文档库 最新最全的文档下载
当前位置:文档库 › 基因工程药物论文

基因工程药物论文

基因工程药物论文
基因工程药物论文

基因工程药物

姓名:陈剑云

学号:U201210914

班级:机械学院测控1204班

摘要:自1972年DNA重组技术诞生以来,生命科学进入了一个崭新的发展时期。1982年美国礼莱公司推出基因工程胰岛素,这是第一个人用基因工程药物。从那时起,以基因工程为核心的现代生物技术已应用到农业、医药、化工、环境等各个领域。基因工程技术的迅速发展不仅使医学基础学科发生了革命性的变化,也为医药工业发展开辟了广阔的前景,以DNA重组技术为基础的基因工程技术改造和替代传统医药工业技术,已成为重要的发展方向。

关键词:基因工程制药应用

基因的定义:基因是脱氧核糖核酸(DNA)分子上的一个特定片段。不同基因的遗传信息,存在于各自片段上的碱基排列顺序之中。基因通过转录出的信使使核糖核酸(mRNA),指导合成特定的蛋白质,使基因得以表达。

基因工程定义:基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因(DNA分子),按预先设计的蓝图,在体外构建杂种DNA分子,然后导入细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。

基因工程药物定义:基因工程药物又称生物技术药物,是根据人们的愿望设计的基因,在体外剪切组合,并和载体DNA 连接,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞) ,使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质纯化及做成制剂,从而成为蛋白类药或疫苗。

基因工程药物的发展历程:自1972年DNA重组技术诞生以来,作为现代生物技术核心的基因工程技术得到飞速的发展。1982年美国Lilly公司首先将重组胰岛素投放市场,标志着世界第一个基因工程药物的诞生。美国是现代医药生物技术的发源地,也是率先应用基因工程药物的国家,其基因工程技术研究开发以及产业化居于世界领先地位。美国已拥有世界上一半的生物技术公司和一半的生物技术专利。据1998年美国药学会统计,美国FDA已批准了56种生物技术医药产品上市,其中绝大多数为基因工程药物。此外,还有200多种基因工程药物正在进行临床试验,其中至少有1/5的产品将可能在今后10年内上市。基因工程药物为美国的一些公司创造了丰厚的回报,取得了巨大的经济效益和社会效益。欧洲在发展基因工程药物方面也进展较快,英、法、德、俄等国在开发研制和生产基因工程药物方面成绩斐然,在生命科学技术与产业的某些领域甚至赶上并超过了美国。

我国基因工程药物的研究和开发起步较晚,直至20世纪70年代初才开始将DNA重组技术应用到医学上,但在国家产业政策的大力支持下,这一领域发展迅速,逐步缩短了与先进国家的差距。

1989年我国批准了第一个在我国生产的基因工程药物———重组人干扰素重组人干扰素αIb,标志着我国生产的基因工程药物实现了零的突破。重组人干扰素αIb是世界上第一个采用基因克隆和表达的基因工程药物,也是到目前为止唯一的一个我国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,我国基因工程制药产业从无到有,不断发展壮大。截止1998年底,我国已批准上市的基因工程药物和疫苗产品共计15种,国内已有30余家生物制药企业取得基因工程药物或疫苗试生产或正式生产批准文号。至2000年,我国已有200多家生物技术公司,有20多家生产销售人干扰素、白细胞介素、乙肝疫苗等12种基因工程药物。

基因工程药物的本质是蛋白质,生产基因工程药物的方法是:将目的基因连接在载体上,然后将导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中的到表达,最后将表达的目的蛋白质提纯做成制剂,从而成为蛋白类药或疫苗。若目的基因直接在人体组织靶细胞表达,就称为基因治疗。

基因治疗:基因治疗就是从遗传物质本身,即基因入手,不必产生或纯化基因的最终产物,而是将基因,通常是通过一个载体直接导入人体,再利用人体自身就具有的基因复制、转录与翻译功能来产生这些产物,达到补充正常基因产物或对抗异常基因的目的。将基因导入哺乳类动物细胞的方法有两种,一类是理化

方法,一类是病毒介导的DNA转移。

利用基因工程技术生产药品的优点在于:大量生产过去难以

获得的生理活性物质和多肽;挖掘更多的生理活性物质和多肽;改造内源生理活性物质;可获得新型化合物,扩大药物筛选来源。

基因药物的发展前景

与传统制药相比,生物制药有便于大规模生产、利润高、生

产工艺简单、人力投入少、无污染、生产周期短等优点,因此,随着人类基因组计划的实施和科技水平的进一步发展,基因药物在医药市场的比例也将会日益提升,也将越来越影响人类的生活。

基因药物同时具有高投入、高收益、高风险、长周期的特征。Frost&Sullivan公司的一份最新报告指出,2004年,全球生物制

药市场的收入为450亿美元。到2011年,其有望达到982亿美元。据预测,全球第一个用转基因植物生产的生物药物可望于2005~2006年上市。随着公众认知度的提高和相关法规的逐步

完善,用转基因植物生产生物药物的市场将飞速增长,到2011年,单美国市场就将达到22亿美元。2002年底到2003年5月间一场突如其来的SARS疫情,再加上2005年度禽流感病毒传播,席卷了亚洲及加拿大等地。在紧张而又严肃的应对这场疫情的过程中,生物制药又成为医药行业人士关注的焦点。

我国生物制品需求巨大,过去的几年我国企业一直能保持年

均15%以上增幅,并且近年来销售的增长速度有加快的趋势。

据统计,2005年国内生物制品销售收入总额为157.4亿元人民币,销售利润总额为38.7亿元人民币。预计到2006年生物技术工业总产值将达400亿到500亿元,到2015年总产值可达1100亿到1300亿元。我国的生物制药业将进入一个快速发展的阶段,生物医药工业将成为医药产业增长最快的部分。目前,我国许多省市已将生物制药作为本地的支柱产业重点扶持。一大批生物医药科技园相继在各地高新技术开发区建成。面对入世带给我国生物制药业的挑战和机遇,专家们预测,在未来若干年,我国的生物

制药业将以超过全球平均增长速度步入高速发展轨道,前景十分广阔。

基因工程药物的发展概况

20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。基因药物经历了三个阶段:第一阶段是把药用蛋白基因导入到大肠杆菌等细菌中,通过大肠杆菌等表达药用蛋白但这类药物往往有缺陷,人类的基因在低等生物的细菌中往往不表达或表达的蛋白没有生物活性。第二阶段是人们用哺动物的细胞代替细菌,生产第二代基因工程药物。第三阶段是到了80年代中期,随着基因重组和基因转移技术的不断发展和完善,科学家可以将人们所需要的药用蛋白基因导入到哺乳动物体内,使目的基因在哺乳动物身上表达,从而获得药用蛋白。

基因工程技术制药展望

基因工程技术在医药工业中的应用非常广泛,利用基因工程技术开发药物已成为当前.最为活跃和迅猛发展的领域。随着人类基因组计划的完成,以及基因组学、蛋白质组学、生物信息学等研究的深入,为医药生物技术开拓了一个新的领域,基因工程制药将有更多机会获得突破性进展,为保障人类健康做出更大的贡献。

参考文献:

[1] 张天民,基因工程药物浅释[J].山东肉类科技,1997,1.

