文档库 最新最全的文档下载
当前位置:文档库 › 工程电磁场教案

工程电磁场教案

工程电磁场教案
工程电磁场教案

衢州学院

教案

课程名称:工程电磁场

课程类型:□理论课□理论、实践课□实践课

总学时数: 34 周学时数: 3

授课教师:

授课年级、专业、班级:

授课学期:至学年第学期

教材名称:工程电磁场导论

2016年 9 月 10 日

通量是一个标量。

应用散度概念可以分析矢量场中任一点的情况。

旋度在曲面法线方向的投影就是沿法线方向的环量面密度。将此面密度进

、拉普拉斯算子

e q q

三类边值问题:

第一类边值问题(或狄里赫利问题):)(|1S f S =? 第二类边值问题(或纽曼问题):

)(|2S f n

S =???

第三类边值问题(或混合边值问题):)(|111

S f S =?,(|22

S f n S =???

3、唯一性定理

在静电场中,满足给定边界条件的电位微分方程的解是唯一的。

工程电磁场基本知识点讲课教案

工程电磁场基本知识 点

第一章矢量分析与场论 1 源点是指。 2 场点是指。 3 距离矢量是,表示其方向的单位矢量用表示。 4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。 5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。 6 方向导数与梯度的关系为。 7 梯度在直角坐标系中的表示为u?=。 8 矢量A在曲面S上的通量表示为Φ=。 9 散度的物理含义是。 10 散度在直角坐标系中的表示为??= A。 11 高斯散度定理。 12 矢量A沿一闭合路径l的环量表示为。 13 旋度的物理含义是。 14 旋度在直角坐标系中的表示为??= A。 15 矢量场A在一点沿 e方向的环量面密度与该点处的旋度之间的关 l 系为。 16 斯托克斯定理。

17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别为 , , 。 19 221111''R R R R R R ?=-?=-=e e 20 0(0)11''4()(0)R R R R R πδ≠???????=??=? ? ?-=?????g g 第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E = 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点 P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ???处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体内部电场强度等于 。 8处于静电平衡状态的导体,其内部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其内部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。

电磁场与电磁波习题及答案

. 1 麦克斯韦方程组的微分形式 是:.D H J t ???=+?u v u u v u v ,B E t ???=-?u v u v ,0B ?=u v g ,D ρ?=u v g 2静电场的基本方程积分形式为: 0C E dl =? u v u u v g ? S D ds ρ =?u v u u v g ? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为: 3.00n S n n n S e e e e J ρ??=??=???=???=?D B E H r r r r r r r r r 4线性且各向同性媒质的本构关系方程是: 4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=u v u v 5电流连续性方程的微分形式为: 5. J t ρ??=- ?r g 6电位满足的泊松方程为 2ρ?ε?=- ; 在两种完纯介质分界面上电位满足的边界 。 12??= 1212n n εεεε??=?? 7应用镜像法和其它间接方法解静态场边值问题的理 论依据是: 唯一性定理。 8.电场强度E ?的单位是V/m ,电位移D ? 的单位是C/m2 。 9.静电场的两个基本方程的微分形式为 0E ??= ρ?=g D ; 10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 1.在分析恒定磁场时,引入矢量磁位A u v ,并令 B A =??u v u v 的依据是( 0B ?=u v g ) 2. “某处的电位0=?,则该处的电场强度0=E ? ” 的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln( 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性)分布。 8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω=r r 则位移电流密度为:0sin d x r m D J e E t t ωεεω?==-?r r r 其振幅值为:3 04510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510.dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S u u v u u v g ?S d q =?得2 4q D r π= 24D e e u u v v v r r q D r π== 空间的电场分布2 04D E e u u v u u v v r q r επε== 导体球的电位 2 0044E l E r e r u u v u u v v u u v g g g r a a a q q U d d d r a πεπε∞∞∞====??? 导体球的电容04q C a U πε==

