文档库 最新最全的文档下载
当前位置:文档库 › 兆瓦级风力发电机变桨距机构设计及分析_田亚平

兆瓦级风力发电机变桨距机构设计及分析_田亚平

兆瓦级风力发电机变桨距机构设计及分析_田亚平
兆瓦级风力发电机变桨距机构设计及分析_田亚平

定距桨变距桨与风力发电机组

桨距 螺旋桨的桨叶都与旋转平面有一个倾角。 假设螺旋桨在一种不能流动的介质中旋转,那么螺旋桨每转一圈,就会向前进一个距离,连续旋转就形成一段螺旋。 同一片桨叶旋转一圈所形成的螺旋的距离,就称为浆距。显然,桨叶的角度越大,浆距也越大,角度与旋转平面角度为0,浆距也为0。 这个“距”,就是桨叶旋转形成的螺旋的螺距。 桨距指的是直升机的旋翼或固定翼的螺旋桨旋转一周360 度,向上或向前行走的距离(理论上的)。就好比一个螺丝钉,您拧一圈后,能够拧入的长度。桨距越大前进的距离就越大,反之越小!然而要测量实际桨距的大小是比较困难的,所以一般固定翼飞机使用桨距不变的螺旋桨上都会标明其直径和桨距的大小(单位以英寸居多),以便于和合适的发动机配套使用。绝大多数的固定桨距的直升机桨一般是专为某一级别的飞机定制的,所以只标明直径。可变桨距直升机可以非常容易的通过测量桨叶的攻角(迎风角度)大小来体现桨距的大小,和变化幅度。 l 定桨距失速调节型风力发电机组 定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69 ,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/ 小发电机)。在低风速段运行的,采用小电机使桨叶县有较高的气动效率,提高发电机的运行效率。 失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。其缺点是叶片重晏大(与变桨距风机叶片比较),桨叶、轮载、塔架等部件受力较大,机组的整体效率较低。 2 变桨距调节型风力发电机组 变奖距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“, 直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。 随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用 OptitiP 技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。 变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。 3 主动失速调节型风力发电机组

风力发电场课程设计报告

课程设计(综合实验)报告( 2014 -- 2015 年度第1学期) 名称:风力发电场 院系:可再生能源学院 班级:风能1101班 学号: 学生姓名: 指导教师:韩爽刘永前 设计周数:2周 成绩: 提交日期:2014 年1月23 日

目录 一、课程设计目的 (1) 二、课程设计任务 (1) 三、课程设计要求 (1) 四、课程设计内容 (1) (一)测风数据处理 (1) (二)导入文件准备 (2) (三)W AsP软件计算 (3) 1.New Projection建立以及场址地图导入 (3) 2.风图谱的计算 (3) 3.测风塔的选定 (4) 4.宏观选址与风资源预测 (6) 5.Wind farm的建立与微观选址 (6) 6.风电场年发电量预测 (7) (四)WindFarmer优化计算 (9) 1.建立文件向导 (9) 2.载入地图文件 (10) 3.载入风资源数据 (10) 4.在栅格区域确定计算边界 (11) 5.安插风机 (12) 6.载入风力发电机机型文件 (13) 7.优化计算 (13) 8.生成报告 (14) (五)计算结果分析对比 (20) 1.年发电量 (20) 2.布机图 (21) 3.分析 (22) 五、课程设计个人总结 (22)

一、课程设计目的 通过使用W AsP、WindFarmer等软件,掌握风电场风能资源评估、微观选址原理及方法。 二、课程设计任务 根据风场测风数据及地形图,分别使用W AsP和WindFarmer软件,进行风资源评估和微观选址。具体包括: 1.对给定的风场测风数据进行处理; 2.使用经过处理后的测风数据,进行风资源评估,得到风图谱; 3.依据微观选址的基本原则,进行优化布机; 4.对两套不同软件的计算结果进行对比分析; 5.撰写设计报告。 三、课程设计要求 1.掌握风资源评估和微观选址的基本原理和方法; 2.掌握上述软件的使用方法; 3.独立撰写设计报告。 四、课程设计内容 (一)测风数据处理 分别选取各组数据,查看平均风速,70米高度处平均风速分别为7.574m/s 和 6.535m/s,在其他各高度处读出的平均风速分别为7.475m/s、7.219m/s、 6.897m/s、6.223m/s。由此判断70米高度处数据有一组异常。选取该组数据,应 用表格数据栏里的筛选功能,只选取0.3m/s、0.4m/s两个值,发现其他组数据有相应变化的风速,而该组数据始终为0.3m/s、0.4m/s。 删除异常数据,利用Windographer软件打开剔除后的测风数据,在相关性一栏查看两组70米高度处的数据相关性,得到相关性公式,在表格中利用该公式计算出需要修正的数据。至此,异常数据处理完成。 图4.1.1 测风数据