[2] 李拥军,基因工程药物及其产业化发展[J].生产力研

究,2003,3:185.

[3] 阚劲松,吴克,基因工程制药研究进展[J].合肥联合大学学报,2000,10(4):108. [4] 唐冬生,夏家辉,新型基因工程药物[J].生命科学研究,1999,3(2):93.

[4] 袁建民等,动物乳腺生物反应器研究进展,中国农学通报,2006.22(2):20.

[5] 韩玉刚,李建凡,动物生物反应器的现状和进展[J].国外畜牧科技,2002,29(1):30-33

[6] 张忠诚,动物乳腺生物反应器的原理及研究进展,中国奶牛,2006,4:29.

[7] 孔秀英,孙秀杰,基因治疗,生物学杂志[J].2005,7(2):63.

[8] 陈诗书,人类基因治疗研究的新进展,生物工程进展[J].1994,14(1):30.

[9] 张明徽,基因治疗的现状与展望,世界科学[J].1995,10:20-21.

[10] 罗登,基因治疗新时期,生物工程进展,1994,14(4):28-29. [22] 胡蝶,廖静.基因芯片技术在肿瘤研究中的应用[J].首都医科大学学报,2004,25(1):1 29.

[11] 陆祖宏,何农跃,孙啸.基因芯片技术在基因药物研究和开发中的应用[J].中国药科大学学报.2001,32(2):81.

药物分析复习题

药物的专属鉴别试验是证实某一种药物的依据,它是根据每一种药物化学结构的差异及其所引起的物理化学特性不同,选用某些特有的灵敏的定性反应,来鉴别药物的真伪。 氧瓶燃烧法系将有机药物放入充满氧气的密闭的燃烧瓶中进行燃烧,并将燃烧所产生的欲测物质吸收于适当的吸收液中,然后根据欲测物质的性质,采用适宜的分析方法进行鉴别、检查或测定含卤素有机药物或含硫、氮、硒等其它元素的有机药物。 比旋度——偏振光透过长1d m 并每1ml含有旋光性物质1g的溶液,在一定的波长与温度下测得的旋光度称之。(符号[ ]) 准确度是指用特定方法测得的生物样品浓度与真实浓度的接近程度,可用相对回收率表示,即采用“回收率”或“加样回收率”得到的药物自样品中回收率。 微生物检定法─以抗生素对微生物的杀伤或抑制程度为指标来衡量抗生素效价的一种方法。其测定方法有稀释法、比浊法、管碟琼脂扩散法生物药物:利用生物体、生物组织或器官等成分,综合运用生物学、生物化学、微生物学、免疫学、物理化学和药学的原理与方法制得的一大类药物。 基因工程药物:先确定对某种疾病具有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因进行分离、纯化或人工合成,利用重组DNA 技术加以改造,最后将该基因导入可以大量生产的受体细胞中不断繁殖或表达,并能进行大规模生产具有预防和治疗这种疾病的蛋白质,通过这种方法生产的药物称为基因工程药物。 效价测定:采用国际或国家参考品,或经国家检定机构认可的参考品,以体内或体外法测定其生物学活性,并标明其活性单位。 电泳法是指带电微粒如蛋白质、核苷酸、其他微粒分子或离子在电场的作用下,向其对应的电极方向按各自的速度泳动而使组分分离,再进行检测或计算百分含量的方法。 中药指纹图谱中药材或中药制剂经适当处理后,采用一定的分析手段,得到的能够标定该中药材或中药制剂特性的共有峰的图谱。

1生物制药工艺学习题集生物药物概述

生物制药工艺学习题集 第一章生物药物概述 一、填空: 1、我国药物的三大药源指的是____________ 、___________ 2、现代生物药物已形成四大类型,包括__________________ 3、请写出下列药物英文的中文全称:IFN ( In terfero n ) _________________________________ 、IL(lnterleukin) 、CSF( Colony Stimulating Factor) 、EPO (Erythropoietin ) _________________________________ 、EGF ( Epidermal Growth Factor ) _______________ 、NGF ( Nerve Growth Factor ) ________________________ 、rhGH (Recomb inant Huma n Growth Hormone ) ______________________________________ 、Ins (Insulin ) __________ 、HCG ( Human Choriogonadotrophin ) ______________________ 、LH _______________ 、SOD _____________ 、tPA _____________________ 4、常用的3-内酰胺类抗生素有____________________ 、 _____________ ;氨基糖苷类抗生素 有___________ ;大环内酯类抗生素有________________ ;四环类抗生素有 _______________ ;多肽类抗生素有_____________ ;多烯类抗生素有_______________ ; 蒽环类抗生素有______________ 5、嵌合抗体是指用__________________ 替换___________________ ,保留___________________ ; 人源化抗体是指抗体可变区中仅______________________ 为鼠源,其___________________ 及恒定区均来自人源。

