charge density (Reineke &Davis,2003),coupling of cell or tissue speci?c targeting moieties,and performing other modi?cation that afford them speci?c physicochemical or physio-logical properties (Merdan et al.,2002).Polyethylenimines (PEI),both branched and linear types,provide ef?cient transfection due to the well known ‘‘proton sponge property”(Boussif,Zanta,&Behr,1996).However,it was found that the cytotoxicity of PEI is rather high,which may limit its further applications (Fischer,Bieber,Li,Elsasser,&Kissel,1999).Poly(L -lysine)-based polymeric vectors are also widely investigated (Wolfert et al.,1999)due to their biodegradable property contributed by the peptide structure.Nevertheless,the DNA transfection ef?ciency of poly(L -lysine)based polymers is poor unless conjugating with speci?c ligands,such as transferrin or folate (Cho,Kim,Jeong,&Park,2005),or with the help of endosomolytic or lysosomotropic agents such as chlo-roquine (Pouton et al.,1998).Dendrimers,which are spherical and hyperbranched,are also the effective cationic polymers for gene delivery.It was believed that the star shape of dendrimers determined their excellent transfection performance:DNA interact with the surface amino groups only,leaving the internal amino groups available for the neutralization of the acid pH within the endosomal or lysosomal compartment (Lee,Wang,&Low,1996).It was also found the fractured dendrimers exhibit much higher levels (>50-fold)of reporter gene expression than that of intact dendrimers due to the better ?exibility to complex DNA (Tang,Redemann,&Szoka,1996).However,from a molecular structural

0144-8617/$-see front matter ó2009Elsevier Ltd.All rights reserved.doi:10.1016/j.carbpol.2009.08.006

*Corresponding author.Tel.:+15064533532;fax:+15064533591.E-mail address:hxiao@unb.ca (H.Xiao).Carbohydrate Polymers 79(2010)

277–283

Contents lists available at ScienceDirect

Carbohydrate Polymers

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c a r b p o

l

design point of view,the structure of dendrimers is rather con-gested;and the generation of the dendrimers is thus limited to form a star with more cationic groups.Also,the?exibility of den-drimers will decrease with the increase of their generations, whereas the star polymer have better?exibility due to the lack of the connection between each generation as that of dendrimers. This literally raises the demand on the synthesis of star polymers with a star shape similar to dendrimers but does not have a limita-tion of the length of its branches.Georgiou et al.(Georgiou,Phylac-tou,&Patrickios,2006;Georgiou,Vamvakaki,Patrickios,Yamasaki, &Phylactou,2004)did the?rst study about star polymers based on 2-(dimethylamino)ethyl methacrylate(DMAEMA)as gene vectors and compared them to a commercially available dendrimer(Super-Fect).The overall transfection ef?ciency of the optimum star poly-mer to human cervical HeLa cancer cells was comparable to the SuperFect.A recent work reported by Yang et al.,have revealed that a kind of cationic star polymer consisting of a-cyclodextrin core and oligoethylenimine arms could reduce the cytotoxicity but retain or even enhance the gene transfection ef?ciency of PEI(25K)(Yang et al.,2007).Xu et al.(2009)also prepared star-shaped copolymer consisting of b-CD core and DMAEMA arms, with poly(poly(ethylene glycol)ethyl ether methacrylate))P(PEGE-EMA)as end blocks.The unique star-shaped architecture can re-duce cytotoxicity and enhance the gene transfection ef?ciently compared with that of PEI(25K).Thus further research on star polymer is expected to be promising as an effective DNA vector due to the various reasons addressed above.

Living polymerization,including atom transfer radical polymer-ization(ATRP),has been often used for synthesizing star polymers with well-de?ned structure,arm chain length in particular(Simms &Spinelli,1997).In our previous study,a special ATRP initiator with 21initiation sites(21Br-b-CD)was synthesized(Li&Xiao,2005), and followed by the success in synthesizing a range of21-arm cat-ionic star polymer(Star-p(MeDMA))with well-de?ned structures using the initiator(Li,Xiao,Kim,&Lowe,2005).The polymerization was carried out in aqueous solution and the resulting star polymers are suitable for potential biomedical applications.

The Star-p(MeDMA)was synthesized from monomer with qua-ternary ammonium groups,which will not have the‘‘proton sponge property”(Boussif et al.,1995)at physiological pH.Also, the moderate water solubility of the21Br-b-CD was proved to be a limitation to obtain21arms star polymers(Li et al.,2005).In this work,we utilized a mixed solvent of1-methyl-2-pyrrolidione and water to facilitate the living polymerization of a series of novel cat-ionic star polymers with21arms(21ACSPs)through ATRP using 21Br-b-CD initiator.In addition,monomers bearing primary,ter-tiary amino and quaternary ammonium groups,which have been polymerized into linear polymers as DNA vectors and with suitable p K a values(Rémy-Kristensen,Clamme,Vuilleumier,Kuhry,&Mély, 2001),were all used in an attempt to identify the polymer struc-ture–bioactivity relation in terms of physicochemical properties, cell transfection ef?ciency and cytotoxicity.

2.Experimental

2.1.Materials

Heptakis[2,3,6-tri-O-(2-bromo-2-methylpropionyl)]-b-cyclodex-trin(21Br-b-CD)was synthesized using an improved synthetic-route developed in our previous work.Ethylenediamine,glycidyl methacrylate,2-(Dimethylamino)ethyl methacrylate(DMAEMA), N-[3-(Dimethylamino)propyl]methacrylamide(DMAPMAm)and [2-(methacryloyloxy)ethyl]trimethyl ammonium chloride(MeD-MA)were obtained from Aldrich.Cu(I)Br,2,20-bipyridine(bpy), 1-methyl-2-pyrrolidione(NMP),branched polyethylenimine(PEI,25KDa),chloroquine and other regents were purchased from Al-drich and used without further puri?cation.GPC standard samples, Pullulan(P-82,a linear macromolecular polysaccharide that con-sists of links of maltotriose)from P-5to P-800,were obtained from Shodex.Spectra/Por dialysis membrane(MWCO1000)was pur-chased from Spectrum Laboratories Inc.Distilled–deionized water was used in all the experiments.

Plasmid pCMV-Luc containing the luciferase as a reporter gene was obtained from Plasmid Factory,Bielefeld,Germany.CHSE-214 (Chinook salmon embryo)cell line was purchased from American Type Culture Collection(ATCC).Both luciferase assay kit and pro-tein BCA assay kit were purchased from Sigma.

2.2.Synthesis and characterization of21arms cationic star polymers (21ACSPs)

First,the cationic monomer with primary amino group,i.e.,[2-hydroxy-3-(2-aminoethyl)amino]propyl methacrylate(HAE-APMA),was synthesized as follows:Dropwise add14.66g glycidyl methacrylate into the mixture of6.02g ethylenediamine in30ml H2O.The reaction was then carried out at room temperature for additional45min.The obtained HAEAPMA was precipitated and washed by cold diethyl ether(3?50ml)(Anal.C9H18N2O3,C,H,N; FTIR(zinc selenide):1717cmà1(m C=O),1042cmà1(m C–N);1H NMR (D2O,300MHz):d2.72(N–H),d1.3(C–H).).The polymerizations of HAEAPMA as well as other cationic monomers with tertiary amino or quaternary ammonium groups,i.e.,2-(Dimethylamino)ethyl methacrylate(DMAEMA),N-[3-(Dimethylamino)propyl]meth-acrylamide(DMAPMAm)and[2-(methacryloyloxy)ethyl]trimethyl ammonium chloride(MeDMA),were conducted under the same conditions as those addressed in our previous paper(Li et al., 2005).The only difference was that the polymerization proceeded in a co-solvent of1-methyl-2-pyrrolidione(NMP)and water at a ratio of1:1instead of water alone.The resulting21ACSPs were puri-?ed with dialysis membrane(MWCO1000)against water for24h prior to use.

1H NMR spectra of the samples in D

2

O were acquired using a Var-ian Unity400spectrometer operated at300MHz in order to quantify the monomer conversion in ATRP.The conversion of monomer was determined by comparing the peak integrals of the monomer vinyl signals at d5.5and d6.0to those of the methacrylate backbone at d0.5–1.1and d1.5–2.0(Li,Armes,Jin,&Zhu,2003).Apparent charge density of the21ACSPs was determined via colloidal titration using a Particle Charge Detector Mütek PCD03(Herrsching,Germany).

0.2ml of0.1%polymer solution was added into the sample cell containing9.8ml water.The solution was titrated with a standard anionic polyelectrolyte(potassium polyvinyl sulphate(PVSK)solu-tion)(concentration=1mM).The charge densities of the star poly-mers were estimated from the volume of the anionic polymer solution required to reach the end point during titration.Three re-peats were conducted to acquire an average value for each sample. Gel permeation chromatography(GPC)(Pump:Waters600E System Controller;Detector:Waters410Differential Refractometer)was carried out to determine their molecular weights with Ultrahydrogel 250and Ultrahydrogel500columns at40°C and the?ow rate at 0.7ml/min.Water was used as an eluent.Calibration was made using standard Pullulan samples from P-5to P-800.The standard sample aqueous solutions(0.2%w/v)were?ltered with a0.45l m Nylon Cameo?lter-syringe before the test.

2.3.Preparation of21ACSPs/DNA polyplexes

Stock21ACSPs and luciferase plasmid(pCMV-Luc)solutions were prepared in PBS buffer at pH=7.4at various molar ratios of N/P up to10prior to each experiment.Polyplex formation always utilized the solutions of equal volumes with the polymer solution

278J.Li et al./Carbohydrate Polymers79(2010)277–283

being added to the DNA solution,not the opposite sequence(Bous-sif et al.,1996).The mixed solution was vortexed and incubated at room temperature for30min before use.Polyplexes were freshly prepared before each individual measurement.

2.4.Zeta-potential measurements of21ACSPs/DNA polyplexes

The DNA concentration was held constant at20l g/ml,whereas the N/P ratios of the21ACSPs/pCMV-Luc polyplexes were varied. An electrophoresis meter DELSA440SX(Coulter,USA)was used to determine the zeta-potential of the polyplexes in the presence of0.1mM NaCl in aqueous solution at25°C.The system was rou-tinely calibrated using aà55mV standard.Three repeats were conducted to acquire an average value for each test.

2.5.Particle characterization by atomic force microscopy(AFM)and dynamic light scattering(DLS)

Imaging samples of21ACSP alone were prepared at a concentra-tion of100l g/ml.Samples containing polyplexes in water were ?xed at a?nal DNA concentration of10l g/ml.Samples were deposited onto the center of a freshly split untreated mica disk (Agar Scienti?c Inc.).Following the adsorption for1–2min at room temperature,excess?uid was taken off by absorption onto?lter paper.The mica surface was dried at room temperature before imaging.A Nanoscope IIIa controller with a Multimode Pico-Force AFM(Veeco Instruments Inc.,Santa Barbara,CA)was used.AFM imaging was performed in air in Multimode using silicon tapping tips(NP-S20,Veeco Instruments).