风力发电机组变桨系统毕业论文

风力发电机组变桨系统的维 护与检修 毕业顶岗实习报告书 专业:电力系统自动化技术(风电方向) 班级: 姓名: 顶岗实习单位:金风科技股份有限公司 校外指导师傅: 校内指导教师: 报告完成日期: 新疆农业大学 2015年6月

风力发电机组变桨系统的维护与检修 学生姓名: 专业班级: 学生诚信签名: 完成日期: 指导教师签收: 摘要 能源、环境是当今人类生存和发展所要解决的紧迫问题。传统的化石燃料虽能解决能源短缺的问题,却给环境造成了很大的破坏,而风能具有无污染、可再生、低成本等

优点,所以其受到世界各国的重视。 可靠、高效的风力发电系统的研发己经成为新能源技术领域的热点。然而,因为风能具有不稳定性、能量密度低和随机性等特点,同时风电厂通常位于偏远地区甚至海上,自然条件比较恶劣,因此要求其控制系统必须能够实现自动化运行,并且要求控制系统有高可靠性。所以对风力发电机组尤其是大型风电机组的控制技术及风力发电后期的维护和检修就具有相当重要的意义。 本文首先在对风力发电原理,风电机组研究的基础上从变桨距风力机空气动力学研究入手,分析了变桨距控制的基本规律,再结合目前国内主流的变桨距控制技术分别设计出了液压变桨距控制,电动变桨距控制的方案,变桨距风机的维护和检修,最后在此基础上提出了一种较为理想的控制策——半桨主动失速控制。 关键词:变桨距控制,维护,检修

目录 摘要 (2) 一顶岗实习简历 (1) 二顶岗实习目的 (1) 三顶岗实习单位简介 (2) 目前行业发展地位 (2) 四顶岗实习内容 (3) 第一章变桨距系统 (3) 变桨距与定桨距 (5) 定桨距 (5) 变桨距 (5) 定桨距与变桨距的比较 (6) 而变桨距风力发电机可以克服上述定桨距风力发电机的缺点,在很宽的风速范围内保持最佳叶尖速比,从而提高风力机的运行效率和系统稳定性。变桨距风力发电机在变桨距的同时通过配合使用双馈发电机或永磁风力发电机,可以减轻风速突变产生的转距波动,减轻传动机构承受的扭矩波动,提高齿轮箱寿命,减少传动系统故障率。此外,可结合对电机的励磁控制,实现无电流冲击的软并网,使机组运行更加平稳安全[2]变桨矩调节原理 (7) 变桨距控制过程 (7) 变桨距风力机组的运行状态分析 (8) 启动状态 (8) 欠功率状态 (9) 额定功率状态 (9) 变桨距控制的特点 (9) 输出功率特性 (9) 风能利用率 (10) 额定功率 (10) 启动与制动性能 (10) 对机械部件的影响 (10) 第二章变桨矩系统的原理与结构 (11) 变桨矩调节原理 (11) 变桨矩系统分类 (11) a) 液压变桨矩 b) 电动变桨矩 (12) 图变桨矩系统的轮毂照片 (12) 风力发电机组变桨矩驱动装置比较和选择 (15) 液压变桨与电动变桨技术比较 (15) 见表[6]。 (15) 表液压变桨系统与电动变桨系统的比较 (15) 项目 (15) 液压变桨矩系统 (15) 电动变桨矩系统 (15) 桨矩调节 (15) 响应速度慢 (15)