基因工程药物发展进程

基因工程药物发展进程 药剂3班张楠 07106330 学习了药学分子生物学后,我对基因工程药物产生了浓厚的兴趣,通过生物化学和分子生物学的学习以及课下翻阅相关资料,让我对基因工程药物有了新的认识: 1 基因工程药物 基因工程药物是先确定对某种疾病有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因取出来,经过一系列基因操作,最后将该基因放入可以大量生产的受体细胞中去,这些受体细胞包括细菌、酵母菌、动物或动物细胞、植物或植物细胞,在受体细胞不断繁殖过程中,大规模生产具有预防和治疗这些疾病的蛋白质,即基因疫苗或药物。在医学和兽医学中应用正逐步推广。 以乙型病毒性肝炎(以下简称乙肝)疫苗为例,像其他蛋白质一样,乙肝表面抗原(HBSAg)的产生也受DNA调控。利用基因剪切技术,用一种"基因剪刀"将调控HBSAg的那段DNA剪裁下来,装到一个表达载体中,所谓表达载体,是因为它可以把这段DNA的功能发挥出来;再把这种表达载体转移到受体细胞内,如大肠杆菌或酵母菌等;最后再通过这些大肠杆菌或酵母菌的快速繁殖,生产出大量我们所需要的HBSAg(乙肝疫苗)。 目前有很多基因工程对人类的贡献典例。长期以来,医学工作者在防治乙肝方面做了大量工作,但曾一度陷于困境。乙肝病毒(HBV)主要由两部分组成,内部为DNA,外部有一层外壳蛋白质,称为HBSAg。把一定量的HBSAg注射入人体,就使机体产生对HBV抗衡的抗体。机体依靠这种抗体,可以清除入侵机体内的HBV。过去,乙肝疫苗的来源,主要是从HBV 携带者的血液中分离出来的HBSAg,这种血液是不安全的,可能混有其他病原体[其他型的肝炎病毒,特别是艾滋病病毒(HIV)]的污染。此外,血液来源也是极有限的,使乙肝疫苗的供应犹如杯水车薪,远不能满足全国的需要。基因工程疫苗解决了这一难题。与上述的血源乙肝疫苗相比,基因工程生产的乙肝疫苗,取材方便,利用的是资源丰富的大肠杆菌或酵母菌,它们有极强的繁殖能力,并借助于高科技手段,可以大规模生产出质量好、纯度高、免疫原性好、价格便宜的药物。在小孩出生后,按计划实施新生儿到六个月龄内先后注射三次乙肝疫苗的免疫程序,就可获得终身免疫,免受乙型肝炎之害。正是基于1996年我国已有能力生产大量的基因工程乙肝疫苗,我国才有信心遏制这一威胁人类健康最严重、流行最广泛的病种。这是基因工程药物对人类的贡献典例之一。 基因工程药物另一个重要应用就是干扰素的生产。当人或动物受到某种病毒感染时,体内会产生一种物质,它会阻止或干扰人体再次受到病毒感染,故人们把此种物质称为干扰素(Interfero,简称IFN),是1957年英国科学家多萨克斯(Lossaacs)和林德曼(Lindenmann)在研究流感病毒干扰现象时发现的。干扰素具有广谱抗病毒的效能,是一种治疗乙肝的有效药物,国际上批准治疗丙型病毒性肝炎的药物只有它。但是,通常情况下人体内干扰素基因处于"睡眠"状态,因而血中一般测不到干扰素。只有在发生病毒感染或受到干扰素诱导物的诱导时,人体内的干扰素基因才会"苏醒",开始产生干扰素,但其数量微乎其微。即使经过诱导,从人血中提取1mg干扰素,需要人血8000ml,其成本高得惊人。据计算:要获取1磅(453g)纯干扰素,其成本高达200亿美元。使大多数病人没有使用干扰素的能力。1980

基因工程药物发展的历史及启示

基因工程药物发展的历史及启示 吴岚晓1,郭坤元1,秦 煜2 (11第一军医大学珠江医院血液科,广东广州510282;21第一军医大学南方医院创伤骨科,广东广州510282) 摘要:基因工程诞生20余年,运用于医药行业,研制和开发基因工程药物,已取得长足进展。迄今为止,已有近100 个基因工程新药上市,并有数百种正在研制和开发中。可以预计,基因工程药物的发展具有无比强大的生命力。 就基因工程药物发展史进行概述,会从中得到许多启示。 关键词:基因工程;药物;科学;技术 中图分类号:R-02 文献标识码:A 文章编号:1002-0772(2002)12-0011-03 Developing History and the E nlightenment of G enetic E ngineering Drug W U L an-xiao,GUO Kun-yuan,QIN Y u (1.Depart ment of Hem atology,Zhujiang Hospital,First Military Medical U niversity,Guangz hou510282,China;2. N anf ang Hospital,First Military U niversity,Guangz hou510282,China) Abstract:G enetic engineering has made remarkable development in the area of drug production and research since it ap2 peared twenty years ago.More than100new geneitc engineering drugs have been used in clinic,and more drug-projects are undergoing.It can be predicted that genetic engineering drug will make more and more influence in people’s life.A perspective view about genetic engineering drug developing history was made in this article and some philosophic opinions inspired from it were discussed. K ey Words:genetic engineering;drug;science;technology 1 基因工程原理和技术 基因工程是在分子水平上人工改造生物遗传性,创造世间新的生物物种技术,亦称DNA重组或分子克隆,包括基因和载体的制备、切割和连接,重组DNA的转移、表达及产物分离等。基因的制备方法有,多聚酶链反应、互补文库、基因组文库、染色体DNA的酶切分离、酶合成法和化学合成法等,迄今为止,已制备人胰岛素、人尿激酶、人生长激素、人α-干扰素及生长因子等多种药物的基因。载体是能将外源性目的基因运输至宿主细胞的小分子DNA,目前大抵有细菌质粒、嗜菌体DNA及病毒DNA构建人工载体,如pBR322、Charon系列、Cos2 mid、反转录病毒、腺病毒及其相关病毒的DNA,此外,尚有酵母人工染色体DNA,及哺乳动物人工染色体DNA等。载体和含目的基因的DNA分别经限制性内切酶切割后,两者混合通过连接酶连接构成重组DNA,经转化、转导、转染、激光打孔、微注射或基因枪等技术,可转移至宿主内,获得基因工程细胞,后者经培养和表达,即可产生相应的基因工程药物。近年来还发现不用载体也不重组,将编码完整的DNA片段或mRNA直接注射内实现完全表达,表明非重组DNA和mRNA可被细胞直接吸收和表达,既简化了基因操作程序,也修正了基因工程基本概念,又促进了基因工程药物的发展,同时还为基因治疗提供了新理论和新途径。 2 基因工程药物发展的历史 应用基因工程技术,研制和开发的药物称为基因工程药物。它是通过重组DNA技术将治疗疾病的蛋白质、肽类激素、酶、核酸和其他药物基因转移至宿主细胞进行繁殖和表达,最终获得相应药物。包括蛋白质类生物大分子、初级代谢产物,如苯丙氨酸及丝氨酸等以及次生代谢产物抗生素等。自20世纪70年代初基因工程药物诞生以来,基因工程药物发展十分迅速。 ? 1 1 ? 医学与哲学2002年12月第23卷第12期总第259期

我国基因工程药物的发展现状

我国基因工程药物的发展现状 以基因工程、细胞工程、酶工程、发酵工程为代表的现代生物技术在近几十年来的发展中受到了全球科技界和企业界的普遍关注,有许多专家认为21世纪将是生命科学的世纪。现代生物技术之所以能受到各界的重视,一方面是由于现代生物技术发展迅速,用途广泛,生物技术的应用范围已遍及医药、农业、食品、能源、环保等各个领域;另一方面是由于现代生物技术可以解决人类发展所面临的许多难题,如人口膨胀、粮食短缺、资源枯竭、环境污染等。人们越来越认识到了生物技术在全球经济进程中的重要性和必要性。由于生物技术是以生物(动物、植物、微生物、培养细胞等)为基本资源,因此其原料具有再生性,同时生物系统生产产品产生的污染物少,对环境的破坏性很小或几乎没有,重组微生物甚至还可以消除环境中的污染物。 基因工程(genetic engineering )又称基因拼接技术和DNA重组技术。所谓基因工程是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体 细胞内复制、转录、翻译表达的操作。 基因工程制药的出现是因为,许多药品的生产是从生物组织中提取的,受材料来源限制产量有限,其价格往往十分昂贵。微生物生长迅速,容易控制,适于大规模工业化生产。若利用基因工程将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物, 不但能解决产量问题,还能大大降低生产成本。