Dynamic light scattering(DLS)size determination:21ACSP/ DNA polyplexes were prepared as previous procedure and then di-luted with PBS to a?nal concentration of1l g DNA/ml.Polyplex size determination was performed on a DynaPro-MS800(Protein Solutions,Lakewood,NJ)with Dynamics v6.3software.Samples were run in triplicate.

2.6.Transfection in vitro and cell viability

CHSE-214cells were seeded in12well plates at a density of 50,000cells per well one day before transfection.At the day of transfection,the cells have grown to approximately60–80%con-?uence.Transfection experiments were performed with4l g of pCMV-Luc per well as follows:prepare polyplexes with adding appropriate amount of21ACSP in300l l PBS buffer to4l g plasmid in300l l PBS buffer(pH=7.4).Remove the medium and rinse the cells with4°C PBS(3?5min?2ml).Add the polyplexes in1ml of fresh medium without FBS.Then the cells were incubated at room temperature for4h.After that,the medium was exchanged and the cells were incubated for additional40h.Luciferase gene expression was quanti?ed using a Luciferase Assay Kit(Sigma) with a POLARstar OPTIMA luminometer(BMG LABTECH,USA).Re-sults in relative light units per second(RLU/s)were converted into nanograms of luciferase by creating a calibration curve with lucif-erase standard(Sigma).Protein concentration in each sample indi-cating cell viability was determined using BCA Protein Assay Kit. The?nal transfection results were expressed in nanograms of lucif-erase per milligram of protein.pCMV-Luc alone was used as a con-trol and data is reported from six separate experiments.

3.Results and discussion

3.1.Synthesis of21ACSPs by ATRP in co-solvent

Living polymerization,including atom transfer radical polymer-ization(ATRP),has often been used for synthesizing star polymers with well-de?ned structure by both core-?rst and arm-?rst meth-ods(Simms&Spinelli,1997).In our previous work(Li&Xiao, 2005),we developed a novel ATRP initiator(21Br-b-CD)with21 initiation sites based on b-cyclodextrin(b-CD).The21sites in b-CD are due to its cyclic oligosaccharide consisting of seven glu-cose units linked by a-1,4-glucosidic bonds and each unit having three substitutable hydroxyl groups.After preparing the initiator, we synthesized a cationic star polymer(Star-p(MeDMA))in aque-ous medium and obtained some positive results(Li et al.,2005). However,we found that the limited water solubility of21Br-b-CD restricted its induction of ATPR in preparing the star poly-mers with a wide range of molecular weights.For example,at a higher initiator concentration of100/1/2/5([M]0/[I]0/[Cu(I)0/ [L]0])at40or60°C which was aimed at acquiring a star polymer with low molecular weight,the ATRP process,however,lost con-trol and resulted in the polymer with very high molecular weight. The reason is simple:the21Br-b-CD initiator could not be com-pletely dissolved at this condition and the low initiator ef?ciency would generate much higher molecular weight with broad polydis-persity.A lower initiator concentration at500/1/2/5([M]0/[I]0/ [Cu(I)0/[L]0])and a higher reaction temperature at90°C have been proved feasible to synthesize a star polymer with high molecular weight,e.g.,79,400,in our previous work.

However,star polymers with lower molecular weight(thus smaller star size)could facilitate the formation of DNA/polymer polyplexes with smaller size,which has been believed to be more desirable to achieve a high transfection ef?ciency(Kunath,von Harpe,Fischer,&Kissel,2003);.Thus,we proposed to optimize the polymerization conditions based on21Br-b-CD ATRP initiator by utilizing1-methyl-2-pyrrolidione(NMP)as solvent.Preliminary experiment was performed in NMP alone,which led to a successful polymerization in homogeneous system and resulted in a star polymer with well-controlled structure.Having considered the sol-ubility of hydrophilic cationic monomers,we tried NMP/water co-solvent and gradually reduced the NMP content in the entire sys-tem until the lowest ratio of NMP to water(1:1)was reached. Fig.1shows the chemical structures of these21arms cationic star polymers(21ACSPs)synthesized in the mixed solvent using vari-ous cationic monomers.As can be seen,all the21ACSPs radiate from a common b-cyclodextrin core but have different types of amino functional groups,i.e.,primary amino,tertiary amino and quaternary ammonium groups.It is also worth noting that the per-formance of Star-p(HAEAPMA)might be contributed from the sec-ondary amino groups although they may not be as important as the primary amino ones due to the steric hindrance.

In this work,we?xed the ratio of monomer:initiator:catalyst: ligand at100/1/2/5for all the21ACSPs except for Star-p(MeDMA) which was still synthesized at various ratios.Polymerization tem-perature was kept at60°C for all.An obvious change observed

was

Fig.1.Chemical structures of21ACSPs.(a)Star-p(HAEAPMA);(b)Star-p(DMA-EMA);(c)Star-p(DMAPMAm);(d)Star-p(MeDMA).

J.Li et al./Carbohydrate Polymers79(2010)277–283279

that the reaction system became homogenous rather than hetero-geneous as previous systems due to the incomplete dissolvability of the initiator in water at 60°C.

Table 1lists the results of the polymerizations.As it can be seen,the homogenous polymerization system brought by NMP/water co-solvent resulted in two signi?cant improvements compared with our previous report (Li et al.,2005):First,the molecular weights of the polymers with well-de?ned structure are close to the designed values at wide temperature and monomer concentra-tion ranges.The previous reaction system in water can only obtain the well-de?ned star polymer at a high monomer concentration and a high temperature,i.e.,500/1/2/5([M]0/[I]0/[Cu(I)0/[L]0])at 90°C,in which all the initiator can be totally dissolved at the beginning of the polymerization.Otherwise at low monomer con-centration (thus high initiator concentration)and low tempera-ture,the incomplete dissolved initiator would cause low initiation ef?ciency and result in unexpected high molecular weight (e.g.,polymerization of MeDMA at 100/1/2/5and 60°C lead to a star polymer with molecular weight as high as 500,500instead of the theoretical value of 15,600)(Li et al.,2005).As shown in Ta-ble 1,we synthesized MeDMA in the 1:1NMP/water co-solvent at different monomer:initiator ratios,ranging from 20/1to 250/1;and produced all Star-p(MeDMA)s with the molecular weights close to the designed values.Secondly,the monomer conversion is improved remarkably.The conversion of MeDMA polymeriza-tion in water alone varied from 39%to 70%under different condi-tions in our previous study (Li et al.,2005).The current co-solvent polymerization system enabled us to obtain star polymers with high monomer conversion up to 95%,which is comparable to the high conversion reported for MeDMA linear polymer (Li et al.,2003).The monomer conversion in the synthesis of star polymers is strongly dependent on the steric hindrance.Low initiation ef?-ciency could lead to undesirable high molecular weight and con-gest star branches,thus preventing the monomers from approaching to initiation site and reducing the conversion.The polymerization in co-solvent eliminated the uncontrolled growth of the star branches,and thus increasing the accessibility of mono-mers toward initiation sites.It should also be noted that an appro-priate polymerization time (e.g.,6h)could decrease the coupling termination between two or more star polymers,which may gen-erate a multiple-core star polymer as addressed elsewhere (Li et al.,2003;Ohno,Wong,&Haddleton,2001).

Meanwhile,we found the charge densities of the 21ACSP were in?uenced signi?cantly by their functional groups as shown in Ta-ble 1.The star polymers with primary amino groups and tertiary amino groups,i.e.,Star-p(HAEAPMA),Star-p(DMAEMA)and Star-p(DMAPMAm),have much lower charge density than that of Star-p(MeDMA)with quaternary ammonium groups.The differ-ence originates from their different principles in rendering the polymers cationic.The quaternary ammonium group carries a per-manent cationic –N +(CH 3)3Cl àon its structure,whereas only part

of the primary and tertiary amino groups in the star polymer could be positively charged by protonation process.It is to be noted here that direct titration method was used instead of reverse titration method to measure the surface charges of star polymers since the information is more important to evaluate their abilities to condense DNA.

Figs.2and 3present the kinetic data of Star-p(MeDMA)3at an initial ratio of 250/1/2/5([M]0/[I]0/[Cu(I)0/[L]0])synthesized at 60°C.A good linear relationship of the semilogarithmic plot of monomer concentration vs.time was observed,which implies that the radical concentration was constant throughout the polymeri-

Table 1

Conditions and results of ATRP for 21ACSPs.Samples

[M]0/[I]0/[Cu]0/[L]0a Temp.(°C)Time (h)Conv.(%)b M n ,th c M n ,exp M W /M n Charge density (?10à3eq/g)d Star-p(MeDMA)120/1/2/560695.780606880 1.15 5.10Star-p(MeDMA)2100/1/2/560692.82322021450 1.26 5.98Star-p(MeDMA)3250/1/2/560695.55365049600 1.30 6.12Star-p(HAEAPMA)100/1/2/560690.62220020800 1.180.262Star-p(DMAEMA)100/1/2/560691.21822017400 1.190.305Star-p(DMAPMAm)

100/1/2/5

60

6

93.0

19800

18700

1.22

0.440

a [M]0,[I]0,[Cu]0and [L]0represent initial monomer concentration,21Br-

b -CD,Cu(I)Br and ligand (2,20-bipyridine),respectively.b Determined by 1H NMR.

c Calculate

d from th

e [I]0and monomer conversion.d

Tested without pH

adjustment.

Fig.2.Conversion vs.time data and semilogarithmic plot of monomer concentra-tion vs.time for Star-p(MeDMA)3synthesized at 250/1/2/5and 60°

C.

Fig.3.Evolution of M n and M W /M n as a function of monomer conversion for the polymerization of Star-p(MeDMA)3at 250/1/2/5and 60°C.

280J.Li et al./Carbohydrate Polymers 79(2010)277–283

zation process (see Fig.2).The maintaining of free radical concen-tration constant was affected by three aspects:(1)the well-de?ned and extended con?guration of star chains.In the process of ATRP,the initiation sites,i.e.,–(CH 3)2Br,are supposed to locate on the outer surface of the initiator core.However,the initiation site could be entangled into the internal of the star due to the substantial increasing of the star branch chain length if the reaction is out of control.As a result,the initiation of further polymerization be-comes impossible (Li et al.,2005).The unexpected increasing of star branches can be avoided by the using of NMP/water co-solvent as addressed above,and thus helping to keep the radical concen-tration constant.(2)The side reactions due to the polar polymeri-zation medium (water).It has been found that the poor control of the aqueous ATRP of hydrophilic methacrylates could be brought by the side reactions in the water because water can displace the halide ligand from the copper(I)-mediated ATRP catalyst and dete-riorate the stability of the living radicals (Tsarevsky,Pintauer,&Matyjaszewski,2004).The decreasing amount of water medium in this system is bene?cial to this aspect.(3)Coupling termination between star polymers.In our previous study using gel permeation chromatography (GPC),we found that prolonged polymerization at a high temperature (13.5h at 90°C)resulted in a M W doubling the designed value.We also found some splits or small peaks corre-sponding to high M W in the trace chromatography of GPC in some cases.