风力发电机变桨控制系统培训教材

变桨控制系统培训教材 1. 变桨控制系统概述 变桨轴承 限位开关装 图1 变桨系统 变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变 桨轴承。从额定功率起,通过控制系统将叶片以精细的变桨角度向顺

桨方向转动,实现风机的功率控制。如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。 变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。在90度迎角时是叶片的工作位置。在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。一般变桨角度范围为0~86度。采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。 变桨控制系统有四个主要任务: 1.通过调整叶片角把风机的电力速度控制在规定风速之上的一 个恒定速度。 2.当安全链被打开时,使用转子作为空气动力制动装置把叶子转 回到羽状位置(安全运行)。 3.调整叶片角以规定的最低风速从风中获得适当的电力。 4.通过衰减风转交互作用引起的震动使风机上的机械载荷极小

化。 2.变桨轴承 变桨驱动装 变桨轴承 图2 变桨轴承和驱动装置 安装位置 变桨轴承安装在轮毂上,通过外圈螺栓把紧。其内齿圈与变桨驱 动装置啮合运动,并与叶片联接。 工作原理 当风向发生变化时,通过变桨驱动电机带动变桨轴承转动从而改

变速变桨距风力发电机组控制策略改进与仿真

变速变桨距风力发电机组控制策略改进与仿真 刘 军,何玉林,李 俊,黄 文 (重庆大学机械传动国家重点实验室,重庆市400030) 摘要:在分析变速变桨距风力发电机组基本控制策略的基础上,提出一种扩大过渡区的改进控制策略,用来消除额定功率运行点附近切换造成的功率波动及突变载荷等不利影响。依据改进的控制策略设计了3个控制器平滑过渡方案,实现对该策略的最佳跟踪。运用MAT LAB 仿真平台模拟了改进控制策略下的风力发电机组运行特性,结果表明了改进控制策略的正确性及控制器设计的有效性。 关键词:风力发电机组;变速变桨距;控制策略;扩大过渡区;平滑控制 收稿日期:2010 06 23;修回日期:2010 10 09。重庆市科技攻关重点项目(CST C2007A A3027)。 0 引言 风力发电机组的控制技术由原来单一的定桨距失速控制转向变桨距变速控制,目的是为了防止风能转换系统承受的载荷过重,从风场中最大限度地捕获能量以及为电网提供质量较好的电能。然而,风力发电机组作为一种复杂的、多变量、强耦合、非线性的系统,要想减小风力机载荷以延长其使用寿命,抑制功率波动以降低对电网的不利影响,控制策略的选取及控制器的设计至关重要[1 6]。 本文通过对变速变桨距风力发电机组基本控制策略的分析,针对过渡区运行过程中出现的功率波动大及突变载荷强等情况,提出一种改进的控制策略来减缓此种影响。为最佳跟踪改进的控制策略,设计了3个控制器以实现3个运行区间的平滑过渡。同时应用M ATLAB 仿真平台对变速变桨距风力发电机组运行特性进行了仿真,结果表明了所提出方案的合理性和可行性。 1 基本的变速变桨距控制策略 如图1所示,在转速 转矩平面图中,曲线A BC 描述了变速变桨距风力发电机组的基本控制策略。在低风速区,风电机组从切入风速为V in 的A 点到风速为V N 的B 点,沿着C pmax 曲线轨迹运行,此区间称为恒C p 运行区。由于在B 点发电机转速达到了其上限值 N ,当风速从V N 上升到V N 时,转速将恒定在 N ,提升发电机转矩使风电机组达到其额定功率,在图1中为BC 段,也称为恒转速区或过渡区。当风速超过额定风速V N 时,变桨距系统将开 始工作,通过改变桨距角保持功率的恒定,风电机组将持续运行在C 点,直到风速超过切出风速V out ,此区间称为恒功率区,而此区间内桨距角控制方式采用统一桨距控制,它是指风力机所有桨距角均同时 改变相同的角度[7 8] 。在此需要注意的是:若最大功率P N 曲线与C pmax 曲线的相交点在额定转速极限值左侧,就会造成风电机组在未达到额定转速时,已进入失速状态,相应的A B 区间将被缩小,这时就需 对整个风电机组额定点进行重新选取。 图1 变速变桨距风力发电机组控制策略Fig.1 C ontrol strategy of the variable speed pitch controlled wind turbine driven generator system 从图1可以看出,3个区间工作点的划分非常明显,而控制器的设计与工作点的选取有着必然的联系,因此,基本的变速变桨距风电机组通常会设计2个独立的控制器,一个用来跟踪参考速度,另一个用来跟踪额定功率。由于2个控制器都有各自的控制目标,在运行过程中相互独立,然而在工作点附近,2个控制器又相互制约,这种制约就会导致风电机组在C 点控制系统的调节能力下降,在突遇阵风 82 第35卷 第5期2011年3月10日Vo l.35 N o.5M ar.10,2011