电磁场与电磁波物理教学反思.doc

电磁场与电磁波物理教学反思 【教学反思】 麦克斯韦电磁场理论是电磁学的最核心内容,其地位相当于经典力学中的牛顿运动定律所处的地位,所以它是本节教学中要重点突出的内容。但是由于其内容非常抽象,学生要深刻理解它比较困难,因此,在教设计上要把握好三个方面:第一,内容如何定位。对学生来讲,知识掌握的要求程度定位在定性了解的层面上。第二,如何化抽象为形象,考虑从多个层面突破教学中存在的知识抽象的难点。其一,实验探究层面突破——利用身边丰富的电磁波教学资源,来认识电磁波的庐山真面目,化抽象为具体。其二,媒体层面上突破——利用多媒体,建立与机械波形成相类似的电磁波形成的认识过程,呈现电磁波的形成过程“看不见”的另一面,化抽象为形象。其三,情感、兴趣…等角度。第三,考虑如何转变教学方式与学习方式。利用探究式教学方式,还原认识事物的原来面目。麦克斯韦从理论出发大胆预言电磁波的存在——这是一个伟大的猜想!是一个很好从理论上进行科学探究案例。 要达到以上的目标,下面就本人对这一节课在的教学前与后所引发的思考作一阐述。 一.创设实验探究情境,引发学生探究欲望 电磁波对学生而言,既熟悉又陌生。虽然人们天天都离不开它,但是学生对它的庐山真面目还是雾里看山。如何创设一个情境,引发学生思考,从而把本质的问题暴露出来,这是我课前

一直琢磨的问题。首先,我考虑的是所设计的情境要有哪些方面的要求?——尽可能是实验情境、真实性要强、简单熟悉生活化、现象明显、可操作性强、参与面广、最好能带给学生惊喜、与电磁波有密切联系等。于是我想到了用收音机来设计探究实验的方案,但是如何用收音机设计一个能揭示电磁波本质问题的实验构想,却费了我不少心思。后来,从电灯的开与关时,收音机出现“喀喀”干扰声得到启发——这个情境就是一个绝妙的情境!所以我在这节课引入环节上,要求每一位学生自带一台小收音机,上课时要求学生打开收音机并调节到中波无台处,然后请每一个学生用一根导线与一只旧干电池,配合收音机做两次实验。 第一次实验。在*近收音机处,让导线的一端与干电池一个电极始终接触,导线另一端与电池的另一个电极断断续续接触(如图甲)。第二次实验。让导线的两端与干电池两个电极持续接触(如图乙)。实验后请学生描述现象,学生发现只有断断续续接触干电池时,收音机中才发出“喀喀”声,而导线两端持续接触电池电极时收音机中却无“喀喀”声。此时,学生的表现,并不是十分惊讶!(可能在平时生活上学生有感受过类似现象),我也不动声色。只是以平常心,泛泛地提了一个问题, 如何解释上述现象? 问题一出,学生就开始了议论,并且大多认为,因为有电所以有“喀喀”声。议论的焦点大多集中在第一个现象上,对第二个现象没多大注意。至此,我感觉到学生观察、思维中存在的不足已经暴露出来了,学生没有抓住关键现象进行比较、进行思考。现在该到了教师在“学生——现象之间”应起的“穿针引线”作用时候了,于是我及时抛出了一个问题:“两次实验同是所谓