The phenomena above indicated the importance of controlling the coupling termination in synthesizing well-de?ned star poly-mers.The homogeneous system provided by NMP/water solvent made it possible to synthesize the 21ACSPs at a lower temperature and potentially eliminated the combination termination of free radicals among star polymer chains.

As can be seen in Fig.3,in the range up to 95%conversion,the M n values increased almost linearly with increasing conversion and the polydispersity remained relatively constant.Otherwise,there could be a sharp increasing point of the M n as well as for the polydispersity if a large amount of coupling termination hap-pened.The result indicated that the polymerization proceeded in a good living protocol and the side reactions such as termination and transfer reactions were thus negligible.

3.2.21ACSPs/DNA polyplexes

The zeta-potential of the polyplexes was determined as a func-tion of N/P ratio and the results are presented in Fig.4.It is well known that the surface charge of the polymer/DNA polyplex has great impact on its biological functions:usually a high surface zeta-potential makes it easier for the polyplexes to be taken into

the cells by endocytosis (Rémy-Kristensen et al.,2001),resulting in high transfection ef?ciency,especially in vitro (Takeuchi et al.,1996).However,it may also bring some undesired effects,e.g.,non-selectivity to any cells when applied in vivo (Ooya et al.,2006)and higher cytotoxicity (Ogris,Brunner,Schüller,Kircheis,&Wagner,1999).Thus it would be desirable if we can control the zeta-potential of the DNA polyplexes in a wide range.Star-p(MeDMA)2was chosen to compare with other 21ACSPs in order to keep the same monomer/initiator ratio and similar molecular weight.As can be seen in Fig.4,Star-p(MeDMA)2/DNA complex has the highest zeta-potential value at each N/P ratio.This should be due to its high charge density contributed from quaternary ammonium groups as we presented in Table 1.All the 21ACSPs are capable of forming polyplexes with DNA and the zeta-poten-tials of these polyplexes rang from negative,slightly positive and relatively strong positive,depending on different N/P ratios.

The results above provide useful information for further various transfection applications in vitro or in vivo.Star-p(DMAEMA),Star-(DMAPMAm)and Star-p(MeDMA)2all can complex DNA and alter the negative zeta-potential surface (about à40mV)of DNA to po-sitive at a N/P ratio around 3.Star-p(HAEAPMA)/DNA exhibited the weakest capability for this purpose and it needs a N/P ratio of 6to reverse the surface charge.It seems that 21ACSP converts the sur-face charge at a higher N/P ratio compared with linear polymers synthesized from a same monomer.For instance,the charge rever-sal for linear p-(DMAEMA)/DNA and p(DMAPMAm)/DNA occurred at N/P ratio around 2:1(van de Wetering,Moret,Schuurmans-Nieuwenbroek,van Steenbergen,&Hennink,1999).As for the star shape,some functional groups,i.e.,cationic amino ones,locate in the internal of the star and cannot be utilized to bind with DNA.Only the cationic groups on the peripheral surface can conjugate with DNA;thus it is reasonable that more star polymers are re-quired to convert the surface charge of DNA.However,the excess amino groups in the internal of the star structure might be useful to act as the ‘‘proton sponge”for pH neutralization as those in den-drimers (Lee et al.,1996).

Morphological observations on 21ACSP and 21ACSP/DNA poly-plexes using AFM are presented in Fig.5.AFM scanning in a tap-ping mode was performed for all the 21ACSPs synthesized in this work.A typical AFM image is shown in Fig.5(a)(Star-p(MeDMA)2),in which the star shape of the polymers is visible but the exact 21arms of the polymer cannot be identi?ed.This result seems to be con?icted with the design of the 21star branches.Following the previous method (Li et al.,2005),we hydrolyzed the star polymers under 1%potassium hydroxide for 60min to cleave the ester link-age between the b -CD core and arms;and then measured the molecular weight and M W /M n of the star arms to determined the number of arms.It was proved that the 21ACSPs indeed have 21arms.Therefor,the failure in distinguishing each arm might be associated with the sample preparation process for AFM.The star polymers based on b -cyclodextrin core should have a three-dimen-sional structure,attributed to the three-dimensional feature of cyclodextrin.After 21ACSPs were dried on the surface of the mica disk,the 21arms cannot maintain well extended in three dimen-sions as in medium.Most of the arms aggregate together thus we can only view a star shape with several arms.

The size of the Star-p(MeDMA)2is around 1l m in diameter as shown in Fig.5(a).However,since the molecular weight of Star-p(MeDMA)2is only 21,450,this AFM image could result from the aggregates of several star polymers.The aggregation likely oc-curred when the star polymer was dried on the mica disk prior to being observed under AFM.Apparently,the sample preparation is crucial for acquiring AFM image with high resolution.The origi-nal size of plasmid DNA is around 600nm.After having conjugated with DNA at a ratio of N/P =6,Star-p(MeDMA)2condense the DNA to a size of 80–180nm as shown in the phase image of

AFM

Fig.4.Zeta-potential of 21ACSPs/DNA polyplexes at different N/P ratios (j :Star-p(HAEAPMA)/DNA;h :Star-p(DMAEMA)/DNA;N :Star-p(DMAPMAm)/DNA;4:Star-p(MeDMA)2/DNA).

J.Li et al./Carbohydrate Polymers 79(2010)277–283281

(Fig.5b).Dynamic light scattering measurement also provide addi-tional information as the hydrodynamic radii of Star-(MeDMA)2/DNA polyplex at N/P =6in PBS (pH 7.4)was 71.0±4.5nm.The small size of the polyplexes is essential for transferring plasmid DNA into cell membranes and nucleoli.

3.3.In vitro transfection and cytotoxicity

The polyplexes used for cell transfection experiment were formed at N/P =3,6,10based on the results of zeta-potential mea-surements.Also,Star-p(MeDMA)2was selected to maintain the same monomer/initiator ratio and the molecular weight similar to other 21ACSPs.All the polyplexes are either slightly or strongly positively-charged,except for Star-p(HAEAPMA)/DNA at N/P =3which is slightly negative.The CHSE-214cell transfection ef?cien-cies reached by the polyplexes above are presented in Fig.6in terms of ng luciferase per mg https://www.wendangku.net/doc/bf1973469.html,bining the results in Table 2and Fig.6,it can be found that N/P ratio has profound impact on the cytotoxicity and cell transfection ef?ciency for each 21ACSP/DNA polyplex.The similar trend,i.e.,the transfection

ef?ciency increased but the cell viability decreased with the in-crease of the N/P ratio,was observed for all polyplexes.This phe-nomenon is well known,and has been attributed to the increasing amount of free polycation of the polyplexes,as well as to an increase of polyplex uptake (Shuai,Merdan,Unger,Wittmar,&Kissel,2003;Takeuchi et al.,1996).Meanwhile,the cytotoxicity of all the polyplexes to CHSE-214cell are lower than that of PEI as shown in Table 2,demonstrating their excellent cell biocompatibil-ity and great potential as DNA vectors.However,additional in vivo toxicity measurements are still necessary in further work for its application in the body.

The different functional groups on the star polymers also play a vital role in their biological performance.The Star-p(MeDMA)2alone exhibited almost no transfection.This result is not surprising because Star-p(MeDMA)2was polymerized from a quaternary ammonium monomer,which cannot be further protonated in the acid environment of the endosome.Thus,Star-p(MeDMA)2/DNA polyplexes might be trapped in endosome and cannot be released or destroyed within this organelle prior to releasing.This problem can be somehow addressed by adding an endosomolytic agent,i.e.,chloroquine,as shown in the Fig.6.Clearly,Star-p(MeDMA)2/DNA at N/P =10achieved a transfection ef?ciency about 0.38ng lucifer-ase/mg protein with the help of chloroquine.The performance of chloroquine in promoting the endosomal escape is consistent with those reported elsewhere (Pouton et al.,1998).However,the ef?-ciency is still signi?cantly lower than that of other 21ACSPs (see Fig.6).Since chloroquine helped the endosomal escape in this case,its low transfection ef?ciency was due to the lower af?nity be-tween quaternary ammonium groups and DNA under physiological conditions as reported by Reschel,Konak,Oupick,Seymour,

and

Fig.5.Atomic force microscopy (AFM)study of 21ACSP and 21ACSP/DNA polyplexes.(a)Star-(MeDMA)2;(b)phase image of Star-(MeDMA)2/DNA polyplexes at N/P =

6.

Fig. 6.CHSE-214cell transfection ef?ciency by 21ACSP/DNA polyplexes (the negative control sample,i.e.,the pCMV-Luc alone,exhibited almost no transfection ef?ciency).

Table 2

CHSE-214cell viability in the transfection with 21ACSP/DNA polyplexes.a

Polyplexes

Cell viability b %N/P =3

N/P =6N/P =10Star-p(MeDMA)2/DNA

100.0±2.594.0±3.384.8±3.0Star-p(MeDMA)2/DNA +Chloroquine c 93.7±3.184.2±2.377.4±2.5Star-p(HAEAPMA)/DNA 79.6±3.579.5±3.077.2±2.0Star-p(DMAEMA)/DNA 100.0±2.892.2±2.588.6±2.2Star-p(DMAPMAm)/DNA 88.1±3.278.2±2.677.8±2.3PEI/DNA

75.9±3.0

52.4±2.2

10.7±2.7

a

Plasmid DNA without star polymers has a cell viability of 90.5±3.5%in the parallel tests.b

Calculated based on the protein concentration tested by BCA assay.c

Chloroquine was added with the polyplexes.

282J.Li et al./Carbohydrate Polymers 79(2010)277–283

Ulbrich(2002).In addition,the use of chloroquine decreased the biocompatibility of the polyplexes.As shown in Table2,Star-p(MeDMA)2/DNA polyplexes have100%,94%and84.8%cell viabil-ity at N/P=3,6and10,respectively.After conjunction with chloro-quine the corresponding viabilities were reduced to93.7%,84.2% and77.4%,respectively.On the other hand,Star-p(HAEAPMA)/ DNA and Star-p(DMAPMAm)/DNA polyplexes have comparable transfection ef?ciency to that mediated by PEI,but higher than that of Star-p(DMAEMA)/DNA.The difference should be caused by dif-ferent p K a values in physiological pH,which are associated with their structure and functional groups as reported by others(Shuai et al.,2003).It is also of interest that Star-p(HAEAPMA)/DNA at N/ P=3still exhibited the transfection ability to a certain extent although the polymer has a slightly negative zeta-potential.It is likely attributed to the cationic amino groups in the internal sec-tion of the star polymer.Those groups are not bound with DNA while forming the polyplexes but could help the endocytosis pro-cess owing to its ability to neutralize the protons under physiolog-ical conditions,thus leading to the endosomal escape as dendrimers do(Lee et al.,1996;Tang et al.,1996).