风电场电气系统课程设计报告

风能与动力工程专业 风电场电气系统课程设计报告 题目名称:48MW(35/110KV升压站)风 电场电气一次系统初步设计指导教师:贾振国 学生姓名: 班级: 设计日期:2014年07月 能源动力工程学院

课程设计成绩考核表

摘要 根据设计任务书的要求及结合工程实际,本次设计为48MW风电场升压变电站电气部分设计。本期按发电机单台容量2000kW计算,装设风力发电机组24台。每台风力发电机接一台2000kVA升压变压器,将机端690V电压升至35kV 并接入35kV集电线路,经3回35kV架空线路送至风电场110kV升压站。 变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是由变压器、断路器、隔离开关、互感器、母线、避雷器等电气设备按一定顺序连接而成的,电气主接线的不同形式,直接影响运行的可靠性、灵活性,并对电气设备的选择、配电装置的布置、继电保护和控制方式的拟定等都有决定性的影响。 本文是小组成员的配合下和老师的指导下完成的,虽然时间很短,没有设计出特别完整的成果,可是我们学会了如何查找对自己有用的资料,如何设计一个完整的风电场电气系统。并且我们设计出了三张图,包括风机与箱式变电站接线图、35KV风电场集电线路接线图、110KV变电所电气主接线图,在这里感谢小组成员们的辛勤付出和贾老师的耐心指导。 关键词:主接线电气设备配电装置架空线路防雷与接地

Abstract According to the requirements of the design task and combined with the engineering practice, the design is part of the 48MW wind power booster substation electrical design. This period in accordance with the generator unit capacity of 2000kW calculation, installation of 24 wind turbine units. Each wind generator with a 2000kV A step-up transformer, the terminal 690V voltage to 35kV and access 35kV integrated circuit, the 3 35kV overhead transmission line to the wind farm 110kV booster station. Substation is an important part of power system, which directly affects the safety and economic operation of the whole power system, is the intermediate link between power plants and users, plays a role in transformation and distribution of electricity. The main electrical wiring is composed of a transformer, circuit breaker, isolating switch, transformer, bus, surge arresters and other electrical equipment according to a certain order which is formed by the connection of different form, the main electrical wiring, directly affect the operation reliability,flexibility, and the choice of electrical equipment, power distribution equipment arrangement, relay protection and control to have a decisive impact. This paper is combined with team members and under the guidance of teachers completed, although time is very short, no design particularly integrity achievements, but we learned how to find useful on its own data, how to design a complete wind farm electrical system. And we designed the three pictures, including fans and box type substation wiring diagram, 35KV wind farm set wiring diagram of an electric circuit, 110KV substation main electrical wiring diagram.Thanks to the team members to work hard and Jia teacher's patient instructions here. Key word:The main wiring Electrical equipment Distribution device Overhead line Lightning protection and grounding

