文档库 最新最全的文档下载
当前位置:文档库 › 小波分析中MATLAB阈值获取函数及其应用附程序代码

小波分析中MATLAB阈值获取函数及其应用附程序代码

小波分析中MATLAB阈值获取函数及其应用附程序代码
小波分析中MATLAB阈值获取函数及其应用附程序代码

1、小波分析中MATLAB阈值获取函数

MATLAB中实现阈值获取的函数有ddencmp、thselect、wbmpen和wwdcbm,下面对它们的用法进行简单的说明。

一、ddencmp的调用格式有以下三种:

(1)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2,X)

(2)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wp',X)

(3)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wv',X)

函数ddencmp用于获取信号在消噪或压缩过程中的默认阈值。输入参数X

为一维或二维信号;IN1取值为'den'或'cmp','den'表示进行去噪,'cmp'表示进行压缩;IN2取值为'wv'或'wp',wv表示选择小波,wp表示选择小波包。返回值THR是返回的阈值;SORH是软阈值或硬阈值选择参数;KEEPAPP表示保存低频信号;CRIT是熵名(只在选择小波包时使用)。

例题1:

clear all

clc

load noisbump;

x=noisbump;

[c,l]=wavedec(x,5,'sym6'); %对小波进行5层分解

[thr,sorh,keepapp]=ddencmp('den','wv',x)

xd=wdencmp('gbl',c,l,'sym6',5,thr,sorh,keepapp);%显示降噪信号

subplot(211),plot(x),title('x','fontsize',10);

subplot(212),plot(xd),title('xd','fontsize',10);

x

xd

020040060080010001200

thr =3.7856;sorh =s;keepapp=1.

Err=39.3060

二、函数wbmpen的调用格式如下:

THR=wbmpen(C,L,SIGMA,ALPHA);

THR=wbmpen(C,L,SIGMA,ALPHA)返回去噪的全局阈值THR。THR通过给定的一种小波系数选择规则计算得到,小波系数选择规则使用Birge-Massart的处罚算法。{C,L]是进行去噪的信号或图像的小波分解结构;SIGMA是零均值的高斯白噪声的标准偏差;ALPHA是用于处罚的调整参数,它必须是一个大于1的实数,一般取ALPHA=2。

例题2:

clear all

clc

load noisbump;

x=noisbump;

[c,l]=wavedec(x,5,'sym6'); %对小波进行5层分解

cd1=detcoef(c,l,1);

sigma=median(abs(cd1))/0.6745;%以第一层求高斯包噪声的标准偏差;

alpha=2;

thr=wbmpen(c,l,sigma,alpha);%求取阈值

keepapp=1;

sorh='s';

xd1=wdencmp('gbl',x,'sym6',5,thr,sorh,keepapp);%求取降噪信号

err1=norm(xd1-x);

subplot(311),plot(x),title('x','fontsize',10);

subplot(312),plot(cd1),title('cd1','fontsize',10);

subplot(313),plot(xd1),title('xd1:using wbmpen','fontsize',10);

020040060080010001200

x

0100200300400500

600cd102004006008001000

1200

xd1:using wbmpen

err1= 35.9768

三、采用wdcbm 提取阈值的分层去噪

(1)[THR,NKEEP]=wdcbm(C,L,ALPHA);

(2)[THR,NKEEP]=wdcbm(C,L,ALPHA,M);

函数wdcbm 是使用Birge-Massart 算法获取一维小波变换的阈值。返回值

THR 是与尺度无关的阈值,NKEEP 是系数的个数。[C,L]是要进行压缩或消噪的信号在j=length(L)-2层的分解结构;LAPHA 和M 必须是大于1的实数;THR 是关于j 的向量,THR (i)是第i 层的阈值;NKEEP 也是关于j 的向量,NKEEP(i)是第i 层的系数个数。一般压缩时ALPHA 取1.5,去噪时ALPHA 取3.