一、产业现状及地位 1989年,中国批准了第一个在中国生产的基因工程药物一一重组人干扰素,标志着中国生产的基因工程药物实现了零的突破。重组人干扰素是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个中国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,中国基因工程制药产业从无到有,不断发展壮大。1998年,中国基因工程制药产业销售额已达到了7.2 亿元人民币。截止1998年底,中国已批准上市的基因工程药物和疫苗产品共计15种。国内已有30余家生物制药企业取得了基因工程药物或疫苗试生产或正式生产批准文号。 根据1997年对全国452从个事生物技术研究、开发和生产的单位进行的通讯调查结果,截止1996年底,中国已有8种基因工程药物和疫苗商品化(包括试生产),1996年基因工程药物和疫苗销售额约为2.2亿元人民币,仅占同期全国医药生物技术产品年销售额21.16亿元人民的10.4%。然而可喜的是,中国基因工程制药产业发展迅猛,年销售额已从1996年的2.2亿元人民币增长到1998年的7.2亿元人民币,年均增长率高达80%预计2000年中国基因工程药物销售额将达到22.8亿元人民币。 基因工程在制药业中具有广阔的发展前景,中国的基因制药行业 已经初具规模,但与世界发达国家存在差距,主要表现在具有自主知识产权的产品较少,产业规模小、经济效益低。基因制药产业面临着历史性的机遇,主要表现在政府支持、资源丰富、基因信息公开、国际交流

基因工程药物的设计研究进展和应用前景

基因工程药物研究与应用新进展 郭小周 生物技术药物(biotech drugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。现在,世界生物制药技术的产业化已进入投资收获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、生产和改造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一。 摘要:自20 世纪70 年代基因工程诞生以来,以DNA重组技术为核心的现代生物技术一直是人们研究的热点,本文主要介绍了基因药物的定义、获得途径、一些前沿技术以及基因药物的应用与发展前景。 关键词:生物技术药物基因工程药物基因发展前景 1. 引言 近年来1953年Waston和Crick发现遗传物质DNA的双螺旋结构,给整个生物学乃至整个人类社会带来了一场革命。此后,一系列有关遗传信息即基因研究的成果很快的向应用和开发拓展。1972年,美国斯坦福大学P.Berg博士研究小组使用EcorRⅠ,第一次在体外获得了包括SV40 DNA和λ噬菌体DNA的重组DNA分子。1973年,S.Cohen等将两中分别编码卡那霉素和四环素的抗性基因相连,构建出重组的DNA分子,然后转化大肠杆菌,获得了既抗卡那霉素又抗四环素的转化子菌落,这是第一次成功的基因克隆实验,标志着基因工程的诞生。1977年Boyer首次获得生长激素抑制因

子的克隆,1982年第一个基因工程重组产品——人胰岛素被批准应用,进入市场。迄今为止,已有50多种基因工程药物上市,近千种处于研发状态。基因工程药物已经形成一个巨大的高新技术产业,产生了不可估量的社会效益和经济效益,由于基因药物的出现,可以大大改善人类的生命质量,对于一些重大疾病的治疗将会有新的突破。 2 基因工程 2.1 基因 基因是脱氧核糖核酸(DNA)分子上的一个特定片段。不同基因的遗传信息,存在于各自片段上的碱基排列顺序之中。基因通过转录出的信使使核糖核酸(mRNA),知道合成特定的蛋白质,使基因得以表达。 2.2 基因工程 基因工程是利用重组DNA技术,在体外对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组基因在受体细胞内表达,产生出需要的基因产物。 3 基因药物 基因工程药物又称生物技术药物,是根据人们的愿望设计的基因,在体外剪切组合,并和载体DNA 连接,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞) ,使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质纯化及做成制剂,从而成为蛋白类药或疫苗。 基因工程药物的本质是蛋白质,生产基因工程药物的方法是:将目的基因连接在载体上,然后将导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中的到表达,最后将表达的目的蛋白质提纯做成制剂,从而成为蛋白类药或疫苗。若目的基因直接在人体组织靶细胞表达,就称为基因治疗。 利用基因工程技术生产药品的优点在于:大量生产过去难以获得的生理活性物质和

基因工程药物

基因工程药物 周长征 第一部分概述 一、基因工程药物 (一)基因工程药物的概念 基因工程药物是以基因组学研究中发现的功能性基因或基因的产物为起始材料,通过生物学、分子生物学或生物化学、生物工程等相应技术制成的、并以相应分析技术控制中间产物和成品质量的生物活性物质产品,临床上可用于某些疾病的诊断和治疗。基因药物类型广泛,包括重组蛋白质药物、人源化单克隆抗体、基因治疗药物、重组蛋白质疫苗、核酸药物等10多种类型。 生产基因工程药物的基本方法是:将目的基因用DNA重组的方法连接在载体上,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质提纯及做成制剂,从而成为蛋白类药物或疫苗。若目的基因直接在人体组织靶细胞内表达,就称为基因治疗。 例如,乙肝表面抗原(HBSAg)的产生也受DNA 调控。利用基因剪切技术,用一种“基因剪刀”将调控HBSAg的那段DNA剪裁下来,装到一个表达载体中(所谓表达载体,是因为它可以把这段DNA的功能发挥出来)再把这种表达载体转移到受体细胞内,如大肠杆菌或酵母菌等;最后再通过这些大肠杆菌或酵母菌的快速繁殖,生产出大量我们所需要的HBSAg(乙肝疫苗)。把一定量的HBSAg注射入人体,就使机体产生对HBV抗衡的抗体。机体依靠这种抗体,可以清除入侵机体内的HBV。过去,乙肝疫苗的来源,主要是从HBV 携带者的血液中分离出来的HBSAg,这种血液是不安全的,可能混有其他病原体的污染。此外,血液来源也是极有限的,使乙肝疫苗的供应犹如杯水车薪,远不能满足全国的需要。基因工程疫苗解决了这一难题。 干扰素具有广谱抗病毒的效能,是一种治疗乙肝的有效药物,国际上批准唯一一种治疗丙型病毒性肝炎的药物。通常情况下人体内干扰素基因处于休眠状态,血中一般检测不到。只有在发生病毒感染或受到干扰素诱导物的诱导时,人体内的干扰素基因才会产生干扰素,但其数量微乎其微。即使经过诱导,从人血中提取1mg 干扰素,需要人血8000ml,其成本高得惊人。获取1磅(453g)纯干扰素,其成本高达200亿美元。1980年后,采用基因工程进行生产,其基本原理及操作流程与乙肝疫苗十分类似。现在要获取1磅纯干扰素,其成本不到1亿美元。 (二)基因工程药物的发展 1973年,Cohen等人首次将带有Tet r基因和链霉素抗性基因(Str r)的两种大肠杆菌质粒成功地进行了重组,获得了可以复制并只有双亲质粒遗传信息的重组质粒,拉开了基因工程研究的序幕。1974年他们对具有Amp r和红霉素抗性基因(Emp r)的金黄色葡萄球菌质粒