变桨距风力发电机组的运行状态

变桨距风力发电机组的运行状态 从空气动力学角度考虑。当风速过高时,只有通过调整桨叶节距,改变气流对叶片的角度,从而改变风力发电机组获得的空气动力转矩,才能使功率输出保持稳定。同时,风力机在启动过程中也需要通过变距来获得足够的启动转矩。 变桨距风力发电机组根据边距系统所起的作用可分为三种运行状态,即风力发电机组的启动状态(转速控制)、欠功率状态(不控制)和额定功率状态(功率控制)。 1)启动状态变距风轮的桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩,整个桨叶实际上是一块阻尼板。当风速达到启动风速时,桨叶向0°方向转动,直接到气流对桨叶产生一定的攻角,风轮开始启动。在发电机并入电网以前,变桨距系统的节距给定值由发电机转速信号控制。转速控制器按照一定的速度上升斜率给出速度参考值,变桨距系统根据给定的速度参考值,调整节距角,进行所谓的速度控制。为了确保并网平稳,对电网产生尽可能小的冲击,变桨距系统可以在一定时间内保持发电机的转速在同步转速附近,寻找最佳时机并网。虽然在主电路中也采用了软并网技术,但由于并网过程的时间短,冲击小,可以选用容量较小的晶闸管。 为了使控制过程比较简单,早期的变桨距风力发电机在转速达到发电机同步转速前对桨叶节距并不加以控制。在这种情况下,桨叶节距只是按所设定的变桨距速度,将节距角向0°方向打开,直到发电机转速上升到同步转速附近,变桨距系统才开始投入工作。转速控制的给定值是恒定的,即同步转速。转速反馈信号与给定值进行比较。当转速超过同步转速时,桨叶节距就迎风面积小的方向转动一个角度,反之则向迎风面积增大的方向转动一个角度。当转速在同步转速附近保持一定时间后发电机即并入电网。 2)欠功率状态欠功率状态是指发电机并入电网后,由于风速低于额定风速,发电机在额定功率以下的低功率状态下运行。与转速控制道理相同,在早期的变桨距风力发电机组中,对欠功率状态不加控制。这时的变桨距风力发电机组与定桨距风力发电机组相同,其功率输出完全取决于桨叶的气动性能。 3)额定功率状态当风速达到或超过额定风速后,风力发电机组进入

风力发电机液压变桨系统简介

风力发电机液压变桨系统简介 全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。本文将对液压变桨系统进行简要的介绍。 风机变桨调节的两种工况 风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°附近的调节都属于连续变桨。液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。 液压变桨系统 液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。 液压变桨系统的结构 变桨距伺服控制系统的原理图如图1所示。变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。 图1 控制原理图 液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。

风力发电机组设计与制造课程设计报告

《风力发电机组设计与制造》 课程设计报告 院系:可再生能源学院 班级:风能0902班 姓名:陈建宏 学号 指导老师:田德、王永 提交日期: 一、设计任务书 1、设计内容 风电机组总体技术设计 2、目的与任务 主要目的: 1)以大型水平轴风力机为研究对象,掌握系统的总体设计方法; 2)熟悉相关的工程设计软件; 3)掌握科研报告的撰写方法。 主要任务: 每位同学独立完成风电机组总体技术设计,包括: 1)确定风电机组的总体技术参数; 2)关键零部件(齿轮箱、发电机和变流器)技术参数; 3)计算关键零部件(叶片、风轮、主轴、连轴器和塔架等)载荷和技术参数;

4)完成叶片设计任务; 5)确定塔架的设计方案。 每人撰写一份课程设计报告。 3、主要内容 每人选择功率范围在1.5MW至6MW之间的风电机组进行设计。 1)原始参数:风力机的安装场地50米高度年平均风速为7.0m/s,60米高度年平均风速为7.3m/s,70米高度年平均风速为7.6 m/s,当地历史最大风速为48m/s,用户希望安装1.5 MW至6MW之间的风力机。采用63418翼型,63418翼型的升力系数、阻力系数数据如表1所示。空气密度设定为1.225kg/m3。 2)设计内容 (1)确定整机设计的技术参数。设定几种风力机的C p 曲线和C t 曲线,风力机基本 参数包括叶片数、风轮直径、额定风速、切入风速、切出风速、功率控制方式、传动系统、电气系统、制动系统形式和塔架高度等,根据标准确定风力机等级; (2)关键部件气动载荷的计算。设定几种风轮的C p 曲线和C t 曲线,计算几种关键 零部件的载荷(叶片载荷、风轮载荷、主轴载荷、连轴器载荷和塔架载荷等);根据载荷和功率确定所选定机型主要部件的技术参数(齿轮箱、发电机、变流器、连轴器、偏航和变桨距电机等)和型式。以上内容建议用计算机编程实现,确定整机和各部件(系统)的主要技术参数。 (3)塔架根部截面应力计算。计算暴风工况下风轮的气动推力,参考风电机组的整体设计参数,计算塔架根部截面的应力。最后提交有关的分析计算报告。 4、进度计划