例题3:

clear all

clc

load noisbump ;

x=noisbump;

[c,l]=wavedec(x,5,'sym6'); %对小波进行5层分解

%%采用wdcbm 提取阈值的分层降噪

[thr2,nkeep]=wdcbm(c,l,2);%提取各层阈值

[xd2,cxd,lxd,perf0,perfl2]=wdencmp('lvd',c,l,'sym6',5,thr2,'s') err2=norm(xd2-x);

subplot(211),plot(x),title('x','fontsize',10);

subplot(212),plot(xd2),title('xd2:using wdcbm 分层降噪','fontsize',10);

020040060080010001200

-100

10

20

x

020040060080010001200

-50

5

10

15

xd2:using wdcbm 分层去噪

err2= 50.9996

四、采用强制降噪

这里使用强制降噪是将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构,这种方法比较简单,且去噪后信号比较平滑,但是容易丢失信号中的有用成分。

2.信号的阈值去噪

MATLAB 中实现信号的阈值去噪的函数有wden 、wdencmp 、wthresh 、wthcoef 、wpthcoef 以及wpdencmp 。下面对它们的用法作简单的介绍。

函数wden 的调用格式有以下两种:

(1)[XD,CXD,LXD]=wden(X,TPTR,SORH,SCAL,N,'wname')

(2)[XD,CXD,LXD]=wden(C,L,TPTR,SORH,SCAL,N,'wname')

函数wden 用于一维信号的自动消噪。X 为原始信号,[C,L]为信号的小波分解,N 为小波分解的层数。

THR 为阈值选择规则:

*TPTR='rigrsure',自适应阈值选择使用Stein 的无偏风险估计原理。

*TPTR='heursure',使用启发式阈值选择。

*TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).

*TPTR='minimaxi',用极大极小原理选择阈值。

SORH是软阈值或硬阈值的选择(分别对应's'和'h')。

SCAL指所使用的阈值是否需要重新调整,包含下面三种:

*SCAL='one' 不调整;

*SCAL='sln' 根据第一层的系数进行噪声层的估计来调整阈值。

*SCAL='mln' 根据不同的噪声估计来调整阈值。

XD为消噪后的信号,[CXD,LXD]为消噪后信号的小波分解结构。格式(1)返回对信号X经过N层分解后的小波系数进行阈值处理后的消噪信号XD和信号XD的小波分解结构[CXD,LXD]。格式(2)返回参数与格式(1)相同,但其结构是由直接对信号的小波分解结构[C,L]进行阈值处理得到的。

函数wdencmp的调用格式有以下三种:

(1)[XC,CXC,LXC,PERF0,PERFL2]=wdencmp('gbl',X,'wname',N,THTR,SORH,KEE PAPP);

(2)[XC,CXC,LXC,PERF0,PERFL2]=wdencmp('lvd',X,'wname',N,THTR,SORH);

(3)[XC,CXC,LXC,PERF0,PERFL2]=wdencmp('lvd',C,L,'wname',N,THTR,SORH);

函数wdencmp用于一维或二维信号的消噪或压缩。wname是所用的小波函数,gbl(global的缩写)表示每一层都采用同一个阈值进行处理,lvd表示每层采用不同的阈值进行处理,N表示小波分解的层数,THR为阈值向量,对于格式(2)和(3)每层都要求有一个阈值,因此阈值向量THR的长度为N,SORH表示选择软阈值或硬阈值(分别取值为's'和'h'),参数KEEPAPP取值为1时,则低频系数不进行阈值量化,反之,低频系数要进行阈值量化。XC是要进行消噪或压缩的信号,[CXC,LXC]是XC的小波分解结构,PERF0和PERFL2是恢复或压缩L^2的范数百分比。如果[C,L]是X的小波分解结构,则PERFL2=100*(CXC向量的范数/C向量的范数)^2;如果X是一维信号,小波wname是一个正交小波,则PERFL2=100||XC||^2/||X||^2。

函数wthresh的调用格式如下:

Y=wthresh(X,SORH,T)

Y=wthresh(X,SORH,T) 返回输入向量或矩阵X经过软阈值(如果SORH='s')或硬阈值(如果SORH='h')处理后的信号。T是阈值。

Y=wthresh(X,'s',T)返回的是Y=SIG(X)*(|X|-T)+,即把信号的绝对值与阈值进行比较,小于或等于阈值的点变为零,大于阈值的点为该点值与阈值的差值。

Y=wthresh(X,'h',T)返回的是Y=X*1(|X|>T),即把信号的绝对值和阈值进行比较,小于或等于阈值的点变为零,大于阈值的点保持不变。一般来说,用硬阈值处理后的信号比用软阈值处理后的信号更粗糙。