4.Conclusions

In this study,a series of21arms cationic star polymers were successfully synthesized by an improved atom transfer radical polymerization performed in the co-solvent of NMP and water at ratio1:1.The living polymerization proceeded in a well-controlled manner,thus allowing all the21ACSPs to possess the well-de?ned structure and the molecular weights close to theoretical ones.The polyplexes formed by21ACSPs and plasmid DNA were character-ized by zeta-potential measurement as well as AFM image.The peripheral surface charges of polyplexes range from negative to positive,depending on different polymer/DNA ratios;and the typ-ical size of polyplexes is within80–180nm.21ACSPs exhibited sat-isfactory transfection ef?ciency of plasmid pCMV-Luc to CHSE-214 cells.In addition,the cytotoxicity of the polyplexes is lower than that of PEI during the transfection.

Acknowledgements

Financial supports for this work from the NSERC Canada and the National Natural Science Foundation of China(20704026)are gratefully acknowledged.

References

Bellocq,N.C.,Pun,S.H.,Jensen,G.S.,&Davis,M.E.(2003).Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery.

Bioconjugate Chemistry,14,1122–1132.

Boussif,O.,Lezoualc’h,F.,Zanta,M.A.,Mergny,M.D.,Scherman,D.,&Demeneix,B.

(1995).A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo:Polyethylenimine.Proceedings of the National Academy of Sciences of the United States of America,92,7297–7301.

Boussif,O.,Zanta,M.A.,&Behr,J.P.(1996).Optimized galenics improve in vitro gene transfer with cationic molecules up to1000-fold.Gene Therapy,3, 1074–1080.

Bremner,K.H.,Seymour,L.W.,Logan,A.,&Read,M.L.(2004).Factors in?uencing the ability of nuclear localization sequence peptides to enhance nonviral gene delivery.Bioconjugate Chemistry,15,152–161.

Cho,K.C.,Kim,S.H.,Jeong,J.H.,&Park,T.G.(2005).Folate receptor-mediated gene delivery using folate-poly(ethylene glycol)-poly(L-lysine)conjugate.

Macromolecular Bioscience,5,512–519.

Fischer,D.,Bieber,T.,Li,Y.,Elsasser,H.P.,&Kissel,T.(1999).A novel non-viral vector for DNA delivery based on low molecular weight,branched polyethylenimine:Effect of molecular weight on transfection ef?ciency and cytotoxicity.Pharmaceutical Research,16,1273–1279.

Georgiou,T.K.,Phylactou,L. A.,&Patrickios, C.S.(2006).Synthesis, characterization,and evaluation as transfection reagents of ampholytic star copolymers:Effect of star architecture.Biomacromolecules,7,3505–3512. Georgiou,T.K.,Vamvakaki,M.,Patrickios,C.S.,Yamasaki,E.N.,&Phylactou,L.A.

(2004).Nanoscopic cationic methacrylate star homopolymers:Synthesis by

group transfer polymerization,characterization and evaluation as transfection reagents.Biomacromolecules,5,2221–2229.

Kichler,A.,Leborgne,C.,Coeytaux,E.,&Danos,O.(2001).Polyethylenimine-mediated gene delivery:A mechanistic study.Journal of Gene Medicine,3,135–144. Kunath,K.,von Harpe, A.,Fischer, D.,&Kissel,T.(2003).Galactose–PEI–DNA complexes for targeted gene delivery:Degree of substitution affects complex size and transfection ef?ciency.Journal of Controlled Release,88,159–172. Lee,R.J.,Wang,S.,&Low,P.S.(1996).Measurement of endosome pH following folate receptor-mediated endocytosis.Biochimica et Biophysica Acta.Molecular Cell Research,1312,237–242.

Li,Y.,Armes,S.P.,Jin,X.,&Zhu,S.(2003).Direct synthesis of well-de?ned quaternized homopolymers and diblock copolymers via ATRP in protic media.

Macromolecules,36,8268–8275.

Li,J.,&Loh,X.J.(2008).Cyclodextrin-based supramolecular architectures: Syntheses,structures,and applications for drug and gene delivery.Advanced Drug Delivery Reviews,60,1000–1017.

Li,J.,&Xiao,H.(2005).An ef?cient synthetic-route to prepare[2,3,6-tri-O-(2-bromo-2-methylpropionyl]-b-cyclodextrin).Tetrahedron Letters,46,2227–2229.

Li,J.,Xiao,H.,Kim,Y.S.,&Lowe,T.L.(2005).Synthesis of water-soluble cationic polymers with star-like structure based on cyclodextrin core via ATRP.Journal of Polymer Science Part A:Polymer Chemistry,43,6345–6354.

Merdan,T.,Kopecek,J.,&Kissel,T.(2002).Prospects for cationic polymers in gene and oligonucleotide therapy against cancer.Advanced Drug Delivery Reviews,54, 715–758.

Ogris,M.,Brunner,S.,Schüller,S.,Kircheis,R.,&Wagner,E.(1999).PEGylated DNA/ transferrin-PEI complexes:Reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery.Gene Therapy,6,595–605.

Ohno,K.,Wong, B.,&Haddleton, D.M.(2001).Synthesis of well-de?ned cyclodextrin-core star polymers.Journal of Polymer Science Part A:Polymer Chemistry,39,2206–2214.

Ooya,T.,Choi,H.S.,Yamashita,A.,Yui,N.,Sugaya,Y.,&Kano,A.(2006).Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery.Journal of the American Chemical Society,128,3852–3853.

Opanasopit,P.,Petchsangsai,M.,Rojanarata,T.,Ngawhirunpat,T.,Sajomsang,W.,& Ruktanonchai,U.(2009).Methylated N-(4-N,N-dimethylaminobenzyl)chitosan as effective gene carriers:Effect of degree of substitution.Carbohydrate Polymers,75,143–149.

Pack,D.W.,Hoffman,A.S.,Pun,S.,&Stayton,P.S.(2005).Design and development of polymers for gene delivery.Nature Reviews Drug Discovery,4,581–593. Pouton,C.W.,Lucas,P.,Thomas,B.J.,Uduehi,A.N.,Milroy,D.A.,&Moss,S.H.

(1998).Polycation-DNA complexes for gene delivery:A comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids.

Journal of Controlled Release,53,289–299.

Reineke,T.M.,&Davis,M.E.(2003).Structural effects of carbohydrate-containing polycations on gene delivery.1.Carbohydrate size and its distance from charge centers.Bioconjugate Chemistry,14,247–254.

Rémy-Kristensen,A.,Clamme,J.P.,Vuilleumier,C.,Kuhry,J.G.,&Mély,Y.(2001).

Role of endocytosis in the transfection of L929?broblasts by polyethylenimine/ DNA complexes.Biochimica et Biophysica Acta.Biomembranes,1514,21–32. Reschel,T.,Konak,C.,Oupick,D.,Seymour,L.W.,&Ulbrich,K.(2002).Physical properties and in vitro transfection ef?ciency of gene delivery vectors based on complexes of DNA with synthetic polycations.Journal of Controlled Release,81, 201–217.

Shen,Y.,Li,Q.,Tu,J.,&Zhu,J.(2009).Synthesis and characterization of low molecular weight hyaluronic acid-based cationic micelles for ef?cient siRNA delivery.Carbohydrate Polymers,77,95–104.

Shuai,X.,Merdan,T.,Unger,F.,Wittmar,M.,&Kissel,T.(2003).Novel biodegradable ternary copolymers hy-PEI-g-PCL-b-PEG:Synthesis,characterization,and potential as ef?cient nonviral gene delivery vectors.Macromolecules,36, 5751–5759.

Simms,J. A.,&Spinelli,H.J.(1997).Star polymer synthesis.In K.Hatada,T.

Kitayama,&O.Vogl(Eds.),Macromolecular design of polymeric materials (pp.379–391).New York:Marcel Dekker.

Takeuchi,K.,Ishihara,M.,Kawaura,C.,Noji,M.,Furuno,T.,&Nakanishi,M.(1996).

Effect of zeta potential of cationic liposomes containing cationic cholesterol derivatives on gene transfection.FEBS Letters,397,207–209.

Tang,M.X.,Redemann, C.T.,&Szoka, F. C.(1996).In vitro gene delivery by degraded polyamidoamine dendrimers.Bioconjugate Chemistry,7,703–714. Tsarevsky,N.V.,Pintauer,T.,&Matyjaszewski,K.(2004).Deactivation ef?ciency and degree of control over polymerization in ATRP in protic solvents.

Macromolecules,37,9768–9778.

van de Wetering,P.,Moret, E. E.,Schuurmans-Nieuwenbroek,N.M. E.,van Steenbergen,M.J.,&Hennink,W.E.(1999).Structure–activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery.Bioconjugate Chemistry,10,589–597.

Wolfert,M.A.,Dash,P.R.,Nazarova,O.,Oupicky,D.,Seymour,L.W.,&Smart,S.

(1999).Polyelectrolyte vectors for gene delivery:In?uence of cationic polymer on biophysical properties of complexes formed with DNA.Bioconjugate Chemistry,10,993–1004.

Xu,F.J.,Zhang,Z.X.,Ping,Y.,Li,J.,Kang,E.T.,&Neoh,K.G.(2009).Star-shaped cationic polymers by atom transfer radical polymerization from b-cyclodextrin cores for nonviral gene delivery.Biomacromolecules,10,285–293.

Yang,C.,Li,H.,Goh,S.H.,&Li,J.(2007).Cationic star polymers consisting of a-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors.

Biomaterials,28,3245–3254.