风力发电课程设计

1.风力发电发展的现状 1.1世界风力发电的现状 近20年风电技术取得了巨大的进步。1995—2006年风力发电能力以平均每年30%以上的速度增长,已经成为各种能源中增长速度最快的一种。今年来欧洲、北美的风力发电装机容量所提供的电力2成为仅次于天然气发电电力的第二大能源。欧洲的风力风力发电已经开始从“补充能源”向“战略替代能源”的方向发展。 到2008年,世界风能利用嘴发达的国家是德国、美国和西班牙,中国名列世界第四位。丹麦是世界上使用风能比例最高的国家,丹麦能源消费的1/5来自于风力。 欧洲在开发海上风能方面也依然走在世界前列,其中丹麦、美国、爱尔兰、瑞典和荷兰等国家发展较快。尤其是在一些人口密度较高的国家,随着陆地风电场殆尽,发展海上风电场已成为新的风机应用领域而受到重视。丹麦、德国、西班牙、瑞典等国家都在计划较大的海上风电场项目。目前海上风电机组的平均单机容量在3MW左右,最大已达6MW。世界海上风电总装机容量超过80万千瓦。 有余风力发电技术已经相对成熟,因此许多国家对风发电的投入较大,其发展较快,从而使风电价格不断下降。若考虑环保及地理因素,加上政府税收优惠政策和相关支持,在有些地区风力发电已可与火力发电等展开竞争。在全球范围内,风力发电已形年产值超过50亿美元的产业。 1.2我过风力发电的发展现状 我国风力发电从20世纪80年代开始起步,到1985年以后逐步走向产业化发展阶段。 自2005年起,我国风电规模连续三年实现翻倍增长。风电新增容量每年都增加超过100%,仅次于美国、西班牙,成为世界风电快速增长的市场之一。根据国家能源局2009年公布的统计数据,截止2008年底,我国风电装机容量已达1271万千瓦,居世界第4位,但是风电在我国整个电力能源结构中所占的比重仍然比较低。 我国将在内蒙古、甘肃、河北、吉林、新疆、江苏沿海等省区建设十多个百万千瓦级和几个千瓦级风电基地。根据目前国内增长趋势,预计到2020年,中国风电总装机容量将达到1.3亿~1.5亿千瓦。 2 风力发电机 2.1恒速恒频的笼式感应发电机 恒速恒频式风力发电系统,特点是在有效风速范围内,发电机组的运行转速变化范围很小,近似恒定;发电机输出的交流电能频率恒定。通常该类风力发电系统中的发电机组为鼠笼式感应发电机组。 恒速恒频式发电机组都是定桨距失速调节型。通过定桨距失速控制的风力机使发电机转速保持在恒定的数值,继而使风电机并网后定子磁场旋转频率等于电网频率,因而转子、风轮的速度变化范围较小,不能保持在最佳叶尖速比,捕获风能的效率低。 2.2变速恒频的双馈感应式发电机 变速恒频式风力发电系统,特点是在有效风速范围内,允许发电机组的运行转速变化,而发电机定子发出的交流电能的频率恒定。通常该类风力发电系统中的发电机组为双馈感应式异步发电机组。 双馈感应式发电机结合了同步发电机和异步发电机的特点。这种发电机的定子和转子都可以和电网交换功率,双馈因此而得名。 双馈感应式发电机,一般都采用升级齿轮箱将风轮的转速增加若干倍,传递给发电机转子转速明显提高,因而可以采用高速发电机,体积小,质量轻。双馈交流器的容量仅与发电机的转差容量相关,效率高、价格低廉。这种方案的缺点是升速轮箱价格贵,噪声大、易疲劳损坏。