函数wthcoef的调用格式下面四种:

(1)NC=wthcoef('d',C,L,N,P)

(2)NC=wthcoef('d',C,L,N)

(3)NC=wthcoef('a',C,L)

(4)NC=wthcoef('t',C,L,N,T,SORH)

函数wthcoef用于一维信号小波系数的阈值处理。

格式(1)返回小波分解结构[C,L]经向量N和P定义的压缩率处理后的新的小波分解向量NC,[NC,L]构成一个新的小波分解结构。N包含被压缩的细节向量,P 是把较小系数置0的百分比信息的向量。N和P的长度必须相同,向量N必须满足1<=N(i)<=length(L)-2。

格式(2)返回小波分解结构[C,L]经过向量N中指定的细节系数置0后的小波分解向量NC。

格式(3)返回小波分解结构[C,L]经过近似系数置0后的小波分解向量NC。

格式(4)返回小波分解结构[C,L]经过将向量N作阈值处理后的小波分解向量NC。如果SORH=’s‘,则为软阈值;如果SORH='h'则为硬阈值。N包含细节的尺度向量,T是N相对应的阈值向量。N和T的长度必须相等。

函数wpdencmp的调用格式有以下两种:

(1)

[XD,TREED,PERF0,PERFL2]=wpdencmp(X,SORH,N,'wname',CRIT,PAR,KEEPA PP)

(2)

[XD,TREED,PERF0,PERFL2]=wpdencmp(TREE,SORH,CRIT,PAR,KEEPAPP)

函数wpdencmp用于使用小波包变换进行信号的压缩或去噪。

格式(1)返回输入信号X(一维或二维)的去噪或压缩后的信号XD。输出参数TREED是XD的最佳小波包分解树;PERFL2和PERF0是恢复和压缩L2的能量百分比。PERFL2=100*(X的小波包系数范数/X的小波包系数)^2;如果X 是一维信号,小波wname是一个正交小波,则PERFL2=100*||XD||^2/||X||^2。SORH 的取值为's'或'h',表示的是软阈值或硬阈值。

输入参数N是小波包的分解层数,wname是包含小波名的字符串。函数使用由字符串CRIT定义的熵和阈值参数PAR实现最佳分解。如果KEEPAPP=1,则近似信号的小波系数不进行阈值量化;否则,进行阈值量化。

格式(2)与格式(1)的输出参数相同,输入选项也相同,只是它从信号的小波包分解树TREE进行去噪或压缩。

二、函数thselect的调用格式如下:

THR=thselect(X,TPTR);

THR=thselect(X,TPTR)根据字符串TPTR定义的阈值选择规则来选择信号X 的自适应阈值。

自适应阈值的选择规则包括以下四种:

*TPTR='rigrsure',自适应阈值选择使用Stein的无偏风险估计原理。

*TPTR='heursure',使用启发式阈值选择。

*TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).

*TPTR='minimaxi',用极大极小原理选择阈值。

阈值选择规则基于模型y = f(t) + e,e是高斯白噪声N(0,1)。

matlab小波变换

matlab小波变换 Matlab 1. 离散傅立叶变换的 Matlab实现 Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法;而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT 。这些函数的调用格式如下: A=fft(X,N,DIM) 其中,X 表示输入图像;N 表示采样间隔点,如果 X 小于该数值,那么Matlab 将会对 X 进行零填充,否则将进行截取,使之长度为 N ;DIM 表示要进行离散傅立叶变换。 A=fft2(X,MROWS,NCOLS) 其中,MROWS 和 NCOLS 指定对 X 进行零填充后的 X 大小。别可以实现一维、二维和 N 维 DFT A=fftn(X,SIZE) 其中,SIZE 是一个向量,它们每一个元素都将指定 X 相应维进行零填充后的长度。 函数 ifft、ifft2 和 ifftn的调用格式于对应的离散傅立叶变换函数一致。 别可以实现一维、二维和 N 维 DFT 例子:图像的二维傅立叶频谱 1. 离散傅立叶变换的 Matlab实现% 读入原始图像 I=imread('lena.bmp');函数 fft、fft2 和 fftn 分 imshow(I) % 求离散傅立叶频谱 J=fftshift(fft2(I)); figure;别可以实现一维、二维和 N 维 DFT imshow(log(abs(J)),[8,10]) 2. 离散余弦变换的 Matlab 实现 Matlab