J.Li et al./Carbohydrate Polymers79(2010)277–283283

ArcGIS格式的转换方法资料

几种注册ODBC数据源的方法 来源:未知编辑:未知2005年12月19日浏览454次 几种注册ODBC数据源的方法 国防科大丁浩 ODBC(Open Database Connectivity,开放式数据库互连)是一种应用程序接口(API) 规范。它定义了一个标准例程集,使用它们应用程序可访问数据源中的数据。应用程序通过引用API 的函数可以直接使用ODBC,或利用数据访问对象(DAO) 或远程数据对象(RDO) 来使用ODBC。但是,在实现ODBC 时,我们必须首先配置ODBC环境,进行数据源的注册,这样才能在对数据库进行编程时,对数据源进行连接、访问和操作。本文介绍几种常用的注册ODBC 数据源的方法。 手工配置 1.ODBC数据源管理器 在进行数据库开发时,为了达到配置ODBC,进行DSN定义注册的目的,微软给出了一个手工操作的解决方法。在Windows 9X操作系统的控制面板中,有一个名为“ODBC数据源(32位)”的图标,可以通过它激活专门为用户设置ODBC环境的程序(ODBC Data Source Administrator,ODBC数据源管理器)。在Windows 2000操作系统中,上述图标被放置在控制面板的“管理工具”里面。 这个用于设置ODBC环境的程序叫做桌面驱动程序,它支持数种DBMS (Database Management System,数据库管理系统)。当用户想增加一个数据源和一个所需要的驱动程序时,可以通过ODBC数据源管理器的配置对话框配置特定类型的数据库。大多数情况下,在编写对数据库操作的程序时,我们至少需要知道诸如数据库文件名、系统(本地或远程)、文件夹等信息,同时要给数据源命名。 2.定义数据源的类型

给排水物理化学习题参考答案

第一章 习题参考答案 一. 选择题 1-10 CBBDA BBCBB 11-20 ACCBA CACBC 21-30 CCCAC DDCDD 31-40 CCCCB DCDCC 41-50 BB 二. 判断题 1-10 ××××√ ××√√ 三. 简答题 1. 在隔离系统中,能量形式可以相互转化,但能量总值不变。 或“第一类永动机”是不能创造的。 或内能是系统的状态函数。 2. 以电炉丝+电源为系统:Q<0,W=0, ?U<0 以电炉丝+电源+水:Q=0,W=0, ?U=0 3. 热平衡:系统各部分温度相同。 力平衡:系统有单一的压力 相平衡:系统中各相组成和数量不随时间而改变 化学平衡:系统的组成不随时间而改变。 4. 在整个过程恒容或恒压情况下,化学反应的热仅与始终态有关,而与变化的具体途径无关。 5. 分子本身没有体积,分子间无作用力。 6. 不可能将热从低温物体传到高温物体而不产生其它影响。 或:不可能从单一热源吸取热量使之完全转变成功而不产生其它影响 7. 在绝对零度时,任何完美晶体的熵都等于零。 8. 系统经某一过程后若能使系统和环境都完全复原,则称原过程为可逆过程。 或:在一系列无限接近平衡条件下进行的过程 ,称为可逆过程。 9. 一切自发过程都是热力学不可逆过程。 四. 计算题 1. 4 mol 双原子理想气体,由600K 、1000 kPa 经绝热、反抗600 kPa 恒定的环境压力膨胀 到平衡态。求过程的Q 、W 、?U 、?H 。 解:因为绝热:Q=0 W=-P e (V 2-V 1)=-P e (nRT 2/P 2-nRT 1/P 1) ?U=nC v,m (T 2-T 1) 因为?U=W ,两式联立可求得T 2 得到:T 2=531.43 K ?U=W=nC v,m (T 2-T 1)=4×2.5R ×(531.43-600)=-5701 ( J ) ?H=nC p,m (T 2-T 1)=-7981 ( J ) (2分) 2. 已知298K 时H 2O(g)和CO(g)的标准摩尔生成热分别为-242 kJ mol -1和-111 kJ mol -1。求 反应 H 2O(g)+C(石墨) = CO(g)+H 2(g) 在298K 时的反应热。 )600(5.24)1010006004106004(1060023323?××=××?×××?T R R RT

物理化学给排水

专业班级(教学班) 给排水09 考试日期 2010-7-12 命题教师 汪华 系(所或教研室)主任审批签名 史成武 一、 选择题 (30分) ( ) 1. 下列的过程可应用公式△H = Q 进行计算的是 A. 不做非体积功,始末态压力相同但中间压力有变化的过程 B. 不做非体积功,一直保持体积不变的过程 C. 273.15K ,p ?下水结成冰的过程 D. 恒容下加热实际气体 ( ) 2. 在一个绝热的刚壁容器中,发生一个化学反应,使系统的温度从T 1 升高到T 2,压力从p 1升高到p 2,则 。 A. Q >0,W <0,△U <0; B. Q =0,W =0,△U =0; C. Q =0,W <0,△U <0; D. Q >0,W =0,△U >0 ( ) 3. 下列过程中,系统的热力学能(亦称内能)的变化值不为零的是 A 不可逆循环过程 B 可逆循环过程 C 理想气体的恒温膨胀过程 D 纯液体的真空蒸发过程 ( ) 4. 冬季建筑施工中,为了保证施工质量,通常在浇注混凝土时加入少量盐类,其主 要作用是 。 A 吸收混凝土中的水分; B 防止建筑物被腐蚀; C D 降低混凝土的固化温度 ( ) 5. 若2(g) 的K ?=0.1132,则当242 1 kPa N O NO p p ==时,A B 向逆反向进行 C D 无法判断反应的反向 ( ) 6. 1/2所需时间的3的级数是______。 A. 零级 B. 一级反应 C. 二级反应 D. 三级反应 ( ) 7. 电池反应达平衡时,电池的电动势E 有 。 A. E >0; B. E <0; C. E =E ?; D. E =0 ( ) 8. 在400 K 时,液体A 和B 的蒸气压分别为40 kPa 和60 kPa ,两者组成理想液 体混合物。当气-液平衡时,溶液中A 的摩尔分数为0.6,则在气相中B 的摩尔分数应为 。 A. 0.30; B. 0.40; C. 0.50; D. 0.60 ( ) 9. 下列各式中哪个是化学势? 。 A. (?H /?n B )T ,p ,n C ; B. (?A /?n B ) T ,p ,n C ; C. (?G / ?n B ) T ,p ,n C ; D. (?U / ?n B ) T ,p ,n C ( ) 10. 某反应速率系数与各基元反应速率系数的关系为 1 2 1242k k k k ??= ? ?? , 则该反应 表观活化能E a 与各基元反应活化能的关系为_____。 A. a 21 4 0.5E E E E =+- B. a 21 4 0.5()E E E E =+- C. 1 2 a 21 4 (2)E E E E =+- D. a 21 4 2E E E E =+- ( ) 11. 下列各电池中,其电池电动势与氯离子的活度a (Cl -))无关的是 。 A. Zn | ZnCl 2(aq) | Cl 2(p ) | Pt ; B. Zn | ZnCl 2 (aq)|| KCl(aq)|AgCl|Ag ; C. Pt ,H 2(p 1) |HCl(aq) | Cl 2(p 2) | Pt ; D. Ag | AgCl | KCl(aq) | Cl 2(p ) | Pt ( ) 12. 对于非基元反应,以下说法中不正确的是 A 非基元反应无反应分子数可言 B 非基元反应至少包括两个基元步骤 C 非基元反应的级数不会是正整数 D 反应级数为分数的反应一定是非基元反应 ( ) 13. 若在固体表面上发生某气体的单分子层吸附,则随着气体压力的不断增大,吸 附的量是 。 A. 成比例的增加; B. 成倍的增加; C. 恒定不变; D. 逐渐趋向饱和。 ( ) 14. A~B 溶液系统 T ~x 图如图所示,下列叙述中不正确的是: A. adchb 为气相线,aecgb 为液相线; B. B 的含量 x (e,l)>y (d,g),y (h,g)>x (g,l); C. B 的含量 y (e,g)>x (d,l),y (h,g)>x (g,l); D. B 的含量 y (c,g)=x (c,l) ( ) 15. 下列电池中,那一个的电池反应为H ++OH -=H 2O A. (Pt)H 2|H +(aq)||OH -|O 2(Pt); B. (Pt)H 2|NaOH(aq)|O 2(Pt); C. (Pt)H 2|NaOH(aq)||HCl(aq)|H 2(Pt); D. (Pt)H 2(p 1)|H 2O(l)|H 2(p 2)(Pt) 二、 (14分)1mol 理想气体从300 K ,100 kPa 下恒压加热到600 K ,求此过程的Q 、 W 、?U 、?H 、?S 、?A 、?G 。已知此理想气体300 K 时的S ?m =150.0 J·K -1·mol -1,c p ,m =30.00 J·K -1·mol -1 三、 (15分)已知298.15K 时如下数据:

宽带卫星通信技术的现状与发展

宽带卫星通信技术的现状与发展 本文综述了宽带卫星通信技术的现状,介绍已解决的关键技术问题,包括卫星数据传输技术和关键器件,以及星上处理、交换技术等。在文章的中间部分,详细阐述困扰宽带卫星系统发展的一些新的技术问题。最后,展望未来宽带卫星技术的发 展趋势。 1、宽带卫星通信技术的现状 发展宽带卫星系统已成为当前通信的新热点之一。但要满足未来的需要,必须解决卫星网与服务质量( QOS )有关的系统设计问题。面对各种系统的竞争,如何在 技术上保证提供业务肥价优质,以及占领市场,是宽带多媒体卫星通信系统得以生存和发展的关键。 前期的卫星宽带系统被称为卫星宽带接入系统。1996 年,美国NASA 的ACTS 卫星(Advaned CommuniCations TechnologySatellite)进行了155.54Mbit /s的ATM试验。目前,已经进入商用化的典型系统,如Direct PC和Direct TV 都是根 据大多数多媒体业务用户的业务特点(下载大量视频、音频和数据信息,但上载信息 很小) 而设计的。它们使用非对称传输方式来降低用户终端费用,并在北美获得较大的市场。欧洲也在积极发展这样的非对称系统。但是这些早期的应用离未来对宽带卫星系统的要求还有一些距离,在市场定位上还处于探索阶段。目前,宽带卫星通信系统的研究,如欧洲先进通信技术和业务( ACTS,the Europea n adva need Commu ni cati ons tech no logies and services 计戈U的若干项目——SECOMS( satelliteEHF communications for mbile multimedia services)、ASSET (ACTS satellite switching end-to-end trials)、WISDOM (wideband satellite dem on stratio n of multimedia) 和ACCORD (ACTS broad com muni cati onjoint trials and demonstratior等,都集中在可提供2Mbit /s速率的新系统设计上。同时,以支持宽带业务为目的的一些同步和非同步卫星通信系统相继出现,1999年5 月11 日欧洲发射了ASTRA 卫星,组成宽带、面向大众的“空中因特网”卫星系统。 现代宽带卫星系统的特点是工作在更高的频段、采用基于ATM 的传输技术和主要提供多媒体和因特网业务。其市场由三个基本部分组成:在线个人客户、多媒体业务提供商和在线企业集团。 目前,宽带卫星系统已采用Ka 波段,而Ka 波段传播特性受降雨衰耗的影响 较大,这一点为人们所普遍关注。但是从实验和实际应用的结果来看,采用自适应功率调整和自适应数字编码可以解决这个问题。 地面光纤网采用ATM 技术来提供宽带综合业务。而误码率较高的卫星定带系统在采用ATM技术提供多媒体业务时,需考虑保证QOS的问题。一些国家,如美国、 欧洲、日本、澳大利亚对卫星ATM 层和物理层性能测试的结果表明,ATM的性能可以满足ITU —TG.826和1.356的目标要求。如果系统采用RS块状编码、交织、FEC 技术,卫星链路可达到准光纤链路质量,ATM 可以作为卫星系统的数据传输技术。而具有星上交换处理的卫星ATM 系统却有着光纤网络所不及的如下优点:卫星可以在广阔的地理范围内(包括偏远地区、农村、城市和无人区)提供ATM 业务。 卫星通信系统可以在全球范围内灵活地实现按需分配带宽,它不受复杂的地面 网络拓扑的影响,减少了中间多次分配的环节。