风力发电机组变桨距

随着国家新能源发展战略的提出和实施,我国风电产业进入跨越式发展的阶段。本文从分析我国风力发电的现状出发,在总结分析风力发电技术发展的基础上,对我国风电发展过程中存在的主要问题进行了探讨分析,提出了相关建议。 关键词:风力发电;现状;技术发展 能源、环境是当今人类生存和发展所要解决的紧迫问题。常规能源以煤、石油、天然气为主,它不仅资源有限,而且造成了严重的大气污染。因此,对可再生能源的开发利用,特别是对风能的开发利用,已受到世界各国的高度重视。风电是可再生、无污染、能量大、前景广的能源,大力发展风电这一清洁能源已成为世界各国的战略选择。我国风能储量很大、分布面广,开发利用潜力巨大。近年来我国风电产业及技术水平发展迅猛,但同时也暴露出一些问题。总结我国风电现状及其技术发展,对进一步推动风电产业及技术的健康可持续发展具有重要的参考价值。 1我国风力发电的现状 2005年2月,我国国家立法机关通过了《可再生能源法》,明确指出风能、太阳能、水能、生物质能及海洋能等为可再生能源,确立了可再生能源开发利用在能源发展中的优先地位。2009年12月,我国政府向世界承诺到2020年单位国内生产总值二氧化碳排放比2005年下降40%~45%,把应对气和变化纳入经济社会发展规划,大力发展包括风电在内的可再生能源与核能,争取到2020年非化石能源占一次能源消费比重达到15%左右。 随着新能源产业成为国家战略新兴产业规划的出台,风电产业迅猛发展,有望成为我国国民经济增长的一个新亮点。 我国自上世纪80年代中期引进55kW容量等级的风电机投入商业化运行开始,经过二十几年的发展,我国的风电市场已经获得了长足的发展。到2009年底,我国风电总装机容量达到2601万kW,位居世界第二,2009年新增装机容量1300万kW,占世界新增装机容量的36%,居世界首位[1,2]。可以看出,我国风电产业正步入一个跨越式发展的阶段,预计2010年我国累计装机容量有望突破4000万kW。 从技术发展上来说,我国风电企业经过“引进技术—消化吸收—自主创新”的三步策略也日益发展壮大。随着国内5WM容量等级风电产品的相继下线,以及国内兆瓦级机组在风电市场的普及,标志我国已具备兆瓦级风机的自主研发能力。同时,我国风电装备制造业的产业集中度进一步提高,国产机组的国内市场份额逐年提高。目前我国风电机组整机制造业和关键零部件配套企业已能已能基本满足国内风电发展需求,但是像变流器、主轴轴承等一些技术要求较高的部件仍需大量进口。因此,我国风电装备制造业必须增强技术上的自主创新,加强风电核心技术攻关,尤其是加强风电关键设备和技术的攻关。 2风力发电的技术发展 风力发电技术是涉及空气动力学、自动控制、机械传动、电机学、力学、材料学等多学科的综合性高技术系统工程。目前在风能发电领域,研究难点和热点主要集中在风电机组大型化、风力发电机组的先进控制策略和优化技术等方面。 2.1风力发电机组机型及容量的发展 现代风力发电技术面临的挑战及发展趋势主要在于如何进一步提高效率、提高可靠性和降低成本。作为提高风能利用率和发电效率的有效途径,风力发电机单机容量不断向大型化发展。从20世纪80年代中期的55kW容量等级的风电机组投入商业化运行开始,至1990年达到250kW,1997年突破1MW,1999年即

风力发电机设计与制造课程设计

一.总体参数设计 总体参数是设计风力发电机组总体结构和功能的基本参数,主要包括额定功率、发电机额定转速、风轮转速、设计寿命等。 1. 额定功率、设计寿命 根据《设计任务书》选定额定功率P r =3.5MW ;一般风力机组设计寿命至少为20年,这里选20年设计寿命。 2. 切出风速、切入风速、额定风速 切入风速 取 V in = 3m/s 切出风速 取 V out = 25m/s 额定风速 V r = 12m/s (对于一般变桨距风力发电机组(选 3.5MW )的额定风速与平均风速之比为1.70左右,V r =1.70V ave =1.70×7.0≈12m/s ) 3. 重要几何尺寸 (1) 风轮直径和扫掠面积 由风力发电机组输出功率得叶片直径: m C V P D p r r 10495.096.095.045.012225.13500000 883 3 213≈???????==πηηηπρ 其中: P r ——风力发电机组额定输出功率,取3.5MW ; ——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 3η——变流器效率,取0.95; C p ——额定功率下风能利用系数,取0.45。 由直径计算可得扫掠面积: 22 2 84824 1044 m D A =?= = ππ 综上可得风轮直径D=104m ,扫掠面积A=84822 m