2.1. dct2 函数 功能:二维 DCT 变换 Matlab 格式:B=dct2(A) B=dct2(A,m,n) B=dct2(A,[m,n])函数 fft、fft2 和 fftn 分 说明:B=dct2(A) 计算 A 的 DCT 变换 B ,A 与 B 的大小相同;B=dct2(A,m,n) 和 B=dct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为 m×n。 2.2. dict2 函数 功能:DCT 反变换 格式:B=idct2(A) B=idct2(A,m,n)别可以实现一维、二维和 N 维 DFT B=idct2(A,[m,n]) 说明:B=idct2(A) 计算 A 的 DCT 反变换 B ,A 与 B 的大小相同;B=idct2(A,m,n) 和 B=idct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为m×n。 Matlab 2.3. dctmtx函数 功能:计算 DCT 变换矩阵 格式:D=dctmtx(n) 说明:D=dctmtx(n) 返回一个n×n 的 DCT 变换矩阵,输出矩阵 D 为double 类型。 1. 离散傅立叶变换的 Matlab实现 3. 图像小波变换的 Matlab 实现函数 fft、fft2 和 fftn 分 3.1 一维小波变换的 Matlab 实现 (1) dwt 函数 Matlab

matlab代码大全

MATLAB主要命令汇总 MATLAB函数参考 附录1.1 管理用命令 函数名功能描述函数名功能描述 addpath 增加一条搜索路径 rmpath 删除一条搜索路径 demo 运行Matlab演示程序 type 列出.M文件 doc 装入超文本文档 version 显示Matlab的版本号 help 启动联机帮助 what 列出当前目录下的有关文件 lasterr 显示最后一条信息 whatsnew 显示Matlab的新特性 lookfor 搜索关键词的帮助 which 造出函数与文件所在的目录 path 设置或查询Matlab路径 附录1.2管理变量与工作空间用命令 函数名功能描述函数名功能描述 clear 删除存中的变量与函数 pack 整理工作空间存 disp 显示矩阵与文本 save 将工作空间中的变量存盘 length 查询向量的维数 size 查询矩阵的维数 load 从文件中装入数据 who,whos 列出工作空间中的变量名 附录1.3文件与操作系统处理命令 函数名功能描述函数名功能描述 cd 改变当前工作目录 edit 编辑.M文件 delete 删除文件 matlabroot 获得Matlab的安装根目录 diary 将Matlab运行命令存盘 tempdir 获得系统的缓存目录 dir 列出当前目录的容 tempname 获得一个缓存(temp)文件 ! 执行操作系统命令 附录1.4窗口控制命令 函数名功能描述函数名功能描述 echo 显示文件中的Matlab中的命令 more 控制命令窗口的输出页面format 设置输出格式 附录1.5启动与退出命令 函数名功能描述函数名功能描述 matlabrc 启动主程序 quit 退出Matlab环境 startup Matlab自启动程序 附录2 运算符号与特殊字符附录 2.1运算符号与特殊字符 函数名功能描述函数名功能描述 + 加 ... 续行标志 - 减 , 分行符(该行结果不显示) * 矩阵乘 ; 分行符(该行结果显示) .* 向量乘 % 注释标志 ^ 矩阵乘方 ! 操作系统命令提示符 .^ 向量乘方矩阵转置 kron 矩阵kron积 . 向量转置 \ 矩阵左除 = 赋值运算 / 矩阵右除 == 关系运算之相等 .\ 向量左除 ~= 关系运算之不等 ./ 向量右除 < 关系运算之小于

matlab相关图形实现代码

根据数据点绘制饼图和针状图: x=[1 2 3 4 5 6]; >> subplot(2,2,1);pie(x); >> subplot(2,2,2);pie3(x); >> subplot(2,2,3);stem(x); >>subplot(2,2,4);stem3(x); 5% 10% 14% 19% 24% 29% 24% 29% 19% 5%14% 10%0 2 4 6 2 4 6 5 10 01 2 05 10