宽带卫星通信系统发展现状与展望_忻向军

1 发展现状 宽带卫星通信系统概述 未来宽带卫星网络带宽由极高频(E H F)频段提供,如K a频段(20~30G H z),Q-V频段(40~50GHz)和W频段(76~110GHz)。20世纪90年代提出了各种宽带极高频卫星通信系统,表明了宽带卫星通信系统向高速率、极高频、双向和因特网接入发展的趋势。 宽带极高频卫星通信系统由一颗或多颗卫星组成。在宽带极高频卫星通信系统中,星上路由和星上交换技术的应用非常重要。典型例子是低地球轨道卫星通信系统中的“泰勒戴斯克”(Teledesic)系统,此系统于19世纪90年代提出并于2002年应用,其星座图由288颗低地球轨道卫星组成,实现“空间因特网”,向全球用户提供类似光纤网络服务质量(QoS)性能[误码率(BER)<10-10]的高质量语音、数据和多媒体信息服务。尽管此系统复杂、昂贵并最终作废,但仍然是宽带卫星因特网系统的一个好例子。 近10年,“高适应”(Hylas)卫星、“太空之路”(Spaceway)、“电星”(Telestar)、“双向”(Tooway)、“狂蓝”(WildBlue)和“O3b”等系统表明了宽带极高频卫星通信系统的发展趋势。所有这些系统不仅支持宽带通信应用与服务,如:高速、双向因特网接入(如视频下载、 宽带卫星通信系统 发展现状与展望 忻向军 张琦 王厚天(北京邮电大学) 随着全球信息高速公路因特网的飞速发展和普及,以及交互式多媒体业务的迅速增加,各行各业对宽带的需求越来越紧迫。宽带卫星通信将以其灵活、大范围的覆盖能力,成为无地面网络覆盖地区宽带接入的最佳解决方案。宽带通信卫星正引领着卫星通信的重大变革。Ku等商用频段能够提供的总容量已经无法满足与日俱增的用户带宽需求。Ka频段新型卫星宽带通信系统由于其较宽的可用频段、远端设备小巧、点波束增益高、安装便捷等特点,代表了当代商用民用通信卫星的最高水平,目前美国、加拿大、欧洲、阿联酋等国均发展了Ka 频段宽带卫星,成为宽带卫星系统的主流发展方向。根据欧洲咨询公司预测,未来卫星宽带市场还将进一步扩大,到2019年卫星宽带接入用户数量预计可达约1190万人,主要来自于北美和欧洲,此外,南美约有130万,中国地区约有90万,南亚越有80万等,各地区将主要通过Ka频段多点波束卫星来满足用户快速增长的需求。Ka 频段宽带卫星将成为世界各地未来卫星通信产业重要的发展趋势,将带来显著的社会经济价值。

文档格式转换方法

文档格式转换方法 一、PPT转换WORD 二、PDF转换W ord 三、W ord转换PPT 四、PDF转换TXT 五、PDF转换BMP 六、PDF转换HTM 一、把PPT转WORD形式的方法 1.利用"大纲"视图打开PPT演示文稿,单击"大纲",在左侧"幻灯片/大纲”任务窗格的“大纲”选项卡里单击一下鼠标,按"Ctrl+A"组合健全选内容,然后使用"Ctrl+C"组合键或右键单击在快捷菜单中选择"复制"命令,然后粘贴到Word 里。 提示:这种方法会把原来幻灯片中的行标、各种符号原封不动的复制下来。 2.利用"发送"功能巧转换打开要转换的PPT幻灯片,单击"文件"→"发送"→"MicrosoftWord"菜单命令。然后选择"只使用大纲"单选按钮并单击"确定"按钮,等一会就发现整篇PPT文档在一个Word文档里被打开。 提示:在转换后会发现Word有很多空行。在Word里用替换功能全部删除空行可按"Ctrl+H"打开"替换"对话框,在"查找内容"里输入"^p^p",在"替换为"里输入"^p",多单击几次"全部替换"按钮即可。("^"可在英文状态下用"Shift+6"键来输入。) 3.利用"另存为"直接转换打开需要转换的幻灯片,点击"文件"→"另存为",然后在"保存类型"列表框里选择存为"rtf"格式。现在用Word打开刚刚保存的rtf文件,再进行适当的编辑即可实现转换。 4.PPTConverttoDOC软件转换PPTConverttoDOC是绿色软,解压后直接运行,

在运行之前请将Word和PPT程序都关闭。选中要转换的PPT文件,直接拖曳到"PPTConverttoDOC"程序里。单击工具软件里的"开始"按钮即可转换,转换结束后程序自动退出。 提示:如果选中"转换时加分隔标志",则会在转换好的word文档中显示当前内容在原幻灯片的哪一页。转换完成后即可自动新建一个Word文档,显示该PPT文件中的所有文字。 ps: 第四种慎用,百度上很多所谓的那个软件都是有病毒的,毒性不小,一般的杀毒软件查不出~~ PDF文档的规范性使得浏览者在阅读上方便了许多,但倘若要从里面提取些资料,实在是麻烦的可以。 二把PDF转换成W ord的方法 Adobe Acrobat 7.0 Professional 是编辑PDF的软件。 用Adobe Acrobat 7.0 Professional 打开他另存为WORD试试看。 或者用ScanSoft PDF Converte,安装完成后不须任何设置,它会自动整合到Word 中。当我们在Word中点击“打开”菜单时,在“打开”对话框的“文件类型”下拉菜单中可以看到“PDF”选项,这就意味着我们可以用Word直接打开PDF 文档了! ScanSoft PDF Converter的工作原理其实很简单,它先捕获PDF文档中的信息,分离文字、图片、表格和卷,再将它们统一成Word格式。由于Word在打开PDF 文档时,会将PDF格式转换成DOC格式,因此打开速度会较一般的文件慢。打开时会显示PDF Converter转换进度。转换完毕后可以看到,文档中的文字格式、版面设计保持了原汁原味,没有发生任何变化,表格和图片也完整地保存下来了,可以轻松进行编辑。 除了能够在Word中直接打开PDF文档外,右击PDF文档,在弹出菜单中选择

水的物理、化学及物理化学处理方法

水的物理、化学及物理化学处理方法简介 (一)物理处理方法 利用固体颗粒和悬浮物的物理性质将其从水中分离去除的方法称为物理处理方法。物理处理法的最大优点是简单易行,效果良好,费用较低。 物理处理法的主要处理对象是水中的漂浮物、悬浮物以及颗粒物质。 常用的物理处理法有格栅与筛网、沉淀、气浮等。 (1)格栅与筛网 格栅是用于去除水中较大的漂浮物和悬浮物,以保证后续处理设备正常工作的一种装置。格栅通常有一组或多组平行金属栅条制成的框架组成,倾斜或直立地设立在进水渠道中,以拦截粗大的悬浮物。 筛网用以截阻、去除水中的更细小的悬浮物。筛网一般用薄铁皮钻孔制成,或用金属丝编制而成,孔眼直径为0.5~1.0mm。 在河水的取水工程中,格栅和筛网常设于取水口,用以拦截河水中的大块漂浮物和杂草。在污水处理厂,格栅和筛网常设于最前部的污水泵之前,以拦截大块漂浮物以及较小物体,以保护水泵及管道不受阻塞。 (2)沉淀 沉淀是使水中悬浮物质(主要是可沉固体)在重力作用下下沉,从而与水分离,使水质得到澄清。这种方法简单易行,分离效果良好,是水处理的重要工艺,在每一种水处理过程中几乎都不可缺少。按照水中悬浮颗粒的浓度、性质及其絮凝性能的不同,沉淀现象可分为:自由沉淀、絮凝沉淀、拥挤沉淀、压缩沉淀。 水中颗粒杂质的沉淀,是在专门的沉淀池中进行的。按照沉淀池内水流方向的不同,沉淀池可分为平流式、竖流式、辐流式和斜流式四种。 (3)气浮 气浮法亦称浮选,它是从液体中除去低密度固体物质或液体颗粒的一种方法。通过空气鼓入水中产生的微小气泡与水中的悬浮物黏附在一起,靠气泡的浮力一起上浮到水面而实现固液或液液分离的操作。其处理对象是:靠自然沉降或上浮难以去除的乳化油或相对密度接近于1的微小悬浮颗粒。 浮选过程包括微小气泡的产生、微小气泡与固体或液体颗粒的粘附以及上浮分离等步骤。实现浮选分离必须满足两个条件:一是必须向水中提供足够数量的

宽带卫星通信运用概念

宽带卫星通信运用概念 将IP技术应用到卫星通信中,能发挥二者的优势,应用前景非常广阔,特别适应于军事通信、民用船只和飞机等移动通信、远程医疗、远程教育和应急通信等场合。近年来IP和多媒体技术在卫星通信中的应用已成为一个新的研究热点。 1宽带IP卫星通信技术发展的原因 随着全球因特网业务的蓬勃发展,特别是人们对集数据、话音和视频等于一体的多媒体业务的需求迅速增长,导致基于IP协议的业务需求量急剧上升。尽管地面通信网络正在迅速发展,但卫星通信网具有地面通信网络不可比拟的一些优势。例如:卫星通信系统所特有的大区域内广播的特点是其他通信系统所没有的;在某些特殊领域,如船只和飞机等移动通信、偏远地区和地面设施不发达地区的通信,以及军事通信等,卫星通信系统具有明显的优势。在这些场合利用卫星建成宽带多媒体业务接入系统被认为是切合实际的方案。宽带IP 卫星通信技术的出现正是这种背景下的必然产物。 2宽带IP卫星通信技术发展现状 宽带IP卫星技术就是将卫星业务搭载在IP网络层上运营的技术,

是运行TCP/IP协议簇的卫星通信网。目前提出的宽带IP卫星系统都采用基于ATM的传输技术[2],在卫星ATM的分层实现上,存在两种不同的思路:一种是将ATM协议放在非ATM的卫星协议平台上而不改变现有卫星协议的结构。其优点是保持现行的卫星标准,卫星平台对不同用户终端的协议标准是透明的,卫星访问协议不会为外界网看到,但很难为各种不同的协议都提供最好的性能。 另一种是卫星网完全采用ATM结构。其优点是适用于一个高度集成的星地ATM环境,缺点是需要修改现有的各种卫星协议和网间接口协议。 1996年,美国NASA的ACTS卫星进行了622Mbit/s的ATM试验,验证了TCP/IP协议在卫星ATM平台上的可行性。1999年欧洲也发射了基于ATM的传输技术的ASTRA卫星,组成宽带、面向大众的“空中因特网”卫星系统。但是这些早期的应用离未来宽带卫星系统的要求还有一些距离,有待进一步的发展。 近几年国际上出现了各大公司向有关组织申报宽带卫星通信系统的建设牌照的热潮。这些公司包括传统的卫星制造商、电信服务商以及新兴的ISP(InternetServiceProvider)公司。在这些已经申报的宽带卫星系统中有相当一部分是以支持IP业务为主要特征的宽带卫星IP系统。