《电磁场与电磁波》教案1

电磁场与电磁波 一、导引 人类认识客观世界,发现新的事物,常有二种方式,一种是从生产实践,科学实验中观察分析后发现新的事物,另一种是从科学理论出发,预言新的事物存在,电磁波的发现,属于后一种。麦克斯韦从电磁场理论出发,运用了较为深奥的数学工具,得到了描述电磁场特性的规律,并预言了电磁波的存在。10年后,他的学生赫兹用实验方法证实了麦克斯韦的伟大预言,发射并接收了电磁波,从而开创了无线电技术的新时代。 我们现在粗略地介绍了一下麦克斯韦的这个理论。 准备知识: 1、分析闭合电路中电流的形成: 分析电路中AB 中电流的方向是A →B ,问为什么会有A 到 B 的电流,重点确定电流形成的实质是导体中有电场的结果,而 电场产生的电场力使电荷发生了定向移动。 结论:电路中电流形成的实质是电荷在电场力作用下发生的定向移动,而电场力的发生一....................................定伴随电场,电场的方向与导体中电流的方向相同。....................... 2、感应电流的产生: 要使M 中产生感应电流的条件是什么? 穿过闭合回路M 的B 发生变化。 强调:在.M .环中产生感应电流的实质是环内产生了电场,电场驱....................... 使电子定向移动而产生了电流,电场的方向与电流方向相同。........................... 那么将金属环拿走,当磁场变化时的电场是否存在呢?————引入麦克斯韦的电磁场理论。 3、一个变化的磁场中放一个闭合线圈会产生感应电流,这是一种电磁感应现象。麦克斯韦研究了这种现象,认为若电路闭合就会有感应电流;若电路不闭合,则会产生感应电场;这个电场驱使导体中电子的运动,从而产生了感应电流。 麦克斯韦把这种情况的分析推广到不存在闭合电路 的情形,他认为在变化的磁场周围产生电场,是一种普 遍现象,跟闭合电路是否存在无关。 二、授课 1.麦克斯韦的理论要点一,变化的磁场产生电场 演示实验 当穿过螺线管的磁场随时间变化时,上面的线圈中产生感应电动势,引起感应电流使灯泡发光。 (1)线圈中产生感应电动势说明了什么? 麦克斯韦认为变化的磁场在线圈中产生电场,正是这种电场(涡旋电场)在线圈中驱使自由电子做定向的移动,引起了感应电流。 (2)如果用不导电的塑料线绕制线圈,线圈中还会有电流、电场吗? 引导学生思考后回答,有电场、无电流。 (3)想象线圈不存在时线圈所在处的空间还有电场吗?(有) (4)总结说明,麦克斯韦认为线圈只不过用来显示电场的存在,线圈不存在时,变化的磁场同样在周围空间产生电场,即这是一种普遍存在的现象,跟闭合电路是否存在无关。 A B

电磁场与电磁波例题详解

电磁场与电磁波例题详解

————————————————————————————————作者:————————————————————————————————日期:

第1章 矢量分析 例1.1 求标量场z y x -+=2)(φ通过点M (1, 0, 1)的等值面方程。 解:点M 的坐标是1,0,1000===z y x ,则该点的标量场值为 0)(0200=-+=z y x φ。其等值面方程为 : 0)(2=-+=z y x φ 或 2)(y x z += 例1.2 求矢量场222zy a y x a xy a A z y x ++=的矢量线方程。 解: 矢量线应满足的微分方程为 : z y dz y x dy xy dx 222== 从而有 ???????==z y dz xy dx y x dy xy dx 2222 解之即得矢量方程???=-=2 2 21c y x x c z ,c 1和c 2是积分常数。 例1.3 求函数xyz z xy -+=22?在点(1,1,2)处沿方向角 3 ,4 ,3 π γπ βπ α= = = 的方向导数。 解:由于 1) 2,1,1(2) 2,1,1(-=-=??==M M yz y x ?, 02) 2,1,1() 2,1,1(=-=??==M M xz xy y ?, 32) 2,1,1() 2,1,1(=-=??==M M xy z z ?, 2 1cos ,22cos ,21cos === γβα 所以

1cos cos cos =??+??+??= ??γ?β?α??z y x l M 例1.4 求函数xyz =?在点)2,1,5(处沿着点)2,1,5(到点)19,4,9(的方向导数。 解:点)2,1,5(到点)19,4,9(的方向矢量为 1734)219()14()59(z y x z y x a a a a a a l ++=-+-+-= 其单位矢量 3147 31433144cos cos cos z y x z y x a a a a a a l ++=++=γβα 5, 10, 2) 2,1,5()2,1,5()2,1,5() 2,1,5() 2,1,5() 2,1,5(==??==??==??xy z xz y yz x ? ?? 所求方向导数 314 123 cos cos cos = ??=??+??+??=?? l z y x l M ?γ?β?α?? 例1.5 已知z y x xy z y x 62332222--++++=?,求在点)0,0,0(和点)1,1,1( 处的梯度。 解:由于)66()24()32(-+-++++=?z a x y a y x a z y x ? 所以 623) 0,0,0(z y x a a a ---=?? ,36) 1,1,1(y x a a +=?? 例1.6 运用散度定理计算下列积分: ??++-+=S z y x S d z y xy a z y x a xz a I )]2()([2322 S 是0=z 和2 2 22y x a z --=所围成的半球区域的外表面。 解:设:)2()(2322z y xy a z y x a xz a A z y x ++-+= 则由散度定理???=??τ τs S d A d A 可得