根据数据点绘制向量场图、羽状图和罗盘图: x=[1 2 3 4 5 6];y=[1 2 3 4 5 6]; u=[1 2 3 4 5 6];v=[1 2 3 4 5 6]; subplot(2,2,1);quiver(x,y,u,v); subplot(2,2,2);quiver(x,y,u,v,'r'); subplot(2,2,3);feather(u,v); subplot(2,2,4);compass(u,v); 024680 246 802468 246 80 5 10 15 2 4 6 5 10 30 210 60240 90270 120 300 150330 180

rand(m,n)产生m ×n 均匀分布的随机矩阵,元素取值在0.0~1.0。 randn 函数:产生标准正态分布的随机数或矩阵的函数。 Y = randn(m,n) 或 Y = randn([m n])返回一个m*n 的随机项矩阵。 > theta=10*rand(1,50); %确定50个随机数theta >> Z=peaks; %确定Z 为峰值函数peaks >> x=0:0.01:2*pi;y=sin(x); %确定正弦函数数据点x.y >> t=randn(1000,1); %确定1000个随机数t >> subplot(2,2,1);rose(theta); %关于(theta )的玫瑰花图 >> subplot(2,2,2);area(x,y); %关于(x,y)的面积图 >> subplot(2,2,3);contour(Z); %关于Z 的等值线图(未填充) >> subplot(2,2,4);hist(t); %关于t 的柱状图 5 10 30 210 60 240 90270 120300150330 18000246 -1 -0.500.5 110 20 30 40 10 2030 40-4 -2 2 4 100 200 300

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1) dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信 号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经 小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。 X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能

--------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1) wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分 格式:Y=wcodemat(X,NB,OPT,ABSOL) Y=wcodemat(X,NB,OPT) Y=wcodemat(X,NB) Y=wcodemat(X) 说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现 一维、二维和 N 维 DFT OPT='row' ,按行编码 OPT='col' ,按列编码

matlab代码大全教学文案

m a t l a b代码大全

MATLAB主要命令汇总 MATLAB函数参考 附录1.1 管理用命令 函数名功能描述函数名功能描述 addpath 增加一条搜索路径 rmpath 删除一条搜索路径 demo 运行Matlab演示程序 type 列出.M文件 doc 装入超文本文档 version 显示Matlab的版本号 help 启动联机帮助 what 列出当前目录下的有关文件 lasterr 显示最后一条信息 whatsnew 显示Matlab的新特性 lookfor 搜索关键词的帮助 which 造出函数与文件所在的目录 path 设置或查询Matlab路径 附录1.2管理变量与工作空间用命令 函数名功能描述函数名功能描述 clear 删除内存中的变量与函数 pack 整理工作空间内存 disp 显示矩阵与文本 save 将工作空间中的变量存盘 length 查询向量的维数 size 查询矩阵的维数 load 从文件中装入数据 who,whos 列出工作空间中的变量名 附录1.3文件与操作系统处理命令 函数名功能描述函数名功能描述 cd 改变当前工作目录 edit 编辑.M文件 delete 删除文件 matlabroot 获得Matlab的安装根目录 diary 将Matlab运行命令存盘 tempdir 获得系统的缓存目录 dir 列出当前目录的内容 tempname 获得一个缓存(temp)文件 ! 执行操作系统命令 附录1.4窗口控制命令 函数名功能描述函数名功能描述 echo 显示文件中的Matlab中的命令 more 控制命令窗口的输出页面format 设置输出格式 附录1.5启动与退出命令 函数名功能描述函数名功能描述 matlabrc 启动主程序 quit 退出Matlab环境 startup Matlab自启动程序 附录2 运算符号与特殊字符附录

小波去噪matlab程序

小波去噪matlab程序 ****************************************** clear clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3');%[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw);