宽带卫星通信技术的现状与发展

宽带卫星通信技术的现状与 发展 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

宽带卫星通信技术的现状与发展 本文综述了宽带卫星通信技术的现状,介绍已解决的关键技术问题,包括卫星数据传输技术和关键器件,以及星上处理、交换技术等。在文章的中间部分,详细阐述困扰宽带卫星系统发展的一些新的技术问题。最后,展望未来宽带卫星技术的发展趋势。 1、宽带卫星通信技术的现状 发展宽带卫星系统已成为当前通信的新热点之一。但要满足未来的需要,必须解决卫星网与服务质量(QOS)有关的系统设计问题。面对各种系统的竞争,如何在技术上保证提供业务肥价优质,以及占领市场,是宽带多媒体卫星通信系统得以生存和发展的关键。 前期的卫星宽带系统被称为卫星宽带接入系统。1996年,美国NASA的ACTS 卫星(Advaned CommuniCations TechnologySatellite)进行了155.54Mbit/s的ATM试验。目前,已经进入商用化的典型系统,如Direct PC和Direct TV都是根据大多数多媒体业务用户的业务特点(下载大量视频、音频和数据信息,但上载信息很小)而设计的。它们使用非对称传输方式来降低用户终端费用,并在北美获得较大的市场。欧洲也在积极发展这样的非对称系统。但是这些早期的应用离未来对宽带卫星系统的要求还有一些距离,在市场定位上还处于探索阶段。目前,宽带卫星通信系统的研究,如欧洲先进通信技术和业务(ACTS,the European advanced Communications technologies and services)计划的若干项目——SECOMS(satelliteEHF communications for mbile multimedia services)、ASSET(ACTS satellite switching end-to-end trials)、WISDOM(wideband satellite demonstration of multimedia)和ACCORD(ACTS broad communicationjoint trials and demonstration等,都集中在可提供2Mbit/s速率的新系统设计上。同时,以支持宽带业务为目的的一些同步和非同步卫星通信系统相继出现,1999年5月11日欧洲发射了ASTRA卫星,组成宽带、面向大众的“空中因特网”卫星系统。 现代宽带卫星系统的特点是工作在更高的频段、采用基于ATM的传输技术和主要提供多媒体和因特网业务。其市场由三个基本部分组成:在线个人客户、多媒体业务提供商和在线企业集团。 目前,宽带卫星系统已采用Ka波段,而Ka波段传播特性受降雨衰耗的影响较大,这一点为人们所普遍关注。但是从实验和实际应用的结果来看,采用自适应功率调整和自适应数字编码可以解决这个问题。 地面光纤网采用ATM技术来提供宽带综合业务。而误码率较高的卫星定带系统在采用ATM技术提供多媒体业务时,需考虑保证QOS的问题。一些国家,如美国、欧洲、日本、澳大利亚对卫星ATM层和物理层性能测试的结果表明,ATM的性能可以满足ITU-TG.826和I.356的目标要求。如果系统采用RS块状编码、交织、FEC技术,卫星链路可达到准光纤链路质量,ATM可以作为卫星系统的数据传输技术。而具有星上交换处理的卫星ATM系统却有着光纤网络所不及的如下优点: ·卫星可以在广阔的地理范围内(包括偏远地区、农村、城市和无人区)提供ATM业务。

ArcGIS格式的转换方法

A r c G I S格式的转换方 法 Revised as of 23 November 2020

几种注册 ODBC数据源的方法 ?来源:未知编辑:未知 2005年12月19日浏览454次 几种注册 ODBC数据源的方法 国防科大丁浩 ODBC(Open Database Connectivity,开放式数据库互连)是一种应用程序接口 (API) 规范。它定义了一个标准例程集,使用它们应用程序可访问数据源中的数据。应用程序通过引用 API 的函数可以直接使用 ODBC,或利用数据访问对象 (DAO) 或远程数据对象 (RDO) 来使用ODBC。但是,在实现ODBC时,我们必须首先配置ODBC环境,进行数据源的注册,这样才能在对数据库进行编程时,对数据源进行连接、访问和操作。本文介绍几种常用的注册ODBC数据源的方法。 手工配置 1.ODBC数据源管理器 在进行数据库开发时,为了达到配置ODBC,进行DSN定义注册的目的,微软给出了一个手工操作的解决方法。在Windows 9X操作系统的控制面板中,有一个名为“ODBC数据源(32位)”的图标,可以通过它激活专门为用

户设置ODBC环境的程序(ODBC Data Source Administrator,ODBC数据源管理器)。在Windows 2000操作系统中,上述图标被放置在控制面板的“管理工具”里面。 这个用于设置ODBC环境的程序叫做桌面驱动程序,它支持数种DBMS (Database Management System,数据库管理系统)。当用户想增加一个数据源和一个所需要的驱动程序时,可以通过ODBC数据源管理器的配置对话框配置特定类型的数据库。大多数情况下,在编写对数据库操作的程序时,我们至少需要知道诸如数据库文件名、系统(本地或远程)、文件夹等信息,同时要给数据源命名。 2.定义数据源的类型 用户可以定义以下三种类型的数据源: 用户数据源:作为位于计算机本地的用户数据源而创建的,并且只能被创建这个数据源的用户所使用; 系统数据源:作为属于计算机或系统而不是特定用户的系统数据源而创建的,用户必须有访问权才能使用; 文件数据源:指定到文件中作为文件数据源而定义的,任何已经正确地安装了驱动程序的用户皆可以使用这种数据源。 3.数据源注册的步骤

常用绘图软件格式转换方法

怎样能把PRO/E中的2D图或者工程图用AUTOCAD打开,或是相反在pro/e2001(2001280)中可以直接将AutoCAD的*.dwg文件输入到草绘器中(新改变) AutoCAD(这里说的是2000中文版)使用的文件格式是:*.dwg、*.dxf pro/e使用的工程图文件格式是:*.drw pro/e使用的草绘器文件是:*.sec 在pro/e2001(2001280)版本中 * 将autoCAD的*.dwg(仅*.dwg文件可以)文件输入到pro/e草绘器中————能(最新改变)方法是在pro/e的草绘器中 Sketch > Data from File... >选择AutoCAD的*.dwg格式文件 * 在pro/e的草绘器中输出autoCAD文件————不能 *将pro/e的工程图文件输出成AutoCAD的*.dwg、*.dxf格式————能方法是在pro/e的工程图中 File > Save a Copy >选择相应的DXF或DWG格式将AutoCAD格式的文件输入到pro/e工程图文件中————能方法是在pro/e的工程图中 Insert > Data from File...>选择相应的*.dxf或*.dwg文件在pro/e2000i2(2001040)版本中 *将pro/e的工程图文件输出成AutoCAD的*.dwg、*.dxf格式————能方法是在pro/e的工程图中 File > Export > Model >选择相应的DXF或DWG 将AutoCAD格式的文件输入到pro/e工程图文件中————能方法是在pro/e的工程图中File > Import > Append to Model... >选择相当的*.dxf或*.dwg文件 * 将autoCAD文件输入到pro/e草绘器中————不能 * 在pro/e草绘器中输出autoCAD文件————不能

浅谈卫星移动通信

浅谈卫星移动通信 【摘要】卫星移动通信由卫星通信技术和地面移动通信技术结合产生的新的通信方式,有着非常重要的战略意义和发展前景。但由于技术和市场原因,卫星移动通信的市场较小,未来的发展仍有不确定性。从目前的卫星移动通信市场发展情况看,静止轨道卫星移动通信发展是最好的。未来卫星移动通信的发展趋势是与地面通信网络组成无缝隙覆盖全球的个人通信系统,真正进入个人通信时代。同时,卫星移动宽带、终端综合化、星上处理等都是卫星移动业务技术发展的必然趋势。我国卫星移动通信技术落后于国际先进水平,非常有必要发展具有自主知识产权卫星移动通信系统。 【关键词】卫星移动通信优势发展动态发展趋势我国的发展现状建议 一、引言 谈起移动通信,我们都不会感到陌生。想家时,拨通父母的电话便能感受家人的温暖;闲暇时,登上QQ便能和朋友一起聊聊自己的故事;还可以经常上网冲冲浪,感受世界的千姿百态,拓宽我们的眼界。移动通信将我们与世界紧紧相连,并给我们的生活带来了深刻的影响。但是,单纯依靠现有的地面移动通信系统,还远远不能满足我们的需求。我们可不想父母温暖的叮咛因信号差而终止,也不想仅因手机没有信号而置身“孤岛”。我们期盼着,无论何时、也无论何地我们都能与我们挂念的人实现通信。这在21世纪将不再是个遥不可及的梦想,迅猛发展的卫星移动通信将引领我们走进个人通信时代。 二、卫星移动通信的优势 卫星移动通信是由卫星通信技术和地面移动通信技术结合产生的新的通信方式,具有覆盖范围广、系统容量大、通信距离远、组网灵活、通信费用基本与距离无关、不受地形限制等特点,有着非常重要的战略意义和发展前景。依稀还记得2008年的汶川大地震瞬间使得灾区对外通信完全中断,卫星是灾区惟一第一时间即可仰仗的通信设备。汶川大地震以悲剧性的方式证明了卫星通信的重要性。使用

流媒体常识工具格式转换播放软件使用介绍

流媒体常识工具格式转换播放软件使用介绍流媒体常识工具格式转换播放软件使用介绍目录: 1. 流媒体常识工具格式转换播放软件使用介绍 2.常见视频格式之间如何转换 3.将MTV转成mp3 4. 将MP3转刻成CDA光盘 5.将MIDI转为WAVE 6.制作RM音乐 7.如何分割asf文件 8.视频编码/解码器问答 9.修复下载后的电影 10.分割合并MP3歌曲 11.从视频文件中提取声音 12.光盘刻录 13.巧用摄像头制作VCD 14.视频同步字幕制作 15.视频编辑常见问题 16.流媒体编辑魔术师AsF Tools 17.最简单的VCD制作 流媒体常识工具格式转换播放软件使用介绍 Q.为什么有的电影没有图像,只有声音?