项目研究-一种治疗真菌病的基因工程药物

一种治疗真菌病的基因工程药物 ——赛内汀的研制 病原微生物是危害人类健康的一大杀手,千百年来人类为此付出了巨大的代价。真菌病,尤其是浅部真菌病,在我国较为常见。近几年来,随着免疫抑制剂的广泛应用,烧伤抢救、放射治疗、器官移植的广泛进行,特别是免疫缺陷患者,尤其是艾滋病患者的不断增加,真菌病的发病率有逐渐增加的趋势。据报道艾滋病患者中约有1/3并发各种真菌病而致死。目前临床上应用的抗真菌药物主要有2大类,一类是化学制剂:包括染料类制剂,如龙胆紫、结晶紫;碘制剂,如碘化钾、聚维酮;脂肪酸类制剂,如十一烯酸、十一烯酥锌;咪唑类药物,如克霉唑、咪康唑;丙烯胺类制剂,如萘替芬、特比萘芬;以及其他化学制剂,如土槿酸、氟胞嘧啶等。另一类是抗生素类药物:包括多烯类抗真菌抗生素,如制霉菌素、碘古霉素等;非多烯类抗真菌抗生素,如灰黄霉素、萨拉霉素。近几年来,也出现了一些新的抗真菌新药如阿莫芬类、两性霉素B脂质体、萨普康唑、β-1,3葡聚糖合成酶抑制剂等等。这些抗真菌药物大都是通过破坏真菌的代谢途径或阻断大分子的生物合成来达到抗真菌效果,这样就容易使病原真菌产生抗药性;同时对宿主细胞也产生了一定的毒性。目前临床上对病原细菌的防治也仍然局限于抗生素类药物。抗生素类药物的使用对抑杀细菌起了极其重要的作用,但同时也造成了耐药性菌株的产生和人体的过敏反应。随着生物工程特别是基因工程技术的迅猛发展,蛋白质及多肽类药物不断问世。蛋白质及多肽类药物是当今生物技术及制药工业中最为活跃的领域之一,已经显示出了巨大的社会效益和经济效益。美国FDA已批准的蛋白质及多肽类药物就有人胰岛素、人生长激素、干扰素(INF-α、β、γ)、组织纤溶酶原激活剂(t-PA)、促红细胞生成素(EPO)、粒细胞集落刺激因子(G-CSF)、白细胞介素-2(IL-2)等。利用基因工程手段,在宿主生物中表达生产重组蛋白及多肽,然后分离纯化表达产物,用于药物的研制及开发,已成为生物制药的重要组成部分。抗菌肽是生物体免疫诱导产生的一种具有生物活性的小分子多肽,分子量在2000-7000D左右,由20-60个氨基酸残基组成。目前报道的抗菌肽类,大多对细菌具有广谱的抗性。但对丝状病原真菌无明显的抑杀作用。令人欣喜的是,Pascale Fehlbaum等在E.coli 诱导的斑腹刺益蝽(Podisus.maculiventris)的血淋巴中分离了一种21aa的多肽-Thanatin,研究发现,Thanatin对细菌和真菌都具有广谱抗性。它抑制的细菌包括革兰氏阳性菌:浅绿气杆菌 93

基因工程药物的综述

基因工程药物的研究及进展 摘要:20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。本文以基因工程药物的发展为导向,简要的介绍了国内外基因工程药物的发展概况、研究现状、研究方向、发展方向。 关键词:基因工程,药物,现状,发展 1 基因工程药物的发展概况 20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。 基因药物经历了三个阶段:第一阶段是把药用蛋白基因导入到大肠杆菌等细菌中,通过大肠杆菌等表达药用蛋白,但这类药物往往有缺陷,人类的基因在低等生物的细菌中往往不表达或表达的蛋白没有生物活性。第二阶段是人们用哺乳动物的细胞代替细菌,生产第二代基因工程药物。但由于哺乳动物细胞培养条件相对苛刻,生产的药物成本居高不下。第一、二代基因药物的研制和生产已经成熟。从第一个反义核酸药物Vitrovene于1998年和1999相继在美国和欧洲上市以来,发展迅速。第三阶段是到了80年代中期,随着基因重组和基因转移技术的不断发展和完善,科学家可以将人们所需要的药用蛋白基因导入NN-~L动物体内,使目的基因在哺乳动物身上表达,从而获得药用蛋白。携带外源基因并能稳定遗传的这种动物,我们称之为转基因动物。由于从哺乳动物乳汁中获取的基因药物产量高、易提纯,因此利用乳腺分泌出的乳汁生产药物的转基因动物称为“动物乳腺生物反应器”。90年代中后期,国际上用转基因牛、羊和猪等家畜生产贵重药用蛋白的成功实例已有几十种,一些由转基因动物乳汁中分离的药物正用于临床试验,但还没有一例药品成功上市。 2 基因工程药物的研究现状 2.1国外基因工程药物研究现状 随着1971年第一家生物制药公司Cetus公司在美国的成立,1973年重组DNA技术的出现,生物医药即已显示出巨大的应用价值和商业前景。1976年,世界第一家应用重组DNA 技术开发新药的公司Genentech建立,l982年第一个基因重组药物——基因重组人胰岛素在美国投放市场以来,生物医药产业以一种前所未有的速度迅猛发展。如在基因重组制药产业中做出过卓越贡献的Genentech和Amgen公司,早期的几个“重型炸弹”的基因重组