电磁场与电磁波习题集说课讲解

2011电磁场与电磁波 习题集

电磁场与电磁波 补充习题 1 若z y x a a a A 23,z y x a a a B 32 ,求: 1 B A ; 2 B A ?; 3 B A ; 4 A 和B 所构成平面的单位法线; 5 A 和B 之 间较小的夹角;6 B 在A 上的标投影和矢投影 2 证明矢量场z y x a xy a xz a yz E 是无散的,也是无旋的。 3 若z y x f 23 ,求f ,求在)5,3,2(P 的f 2 。 5 假设0 x 的区域为空气,0 x 的区域为电介质,介电常数为03 ,如果空气 中的电场强度z y x a a a E 5431 (V/m ),求电介质中的电场强度。 7 同轴电缆内半径为a ,电压为0V ,外导体半径b 且接地,求导体间的电位分布,内导体的表面电荷密度,单位长度的电容。 10 在一个无源电介质中的电场强度x a z t C E )cos( V/m ,其中C 为场的幅度, 为角频率, 为常数。在什么条件下此场能够存在?其它的场量是什么? 11 已知无源电介质中的电场强度x a kz t E E )cos( V/m ,此处E 为峰值,k 为常数,求此区域内的磁场强度,功率流的方向,平均功率密度。

12 自由空间的电场表示式为x a z t E )cos(10 V/m ,若时间周期为100ns , 求常数k ,磁场强度,功率流方向,平均功率密度,电场中的能量密度,磁场中的能量密度。 13 已知无源区的电场强度为y a kz t x C E )cos(sin V/m ,用相量求磁场强度,场存在的必要条件,每单位面积的时间平均功率流。 14 若自由空间中均匀平面波的磁场强度为x a z t H )30000cos(100 A/m ,求相位常数,波长,传播速度,电场强度,单位面积时间平均功率流。 16 决定下面波的极化类型 m a y t a y t E m a e e a e e E m a e a e E z x y z j j x z j j z x j y x j /V )5.0sin(4)5.0cos(3/V 916/V 10010010041004300300 17 电场强度为y x a z t a z t )sin(5)cos(12 V/m 的均匀平面波以200M rad/s 在无耗媒质中(1,5.2 r r )传播,求相应的磁场强度,相位常数,波长,本征阻抗,相速,波的极化。 2 8 已知真空中半径为a 的圆环上均匀分布的线电荷密度为l ,求通过圆心的轴线上任一点的电位与电场强度。