在观看电影的时候,可能会遇到只有声音,没有图像的现象,这时你需要看看自己是否安装了DIVX插件(看 MPEG4的工具),没有安装一定会出现上述现象,而如果你安装了或者观看的不是MPEG4的电影,那从锌赡?是网速的问题,可能是你的网速慢或者是在线观看的人太多了,服务器过载的缘故,都会引起上述现象本站上网工具包提供DIVX插件的下载 Q.rm文件如何解决国语和粤语的双声道问题? 一些文件如rm asf有的时候国语和奥语是混合在一些的,而realplaywindows mediaplay一般都是不能分开声道的其实你可以采用如下简单的方法解决:双击任务栏上的喇叭图标,然后将Wave Output向右播到头即可解决但这并不是100%全能解决的,一些电影文件是无法解决这个问题的,只能认命了目前realfox软件也可以解决双声道问题,但它采用的方法也是和前面所说的一样,因此也不是100%能解决问题了 Q.ram文件是什么,如果才能找到真实的下载地址? ram一般都很小(几十个字节),它是一个导航文件下载后用记事本打开,然后你就会看到真实的下载地址了 Q:encoder不能设置用户权限访问 A:因为real没有在encoder设置用户访问权限!! Q:跑RealServer的服务器组播时的CPU,内存需求情况? A:RealServer中的组播是将一个现场直播流同时传递给多个客户端,而 无需为每一客户的连结发送一个单独的数据流,客户端只需连结到这个 数据流,而不是连结到RealServer服务器,从而降低带宽的使用为了 利用组播技术所带来的优越,在RealServer与Realplayer客户端之间的 所有设备必须是支持组播技术的,包括之间的路由器交换机和其他 的网络设备! 使用组播能够减少带宽的使用,用一般满足100个600k 连接的机器配置就行了! A:音轨的问题可以这样解决,下载smart ripper ,这个工具可以把DVD的光盘的vob文件和它的音轨合成一个新的 VOB文件,这样子视频和音轨就能在同一个文件里,随便你用FlaskMPEG 或者其他工具转化了 A:flash在smil语言中插入的时候用realplay播放是没有声音用realplay plus播放没有问题为什么?给real公司发过信也没有明确的回答!!! Q:*.dat转化为*.rm格式的软件?

几种格式间相互转换的方法

一、把PPT转WORD形式的方法 1.利用"大纲"视图打开PPT演示文稿,单击"大纲",在左侧"幻灯片/大纲”任务窗格的“大纲”选项卡里单击一下鼠标,按"Ctrl+A"组合健全选内容,然后使用"Ctrl+C"组合键或右键单击在快捷菜单中选择"复制"命令,然后粘贴到Word里。 提示:这种方法会把原来幻灯片中的行标、各种符号原封不动的复制下来。 2.利用"发送"功能巧转换打开要转换的PPT幻灯片,单击"文件"→"发送"→"MicrosoftWord"菜单命令。然后选择"只使用大纲"单选按钮并单击"确定"按钮,等一会就发现整篇PPT文档在一个Word文档里被打开。 提示:在转换后会发现Word有很多空行。在Word里用替换功能全部删除空行可按"Ctrl+H"打开"替换"对话框,在"查找内容"里输入"^p^p",在"替换为"里输入"^p",多单击几次"全部替换"按钮即可。("^"可在英文状态下用"Shift+6"键来输入。)3.利用"另存为"直接转换打开需要转换的幻灯片,点击"文件"→"另存为",然后在"保存类型"列表框里选择存为"rtf"格式。现在用Word打开刚刚保存的rtf文件,再进行适当的编辑即可实现转换。4.PPTConverttoDOC软件转换PPTConverttoDOC是绿色软,解压后直接运行,在运行之前请将Word和PPT程序都关闭。选中要转换的PPT文件,直接拖曳到"PPTConverttoDOC"程序里。单击工具软件里的"开始"按钮即可转换,转换结束后程序自动退出。 提示:如果选中"转换时加分隔标志",则会在转换好的word文档中显示当前内容在原幻灯片的哪一页。转换完成后即可自动新建一个Word文档,显示该PPT文件中的所有文字。ps: 第四种慎用,百度上很多所谓的那个软件都是有病毒的,毒性不小,一般的杀毒软件查不出~~ PDF文档的规范性使得浏览者在阅读上方便了许多,但倘若要从里面提取些资料,实在是麻烦的可以。 二、把PDF转换成Word的方法 Adobe Acrobat 7.0 Professional 是编辑PDF的软件。 用Adobe Acrobat 7.0 Professional 打开他另存为WORD试试看。 或者用ScanSoft PDF Converte,安装完成后不须任何设置,它会自动整合到Word中。当我们在Word中点击“打开”菜单时,在“打开”对话框的“文件类型”下拉菜单中可以看到“PDF”选项,这就意味着我们可以用Word直接打开PDF文档了! ScanSoft PDF Converter的工作原理其实很简单,它先捕获PDF文档中的信息,分离文字、图片、表格和卷,再将它们统一成Word格式。由于Word在打开PDF文档时,会将PDF 格式转换成DOC格式,因此打开速度会较一般的文件慢。打开时会显示PDF Converter转换进度。转换完毕后可以看到,文档中的文字格式、版面设计保持了原汁原味,没有发生任何变化,表格和图片也完整地保存下来了,可以轻松进行编辑。 除了能够在Word中直接打开PDF文档外,右击PDF文档,在弹出菜单中选择“Open PDF in Word”命令也可打开该文件。另外,它还会在Outlook中加入一个工具按钮,如果收到的电子邮件附件中有PDF文档,就可以直接点击该按钮将它转换成Word文件。 有时我们在网上搜索到PDF格式的文件,同样可以通过右键菜单的相关命令直接在Word 中打开它。 三、Word转换成PPT的方法 我们通常用Word来录入、编辑、打印材料,而有时需要将已经编辑、打印好的材料,做成PowerPoint演示文稿,以供演示、讲座使用。如果在PowerPoint中重新录入,既麻烦又浪

中国卫通机载卫星宽带多媒体通信系统方案

中国卫通 机载卫星宽带多媒体通信系统方案 +蓝云 中国卫通是中国境内最大的、唯一拥有卫星资源、 自主运营管理的卫星运营企业。预计到2015年,中国卫 通将拥有15颗以上在轨商业通信卫星,覆盖范围包括亚 太、中东、非洲、南美等地区,并分别在北京、香港、 喀什拥有四个互为备份的地面测控监测中心。作为世界 第一流的卫星通信运营商,中国卫通致力成为中国航空 机载卫星通信服务的提供商和运营商。为此,中国卫通 制定了一套较为先进、完整的航空机载卫星通信系统解 决方案,可以为飞行中的客机开展卫星宽带通信服务。 中国卫通的解决方案概述 中国卫通航空机载卫星通信系统解决方案,是指使 用地球静止轨道卫星的Ku频段传输通道,通过安装在 飞机上的卫星通信系统和舱内通信设备,链接地面关口 站及地面通信网络设施,实现航班直接与地面通信网络 的互联互通,为飞机上的乘客提供互联网接入以及其他 电信增值业务。 飞机机载和机舱内系统主要由机载卫星天线、射 频系统、基带系统和数据处理系统组成。在机舱外部安 中国卫通航空机载卫星通信系统示意图

033 Satellite & Network 装有小口径的低轮廓机载卫星天线和射频系统,在机舱内安装一个用于接收卫星信号的调制解调器和综合服务器。舱内无线通信系统是由无线接入系统和移动通信基站BTS组成的混合系统,将IP信号接入机舱内,通过舱内加装的无线接入系统,支持乘客使用个人计算机等设备接入互联网。飞机到地面的通信信道为:在中国上空,使用中国卫通的Ku频段卫星和地面关口站连接乘客终端和地面网络,卫星通信使用FSS业务标准Ku频段,即10.7GHz/14.5GHz;当客机在境外飞行、中国卫通卫星覆盖不到时,使用外国航空公司签约的卫星运营商提供卫星覆盖,完成卫星和地面网络漫游通信。地面关口站通过中国卫通卫星地面站与中国地面关口站实现互联网连接。机载卫星通信系统网络可以用于公众服务,同时还可以为飞机导航系统提供备份通信手段。 机载卫星宽带多媒体系统采用先进的卫星通信体制和DVB-S2、TD-TDMA编码技术、扩频技术。地面关口站系统负责卫星网络与地面网络的数据连接和数据交换,每架飞机的最大下行速率可达40Mbit/s,上行速率可达2Mbit/s,计费平台系统与其他地面网络运营公司的计费平台连接,地面系统还包括网络管理控制及用户支持服务系统、全功能异地备份地面站系统,及数据交换管理系统。机载系统设备重量约70千克左右,设备较为轻便,可最大限度降低客机的飞行油耗,小口径天线使设备安装方便、快捷省时。 机载卫星宽带多媒体系统的电磁兼容性完全符合民航的飞行安全及相关标准。卫通系统的所有相关设备在满足商业使用之前,都要完成全套的地面和空中测试。目前卫通已开始了相应的地面测试,并验证了设计的电磁兼容性。中国卫通还将要与航空公司合作完成相应的空中体验测试。该测试将完全按照民航、国际、国内相关标准实施,完成试航取证。 此外,机载卫星通信天线系统要符合工信部颁布的相关卫星通信系统设备入网技术规范。 由于要考虑在境外飞行时,使用外国航空公司签约的卫星运营商提供卫星覆盖的情况,飞机舱内业务综合 服务器必须保持与地面综合业务服务器的连接,支持不同卫星系统之间的切换。 卫星数据链路由前向链路和回传链路组成。前向链路为:由地面关口站射频系统发射,经由转发器传输给卫星覆盖范围内所有正在飞行的飞机。在单个转发器上,前向链路最高速率可达40Mbit/s。回传链路为:由每个飞机的射频系统发射,经由转发器传输至地面关口站,回传链路数据速率可根据使用需求,设定在1~4Mbps范围内,根据业务需求和经济性考虑,一般设置在2Mbit/s的速率。回传信号可部署于多个转发器。 每架飞机可以同时接收和处理来自几个转发器的IP数据,IP数据流支持单播、多播以及广播方式。机载路由器只接收与自己相关的IP数据,并将它们转发至飞机上的局域网,供乘客使用。同时,在局域网中配备缓存服务器,以提高用户的上网速度,用户访问的网页在本地没有存储的时候,才通过卫星链路进行访问。 卫星地面关口站由射频系统、基带系统、网络运营监控系统、业务数据管理中心系统、地面固网接入系统和基础保障设施系统等组成。满足国家对信息传输、信息内容和数据存储安全管理要求。 业务服务发展的前景预测 2012年,中国内地航空客运市场达到了3.2亿人次,预计2016年将增长到4.5亿人次,民航客机数量突破4000架。3.2亿人次的客运量,即便有30%的旅客需要使用互联网,那么就非常有必要在客机上开通互联网服务。 巨大的市场蕴藏着巨大的机遇。在国际航班方面,当前国外航空公司的飞机进入中国领空飞行时,已开始提出利用中国卫星及地面网络为其飞机提供移动多媒体通信服务的要求。从技术上讲,当前飞机上打电话、上网的条件基本成熟,只要理顺政策监管,

相关文档