遗传算法经典MATLAB代码

遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程

%----------------------------------------------- % 初始化(编码) % 函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength 表示染色体的长度(二值数的长度), % 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 计算目标函数值 % 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。

matlab的编码大全

附录Matlab源程序 附录A 信息熵 % 函数说明:% % H=entropy(P,r) 为信息熵函数% % P为信源的概率矢量, r为进制数% % H为信息熵% %****************************** % function H=entropy(P,r) if (length(find(P<=0))~=0) error('Not a prob.vector,negative component'); % 判断是否符合概率分布条件end if (abs(sum(P)-1)>10e-10) error('Not a prob.vector,component do not add up to 1'); end H=(sum(-P.*log2(P)))/(log2(r)+eps); 附录B 离散无记忆信道容量的迭代计算 % 信道容量C的迭代算法% % 函数说明:% % [CC,Paa]=ChannelCap(P,k) 为信道容量函数% % 变量说明:% % P:输入的正向转移概率矩阵,k:迭代计算精度% % CC:最佳信道容量,Paa:最佳输入概率矩阵% % Pa:初始输入概率矩阵,Pba:正向转移概率矩阵% % Pb:输出概率矩阵,Pab:反向转移概率矩阵% % C:初始信道容量,r:输入符号数,s:输出符号数% %************************************************** % function [CC,Paa]=ChannelCap(P,k) % 提示错误信息 if (length(find(P<0)) ~=0) error('Not a prob.vector,negative component'); % 判断是否符合概率分布条件end

基于MATLAB的小波消噪仿真实现 (1)

收稿日期:2007-12-10 作者简介:史振江(1979-),男,汉,河北唐山人,学士,讲师,研究方向智能检测与控制技术。 基金项目:河北省教育厅自然科学项目(Z2006442) 基于MATLAB 的小波消噪仿真实现 史振江1) 安建龙 2) 赵玉菊1) (石家庄铁路职业技术学院1) 河北石家庄 050041 衡水学院2) 河北衡水 053000)  摘要:小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的小波系数限定阈值来消除噪声的方法。分析小波消噪的算法和实现步骤,并基于MATLAB 软件平台编写仿真程序。进行光纤光栅反射信号的小波消噪仿真实验,消噪效果良好。  关键词:小波消噪 阈值 分解 重构 光纤光栅  中图分类号:TP272 文献标识码:A 文章编号:1673-1816(2008)01-0063-04 1 引言  微弱信号检测[1]是关于如何提取和测量强噪声背景下微弱信号的方法,有效的去除信号中的噪声是实现微弱信号检测的关键。小波变换[2]是一种信号的时间、频率分析方法,具有多分辨分析的特点,是时间窗和频率窗都可以改变的时频局部化分析方法,已经广泛应用于信号消噪、信号处理、图像处理、语音识别与合成等领域。小波消噪[3~5]的方法可以分为三类:模极大值法、相关法以及阈值方法。其中,小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的各层系数限定阈值来消除噪声的方法,因其实现简单、计算量小,取得了广泛应用。 MATLAB 即矩阵实验室,是一种建立在向量、数组和矩阵基础上,面向科学与工程计算的高级语言,它集科学计算、自动控制、信号处理、神经网络、图像处理于一体,具有极高的编程效率[6]。其中的小波处理工具箱可以方便实现小波消噪算法,对含噪信号进行消噪处理和研究。 本文详细分析了小波消噪算法,利用MATLAB 软件编写了程序,并对光纤光栅反射谱信号进行了小波消噪仿真实验。 2 小波变换与Mallat 算法  小波变换是指,把某一被称为基本小波的函数()t ψ平移位移b 后, 在不同尺度a 下作伸缩变换,得到连续小波序列,()a b t ψ,再与待分析信号()f t 作内积: 1/2(,)()()f R t b W a b a f t dt a ψ??=∫ (1) 在实际应用中,经常将,()a b t ψ作离散化处理,令2j a =,2j b k =g ,Z k j ∈,则得到相应的离散

遗传算法经典MATLAB代码资料讲解

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1 dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname' [cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT 说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。 (2 idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname' X=idwt(cA,cD,Lo_R,Hi_R X=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L 说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1 wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式: Y=wcodemat(X,NB,OPT,ABSOL Y=wcodemat(X,NB,OPT Y=wcodemat(X,NB