基 因 工 程 药 物 的 发 展 前 景

基因工程药物的发展前景 周先建2003年4月12日 一、概况 自从DNA重组技术于1972年诞生以来,作为现代生物技术核心的基因工程技术得到飞速的发展。1982年美国Lilly公司首先将重组胰岛素投放市场,标志着世界第一个基因工程药物的诞生。目前,世界各国都将基因工程及其逐渐加速的产业化进程视为国民经济的新增长点,展开了激烈的市场竞争。到1999年底为止,全球至少已有近 3000家生物工程公司在从事生物药品与基因产品研究与开发。据不完全统计,在欧美诸国,已经上市的基因工程药品接近一百种,大约还有超过300种以上的药物处于临床试验阶段,约2000种在研究开发中,形成了一个巨大的高新技术产业,产生了不可估量的社会效益和经济效益。 基因工程药物的定义:将目的基因用DNA重组的方法连接在载体上,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质提纯及做成制剂,从而成为蛋白类药或疫苗。这就称为基因工程药物。若目的基因直接在人体组织靶细胞内表达,就成为基因治疗,但目前尚没有基于基因治疗技术的药物被正式批准。 基因工程药物因为其疗效好,副作用小,应用范围广泛而成为各国政府和企业投资研究开发的热点领域,大量的基因工程药品连续问世,年产值达数十亿美元。自1982年问世以来,基因工程药物成为制药行业的一支奇兵,每年平均有3-4个新药或疫苗问世,开发成功的约五十多个药品已广泛应用于治疗癌症、肝炎、发育不良、糖尿病、囊纤维变性和一些遗传病上,在很多领域特别是疑难病症上,起到了传统化学药物难以达到的作用。其原因在于,基因工程制药物的研究与开发多是以对疾病的分子水平上的有了解为基础的,往往会产生意想不到的高疗效。 基因工程制造药行业在近二十年中的飞速发展是以分子遗传、分子生物、分子病理、生物物理等基础学科的突破,以及基因工程、细胞工程、发酵工程、酶工程和蛋白质工程等基础工程学科的高速进展为后盾的。基因工程药物的开发时间为5-7年,比开发新化学单体(10-12年)要短一些,当然这也与各国政府的支持有关。据报道,开发活性蛋白生物创新药的成功率按开发的5个阶段大致是:临床前的成功率为15%,一期临床为27%,二期临床为40%,三期临床为80%,注册登记为90%,总体成功率大大高于化学药。适应症不断延伸也是蛋白类药物的一大特点。例如,rhG-CSF,91年上市时批的适应症是化疗并发中性粒细胞减少,到95年11月13日止,又增加了骨髓移植,严重慢性中性粒细胞减少及外周及外周血干细胞移植等适应症。因此,基因工程生物药物发展包括新品种和新适应症两个方面。 二、美国基因工程药物的发展前景

中国基因工程药物研究进展

尚珂 胡鹤 胡又佳 中国基因工程药物研究进展 有关作者: 尚珂博士,女,1980年生,现就职于上海医药工业研究院,创新药物与制药工艺国家重点实验室(筹),任助理研究员。2001年毕业于中国药科大学,2006年获上海医工院微生物与生化药学博士学位。主要研究方向:链霉菌基因工程;重大抗生素品种产生菌的基因工程改造。我国生物技术药物工业总产值至2006年为400~500亿元,仍然保持了高速的增长,新批准的进行临床研究和注册的基因工程药物及新剂型有17个,但其中大部分属于新剂型。创新药物的研究更多地体现在科研领域,尤其是在基因重组蛋白方面,无论是研究的创新性还是品种的多样性都体现了我国在基因工程药物研究领域所取得的长足进步。近年来有越来越多的研究结果发表在国外SCI收录的杂志上,引起了国际上广泛的关注。 1重组蛋白 1.1 活性多肽 1.1.1 志贺毒素抑制多肽 志贺毒素是痢疾志贺菌的主要毒力因子,是一种烈性蛋白质毒素。以制备的重组志贺毒素B亚单位(StxB)为靶标,利用噬菌体展示亲和淘选技术的4轮筛选,从随机十二肽库中筛选到与StxB结合的一批噬菌体克隆,对特异结合活性较高的27个噬菌体克隆的表面展示肽进行序列测定,克隆展示肽出现频率最高的A6噬菌体,在体外与志贺毒素孵育进行动物试验,动物存活率达33.3%,表明毒素的毒性得到部分抑制,A6短肽可能发展成为志贺毒素的拮抗剂[1]。 1.1.2 降钙素 降钙素是甲状腺滤泡旁细胞产生的一种多肽类激素,它是体内钙平衡和骨代谢的调节因子,鲑降钙素已经在临床上用于骨质疏松症,但需要反复多次的注射,且与人降钙素的同源性仅为50%,易产生抗体。将人降钙素在成肌细胞中进行表达,能持续表达人降钙素的细胞进行微囊包埋后仍能持续分泌重组人降钙素到培养液中,这为利用包埋的重组成肌细胞释放人降钙素以及进一步采用移植细胞来治疗绝经后骨质疏松提供了可能[2]。 降钙素基因相关肽(Calcitonin gene-related peptide,CGRP)是从甲状腺髓样癌细胞中克隆发现的一种神经肽,由降钙素基因初级转录产物选择性剪接产生,属于降钙素(Calcitonin,CT) 超家族。CGRP 有两种分子异构肽:αCGRP和βCGRP。采用大肠杆菌偏爱的密码子人工合成hαCGRP 基因,构建了原核融合表达载体,对融合蛋白成功地进行了表达和纯化,Western免疫印迹验证该蛋白具有αCGRP 抗原性,为下一步hαCGRP 纯品的获得及动物实验的研究奠定了基础[3]。 1.1.3 葡萄糖依赖性促胰岛素多肽 GIP,即葡萄糖依赖性促胰岛素多肽或抑胃肽(glucose-dependent insulinotropic polypeptide or gastric inhibitory peptide)是由42个氨基酸组成的胃肠调节肽,具有广泛的临床应用价值。人工合成具有大肠杆菌偏爱密码子的编码GIP成熟肽的cDNA序列,利用pET32a(+)系统 进行原核表达。诱导表达的rhGIP占细胞总蛋白质的35%,纯化后的

基因工程药物的研究进展

基因工程药物的研究进展 摘要:于什么是基因工程药物,基因工程药物的研究进展,基因工程药物的研究热点及发展方向,我国基因工程药物研究现状,新型基因工程药物,用于临床的基因工程药物,基因工程药物的安全性及其伦理问题的讨论。 关键词;基因工程药物;发展方向;临床应用;安全性 随着时间和科技的发展,基因工程药物早已被人们所熟知,然而大部分人群只知道有这样的药物却不知道它具体是什么样的,有怎样的功能,怎样的疗效。现在科学又是怎样来看待基因药物的,基因工程药物又有怎样的发展,它能否被人们所接受。以下是对这些问题的讨论。 1 基因工程药物及现状 1.1 什么是基因工程药物 所谓基因工程药物就是先确定对某种疾病有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因取出来,经过一系列基因操作最后将该基因放入可以大量生产的受体细胞中去(包括细菌、酵母菌、动物或动物细胞、植物或植物细胞),在受体细胞不断繁殖,大规模生产具有预防和治疗这些疾病的蛋白质,即基因疫苗或药物。 1.2 基因工程药物现状 据不完全统计,欧美诸国目前已经上市的基因工程药物近100种,还有约300种药物正在临床试验阶段,处于研究和开发中的品种约2000个。值得注意的是,近两年基因药物上市的周期明显缩短。与一般药物研究开发相比,基因工程药物研究投入大。在美国,这种药物的研究经费是工业研究平均投入的近10倍,且呈逐年增加的趋势。一些大的跨国公司为垄断市场而冒险涉足,如美国强生公司为开发一个重组人红细胞生成素(EPO)产品,投资≥20亿美元,获利也十分丰厚。 2 基因工程的研究进展 2.1 基因工程药物的发展概况 20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。基因药物经历了三个阶段:第一阶段是把药用蛋白基因导入到大肠杆菌等细菌中,通过大肠杆菌等表达药用蛋白但这类药物往往有缺陷,人类的基因在低等生物的细菌中往往不表达或表达的蛋白没有生物活性。第二阶段是人们用哺动物的细胞代替细菌,生产第二代基因工程药物。第三阶段是到了80年代中期,随着基因重组和基因转移技术的不断发展和完善,科学家可以将人们所需要的药用蛋白基因导入到哺乳动物体内,使目的基因在哺乳动物身上表达,从而获得药用蛋白。 2.2 基因工程药物的开发方法 现有研制和生产基因工程药物的方法,是利用DNA重组技术生产蛋白质,对于蛋白新药的发现仍然局限于常规药物的发现模式,一个基因工程新药的产生是依靠对天然蛋白因子的结构改造后得到,只有那些人体内较高表达的蛋白质才较大可能地被发现和生产。