4. 功率曲线 自然界风速的变化是随机的, 符合马尔可夫过程的特征, 下一时刻的风速和上一时刻的结果没什么可预测的规律。由于风速的这种特性, 可以把风力发电机组的功率随风速的变化用如下的模型来表示: )()()(△t P t P t P sta t += )(t P ——在真实湍流风作用下每一时刻产生的功率, 它由t 时刻的V(t)决定; )(t P stat ——在给定时间段V(t)的平均值所对应的功率; )(△t P ——表示t 时刻由于风湍流引起的功率波动。 对功率曲线的绘制, 主要在于对风速模型的处理。若假定上式表示的风模型中P stat (t)的始终为零, 即视风速为不随时间变化的稳定值, 在切入风速到切出风速的围按照设定的风速步长, 得到对应风速下的最佳叶尖速比和功率系数,带入式: 32123 8 1ηηπηρD V C P r P = 1η——传动系统效率,取0.95; 2η——发电机效率,取0.96; 3η——变流器效率,取0.95; ——空气密度(一般取标准大气状态),取1.225kg/m 3; V r ——额定风速,取12m/s ; D ——风轮直径; C p ——额定功率下风能利用系数,取0.45。

风力发电机变桨系统

风力发电机变桨系统 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

风力发电机变桨系统

风力发电机变桨系统 摘要:变浆系统是风力发电机的重要组成部分,本文围绕风力发电机变浆系统的构成、作用、控制逻辑、保护种类和常见故障分析等进行论述。 关键词:变桨系统;构成;作用;保护种类;故障分析 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

风力发电场课程设计报告

一、课程设计的目的和任务 根据《风力发电场》课程中第二章的内容,学习使用WAsP、WINDFARMER等软件,掌握风电场风能资源评估和微观选址的原理及方法,熟练掌握相关软件的使用方法。 二、课程设计的内容和要求 根据风场测风数据及地形图,分别使用WAsP和WINDFARMER软件,进行风资源评估和微观选址。具体包括: 1、对给定的风场测风数据进行处理,制作地形图(北京市及其周边地区);(Global Mapper、谷歌地球、AutoCAD) 2、使用经过处理后的测风数据,进行风资源评估,得到风图谱;(WAsP) 3、依据微观选址的基本原则,进行优化布机;(WAsP、WINDFARMER) 4、对两套不同软件的计算结果进行对比分析; 5、撰写设计报告。 三、课程设计进度安排 共两周,10天的时间,具体安排如下: 第1-2天:数据处理; 第3-5天:学习WAsP软件的使用方法,并对给定的任务进行计算; 第6-7天:学习WINDFARMER软件的使用方法,并对给定的任务进行计算; 第8-9天:整理计算结果,撰写设计报告; 第10天:考核。 四、实验内容 1、宏观选址及制作地形图 使用谷歌地球进行宏观选址,经过小组讨论,选择了一块山谷里的平地作为宏观场址,见图1 图1

进入网址:https://www.wendangku.net/doc/b211285982.html,/SELECTION/inputCoord.asp ,下载高程数据SRTM_60_04 和SRTM_60_05,用Global Mapper 打开,并修改投影方式,如图2 在宏观场址内选定一点,用Excel 制作 Global Mapper 的csv 定点文件,如图3 图 2 图 3

风力发电机变桨系统DOC

风力发电机变桨系统 1、综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2、变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 SSB变桨系统为寒冷环境设计。环境温度定义如下 工作温度为 -30 ~ +40 ℃ 静态温度为 -40 ~ +50 ℃ 在主电源失电后,单独的加热系统会开始工作来保持柜体温度,只有必要的设备被通电。在每个柜体的温度到达 5 ℃一段时间后,系统被启动,这个默认的时间是60分钟。 在这段可调整的时间过后,这个系统被释放和通电。 3、主要部件 电控柜(一个主控柜、三个轴柜)4套 变桨电机(配有变桨系统主编码器:A编码器)3套 备用电池3套 直流电机3个 机械式限位开关3套(6个) 冗余编码器(B编码器)3套

相关文档
相关文档 最新文档