matlab 指令大全

分享 我的分享 当前分享 返回分享首页? 分享 matlab命令,应该很全了!来源:李家叶的日志 matlab命令 一、常用对象操作:除了一般windows窗口的常用功能键外。 1、!dir 可以查看当前工作目录的文件。!dir& 可以在dos状态下查看。 2、who 可以查看当前工作空间变量名,whos 可以查看变量名细节。 3、功能键: 功能键快捷键说明 方向上键Ctrl+P 返回前一行输入 方向下键Ctrl+N 返回下一行输入 方向左键Ctrl+B 光标向后移一个字符 方向右键Ctrl+F 光标向前移一个字符 Ctrl+方向右键Ctrl+R 光标向右移一个字符 Ctrl+方向左键Ctrl+L 光标向左移一个字符 home Ctrl+A 光标移到行首 End Ctrl+E 光标移到行尾 Esc Ctrl+U 清除一行 Del Ctrl+D 清除光标所在的字符 Backspace Ctrl+H 删除光标前一个字符 Ctrl+K 删除到行尾 Ctrl+C 中断正在执行的命令 4、clc可以命令窗口显示的内容,但并不清除工作空间。 二、函数及运算 1、运算符: +:加,-:减,*:乘,/:除,\:左除^:幂,‘:复数的共轭转置,():制定运算顺序。 2、常用函数表: sin( ) 正弦(变量为弧度) Cot( ) 余切(变量为弧度) sind( ) 正弦(变量为度数) Cotd( ) 余切(变量为度数) asin( ) 反正弦(返回弧度) acot( ) 反余切(返回弧度) Asind( ) 反正弦(返回度数) acotd( ) 反余切(返回度数) cos( ) 余弦(变量为弧度) exp( ) 指数 cosd( ) 余弦(变量为度数)

基于小波去噪matlab程序示例

clear all clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3'); %[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw); sw=sw/sum(sw); r=xcorr(sw,'biased'); corr=max(r); %为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8 output1(i)=0; elseif corr<=0.1

matlab信道仿真经典源程序

% % % Rayleigh Fading Channel Signal Generator % Using the Dent Model (a modification to the Jakes Model) % % Last Modified 10/18/05 % % Author: Avetis Ioannisyan (avetis@https://www.wendangku.net/doc/b37329298.html,) % % % Usage: % [omega_mTau, Tk] = % ai_RayCh(NumAngles, Length, SymbolRate, NumWaveforms, CarrierFreq, Velocity) % % Where the output omega_mTau is a time scaling factor for plotting % normalized correlations. The LAGS value output by [C,LAGS] = XCORR(...) % should be multiplied by the omega_mTau scaling factor to properly display % axis. Tk is a two dimensional vector [M, N] = SIZE(Tk) with % M=numWaverorms and N=Length specified in the RayCh(...) function call % % And the input variables are: % % NumAngles - scalar power of 2, NumAngles > 2^7 is used to specify the % number of equally strong rays arriving at the receiver. It used to % compute the number of oscillators in the Dent model with N0 = numAngles/4 % % Length - scalar preferably power of 2 for faster computation, Length > 2^17 % is used to specify the length of the generated sequence. Lengths near 1E6 % are close to realistic signals % % SymbolRate - scalar power of 2 and is in kilo-symbols-per-sec is used to % specify what should be the transmission data rate. Slower rates will % provide slowly fading channels. Normal voice and soem data rates are % 64-256 ksps % % NumWaveforms - scalar used to specify how many 'k' waveforms to generate % in the model. NumWaveforms > 2 to properly display plots % % CarrierFreq - scalar expressed in MHz is the carrier frequency of the % tranmitter. Normally 800 or 1900 MHz for mobile comms % % Velocity - scalar expressed in km/hr is the speed of the receiver. % 100 km/hr = 65 mi/hr. Normal values are 20-130 km/hr %

实验一 典型环节的MATLAB仿真汇总

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、SIMULINK 的使用 MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。 1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真 环境下。 2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。 3.在simulink 仿真环境下,创建所需要的系统 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G 实验处理:1)(1=s G SIMULINK 仿真模型

波形图为: 实验处理:2)(1=s G SIMULINK 仿真模型 波形图为: 实验结果分析:增加比例函数环节以后,系统的输出型号将输入信号成倍数放大. ② 惯性环节11)(1+= s s G 和15.01)(2+=s s G 实验处理:1 1 )(1+=s s G SIMULINK 仿真模型

波形图为: 实验处理:1 5.01 )(2+= s s G SIMULINK 仿真模型 波形图为: 实验结果分析:当1 1 )(1+= s s G 时,系统达到稳定需要时间接近5s,当

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的积: ( )dx a b x a x f f x W b a b a )(1)(,,,-ψ= ψ=?+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 2. 图像去噪综述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

相关文档