基因工程药物

基因工程药物 蛋白质是生命活动最重要的物质之一,很多蛋白质与人类的疾病密切相关。大家所熟悉的侏儒症与病人缺少生长激素有关;一些糖尿病人则是由胰岛素合成不足引起的。在DNA重组技术出现之前,大多数的人用蛋白质药物主要是从人(如血液、尿液)或动物的组织或器官中提取的,成本特别高、产率和产量都很低,供应十分有限。并且由人体来源的材料进行提取,很难保证这种蛋白质药物不被某些病原体,如肝炎病毒、艾滋病病毒的污染,所以存在不安全因素。 1972年DNA重组技术诞生,直到 1982年出现世界第一个基因工程药物。基因工程药物开始进入人们的视线并逐渐得到重视。 基因工程药物是先确定对某种疾病有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因取出来,即目的基因。将目的基因用DNA重组技术的方法连接在载体DNA上,然后将载体导入可以大量生产的靶细胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质提纯及做成制剂,从而成为蛋白类药物或疫苗。 目前基因工程药物主要分为四类:激素类及神经递质类药物;细胞因子类药物;酶类药物与凝血因子;基因工程活疫苗。这里就只做简单介绍,有兴趣的同学可以去详细了解。 我们来看一下基因工程药物合成的步骤:首先是目的基因DNA的取得——构建DNA重组体——构建工程菌——目的基因的表达——外源基因表达产物的分离纯化——最后是进行产品的检验。经临床试验才可投入市场。 我们来了解一下基因工程药物的发展历程 自1972年DNA重组技术诞生以来,作为现代生物技术核心的基因工程技术得到飞速的发展。1982年美国Lilly公司首先将重组胰岛素投放市场,标志着世界第一个基因工程药物的诞生。到1996年美国已拥有1300多家专门从事生物公司,70%从事生物医药开发。 我国基因工程药物的研究和开发起步较晚,1989年我国批准了第一个在我国生产的基因工程药物——重组人干扰素α1b,标志着我国生产的基因工程药物实现了零的突破。重组人干扰素α1b是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个我国自主研制成功的拥有自主知

基因工程药物开发利用前景

基因工程药物开发利用前景 摘要:生物制药是以基因工程为基础的现代生物工程,即利用现代生物技术对DNA进行切割、连接、改造,生产出传统制药技术难以获得的生物药品。而现代生物技术是以基因为源头,基因工程和基因组工程为主导技术,与其他高技术相互交叉、渗透的高新技术。比尔·盖茨预言:下一个首富可能是从事生物技术的投资者。本文简要分析了国内外基因工程药物开发的现状和前景。 以基因工程,细胞工程,发酵工程和酶工程为主体的现代生物技术是70年代开始异军突起的高新技术领域,近一,二十年来发展极为神速,它与微电子技术,新材料和新能源技术并列为影响未来国计民生的四大科学技术支柱,被认为是21世纪世界科学技术的核心。现代生物技术又是一项与医药产业结合极为密切的高新技术,它的发展已带给了某些医学基础学科的革命性变化,并给医药工业开辟了更为广阔的心领域。 自1982年全世界第一个基因重组医药产品“人胰岛素”在美国面市以来,至今已有数十个生物技术药物上市。现代生物技术开辟了人体内源性多肽,蛋白质药物的新天地。于此同时它也正渗透到传统医药的哥哥领域,以抗生素,氨基酸,细胞融合及基因工程菌,化学合成药物的生物转化性,到单克隆抗体靶向制剂等等。不久之前美国的Eli Lilly公司又提出了生物技术在医药上的更大应用,是在新药研究筛选方法上的革命,即用基因工程受体实验代替传统的动物实验,所有这一切都表明了医药产业的技术基础正在发生战略性的变革。世界各大医药企业已瞅准目标,纷纷投入巨资围绕以现代生物技术为核心的产品和技术结构开拓,展开了面向21世纪的空前激烈的竞争。 1 基因药物的前沿技术及部分基因药物 基因药物的直接体内基因治疗发展迅速,新型基因药物不断产生。现着重介绍对效果比较肯定关于基因药物的几项前沿技术,基因疫苗、反义RNA 药物、三链DNA 药物这三种新型基因药物技术的基本方法。 1.1基因疫苗 基因疫苗的免疫方法即基因疫苗的给药途径,目前使用的方法有以下几种: (1)裸DNA 直接注射:将裸质粒DNA 直接注射到机体的肌肉、皮内、皮下、粘膜、静脉内。这种方法简单易行。 (2)脂质体包裹DNA 直接注射:包裹DNA 的脂质体能与组织细胞发生膜融合,而将DNA 摄入,减少了核酸酶对DNA 的破坏。注射途径同裸DNA直接注射。 (3)金包被DNA 基因枪轰击法:将质粒DNA 包被在金微粒子表面,用基因枪使包被DNA 的金微粒子高速穿入组织细胞.。 (4)繁殖缺陷细菌携带质粒DNA 法:选择一种容易进入某组织器官的细菌,将其繁殖基因去掉,然后用质粒DNA 转化细菌,当这些细菌进入某组织器官后,由于不能繁殖,则自身裂解而释放出质粒DNA。 1.2反义RNA 反义RNA 指与mRNA 互补后,能抑制与疾病发生直接相关基因的表达的RNA。它封闭基因表达,具有特异性强、操作简单的特点,可用来治疗由基因突变或过度表达导致的疾病和严重感染性疾病,反义RNA 治疗的基本方法有: 1) 反义寡核苷酸:体外合成十至几十个核苷酸的反义寡核苷酸或反义硫代磷酸酯寡核苷酸序列,用脂质体等将反义寡核苷酸导入体内靶细胞,然后反义寡核苷酸与相应mRNA特异性结合,从而阻断mRNA 的翻译。 2) 反义RNA表达载体:合成或PCR 扩增获取反义RNA 的DNA ,将它克隆到表达载体,然后

我国生化与生物技术药物研究进展与问题

生物技术药物问 人类已进入21世纪,生化与生物技术药物领域已取得巨大的发展。从分子、基因水平认识生命改造物种,在人类面前展现出一片崭新的天空。生化与生物技术药物在造福人类的同时也带来了相应学术和社会争端,给我们提出了许多新问题。下面选取几方面问题供讨论。 1 国内生化与生物技术药物的研究开发现状 我国生化药物的研究和开发起步于20世纪的70年代,到了90年代已有许多产品步入产业化。1996年,我国生物技术药物的产值为18亿元,实现利润5亿元;到1997年上市的基因工程药物有12种,年产值达30亿元;2000年产值达69亿元,2003年产值达99亿元,2005年的年产值已达400亿元。2007年产值超500亿元。有关专家预测,未来几年,生化与技术药物的年增长率不会低于12%。 目前国内市场的生物技术药物主要是基因工程乙肝疫苗、IFN-α、IL-2、GM-CSF、EPO、重组胰岛素、重组链激酶、重组表皮生长因子、促肝细胞生成素等基因工程药物近40个品种(包括药物新剂型);t-PA、IL-3、重组尿激酶(UK)、rh-SOD等十几个品种在进行Ⅰ~Ⅲ期临床试验,重组凝乳酶等40多种基因工程新药正在进行研究开发,传统的生化药物(如透明质酸钠、肝素钠、低分子肝素钠等)在质量控制和新剂型改进等方面取得进展。2005年,我国批准了4个具有自主知识产权的生物技术药物:重组人脑利钠素、碘131美妥昔单抗注射液、重组人血管内皮抑制剂和重组人五型腺病毒注射液,表明我国的生物药物研究已开始从仿制转入创新的阶段。 2006年我国申报的101种生物制品中,有92种生物制品属于国产申报,只有9种是进口申报。92种国产申报产品中有68种为注射剂,有37种是有关干扰素的。24种非注射剂型中,重组人干扰素α1b、α2b及α2a的剂型有19种,包括:喷雾剂,滴鼻剂,口腔粘贴片,阴道泡腾片,栓剂,口含片等。注射剂中有重组干扰素的聚乙二醇化及其他变异体,注射用重组人干扰素α2a与肿瘤血管特异性结合多肽NGR融合蛋白,充分体现了剂型改造及结构改造在生物药物中的重要性。

基因工程药物应用情况

基因工程药物、抗体药物临床应用情况调查 专业:生物技术 班级:B1403 学号:0514140304 姓名:李妙凤

摘要:基因工程药物临床应用品种逐年增加,销售金额不断增长,临床用途越来越广泛。基因工程药物疗效确切、使用安全、不良反应少,在糖尿病、心血管疾病、病毒感染性疾病、类风湿性关节炎、创面修复和抗肿瘤等方面具有广泛的应用前景。本文主要介绍了基因药物的获得途径、抗体工程技术和临床应用情况展开调查并分析。 关键词:基因工程药物;抗体药物;应用 调查目的:了解抗体药物在我国的应用现状及其药学监护知识。 方法:采用回顾性分析,对我国现已批准上市的抗体药物进行统计、分析,并与美国应用的适应证进行比较。 结果:据不完全统计,目前在欧美诸国,已经上市的基因工程药物已接近百种,大约还有超过300种药物正在临床试验阶段,处于研究和开发中的品种将近2000个。值得注意的是,近一、二年基因药物上市的周期有明显缩短的迹象。我国现有抗体药物16种,其中单克隆抗体药物15种,抗体融合蛋白1种,按药理学分为抗肿瘤药物(7种)、治疗自身免疫性疾病药物(5种)、器官移植抗排异反应药物(3种)、抗视网膜黄斑变性药物(1种)。1、基因工程药物的研究与分类 首先,了解什么是基因工程药物?基因工程药物,就是先确定对某种疾病有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因取出来,经过一系列基因操作,最后将该基因放入可以大量生产的受体细胞中去,这些受体细胞包括细菌、酵母菌、动物或动物细胞、植物或植物细胞,在受体细胞不断繁殖过程中,大规模生产具有预防和治疗这些疾病的蛋白质,即基因疫苗或药物。 随着人类基因组逐渐被各种形式的基因工程抗体的成功制备和应用,将抗体药物的研制带入快速发展新时期。自1984年第一个基因工程抗体人-鼠嵌合抗体诞生以来,新型基因工程抗体纷纷出现,例如,有人源化抗体、单价小分子抗体(Fab、单链抗体、单域抗体、超变区多肽等)、多价小分子抗体(双链抗体、三链抗体、微型抗体)、某些特殊类型抗体(双特异抗体、抗原化抗体、细胞内抗体、催化抗体、免疫脂质体)和抗体融合蛋白(免疫毒素、免疫粘连素)等。 抗体药物的研究,其当前发展主要趋于包括:研究与应用新分子靶点,抗体的人源化,抗体药物的高效化,抗体药物分子的小型化,研究具有抗体功能的融合蛋白。 基因工程抗体构建形式灵活多样,不仅能通过减少抗体中的鼠源成分降低免疫原性,而且可以将抗体的部分片段与其它功能性分子连接,使抗体除了与抗原结合外,还能发挥其他效应分子的生物学作用。基因工程抗体在医学领域的许多方面都极具应用潜力,尤其在诊断和治疗肿瘤性疾病及抗感染方面优势明显。 2、基因工程药物的研究与应用 2.1基因工程药物在肿瘤性疾病诊疗方面的应用 以标记抗体注入人体内显示肿瘤部位抗原与抗体结合的放射浓集称放射免疫显像,显像效果受抗体亲和力、特异性、半衰期和组织穿透力等因素影响。同时,用鼠源单抗会引起人抗鼠抗体反应,改变抗体药物代谢动力学而导致显像失败,并产生副作用。用基因工程抗体可解决上述问题,而且基因工程抗体中如单链抗体、F(ab’)等,分子量小、能很快清除、组织穿透力强,显像本底低,更加适合放射免疫显像。恶性肿瘤的导向治疗是通过重组技术将抗肿瘤相关抗原的抗体,与毒性蛋白如绿脓杆菌外毒素、蓖麻毒素及白喉毒素等,或是细胞因子如白介素、肿瘤坏死因子、干扰素等融合形成的重组毒素或免疫毒素可将细胞杀伤效应引导到肿瘤部位,对肿瘤细胞进行直接杀伤或调动机体免疫系统杀伤肿瘤细胞。 在肿瘤治疗方面,抗体药物偶联物的研制受到特别关注,因为它兼有抗体的特异性和“弹

相关文档