《电磁场与电磁波》经典例题

一、选择题 1、以下关于时变电磁场的叙述中,正确的是( ) A 、电场是无旋场 B 、电场和磁场相互激发 C 、电场与磁场无关 2、区域V 全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是( ) A 、能量流出了区域 B 、能量在区域中被消耗 C 、电磁场做了功 D 、同时选择A 、C 3、两个载流线圈之间存在互感,对互感没有影响的的是( ) A 、线圈的尺寸 B 、两个线圈的相对位置 C 、线圈上的电流 D 、空间介质 4、导电介质中的恒定电场E 满足( ) A 、0??=E B 、0??=E C 、??=E J 5、用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是( ) A 、镜像电荷是否对称 B 、电位方程和边界条件不改变 C 、同时选择A 和B 6、在静电场中,电场强度表达式为3(32)()y x z cy ε=+--+x y z E e e e ,试确定常数 ε的值是( ) A 、ε=2 B 、ε=3 C 、ε=4 7、若矢量A 为磁感应强度B 的磁矢位,则下列表达式正确的是( ) A 、=?B A B 、=??B A C 、=??B A D 、2=?B A 8、空气(介电常数10εε=)与电介质(介电常数204εε=)的分界面是0z =平面, 若已知空气中的电场强度124= +x z E e e 。则电介质中的电场强度应为( ) A 、1216=+x z E e e B 、184=+x z E e e C 、12=+x z E e e 9、理想介质中的均匀平面波解是( ) A 、TM 波 B 、TEM 波 C 、TE 波 10、以下关于导电媒质中传播的电磁波的叙述中,正确的是( ) A 、不再是平面波 B 、电场和磁场不同相 C 、振幅不变 D 、以T E 波的形式传播 二、填空 1、一个半径为α的导体球作为电极深埋地下,土壤的电导率为 σ,略去地面的影响,则电极的接地电阻R = 2、 内外半径分别为a 、b 的无限长空心圆柱中均匀的分布着轴向电流I ,设空间离轴距离为()r r a <的某点处,B= 3、 自由空间中,某移动天线发射的电磁波的磁场强度

-磁场教学设计

《磁场》教学设计 【一】教材分析 1教材地位和作用 《磁场》是人教版义务教育课程标准实验教科书八年级下册第九章《电与磁》的第二节内容。磁场是电磁学里的一个基本概念,深刻认识它有利于理解“电与磁”的相互作用规律,对于初学者来说,磁场又是一个非常抽象的概念,因此本节教学内容既是本章的教学重点,又是本章的教学难点。 本节所研究的“磁场”是看不见、摸不着的,因此可以通过它对其它物体的作用来认识它,这是一种“转换法”的应用。而通过用带箭头的曲线画出每一个小磁针静止时北极的指向,来描述“磁场”则用到了“模型法”。利用表面看似无序的小磁针的指向,找到其本质——磁场有序的指向性,即磁场方向,这充分体现了“模型法”的长处。因此这一节课无论在知识学习上还是培养学生的能力上都有着十分重要的作用。 【二】学情分析 对于磁现象,学生在小学自然课中已有接触,且他们的感性体验也较丰富,学习起来不困难。但磁场的存在、用磁感线描述磁场是全新的内容,初中学生又是首次接触“场”这个概念,学习的难度较大。这些内容对学生抽象思维能力的要求比较高,因此是学习的难点。磁场既是本章内容的核心,同时又是贯穿本章内容的主要线索。 【三】教学目标 知识与技能 (1)知道磁体周围存在磁场; (2)知道磁感线可以用来形象地描述磁场,知道磁感线的方向是怎样规定的;(3)知道地球周围有磁场以及地磁场的南北极。 过程与方法 (1)观察磁体之间的相互作用,感知磁场的存在; (2)通过亲历“磁场”概念和磁感线的建立过程,进一步明确“类比法”、“转换法”、“理想模型法”等科学思维方法。 情感、态度与价值观 通过了解我国古代对磁的研究方面取得的成就,进一步提高学习物理的兴趣。【四】重点与难点的确立 重点:磁场的概念。 难点:磁场和磁感线。 【五】教法与学法 通过亲历“磁场”概念和磁感线的建立过程,使抽象内容具体化 【六】教学器材 磁体、铁屑、立体磁感线模型、透明薄玻璃板、多媒体课件、探究卷等。【七】教学过程

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案 第1章 矢量分析 1、如果矢量场F 的散度处处为0,即0F ??≡,则矢量场是无散场,由旋涡源所 产生,通过任何闭合曲面S 的通量等于0。 2、如果矢量场F 的旋度处处为0,即0F ??≡,则矢量场是无旋场,由散度源所 产生,沿任何闭合路径C 的环流等于0。 3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是: 散度(高斯)定理:S V FdV F dS ??=?? ?和 斯托克斯定理: s C F dS F dl ???=??? 。 4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。( √ ) 5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。( √ ) 6、标量场的梯度运算和矢量场的旋度运算都是矢量。( √ ) 7、梯度的方向是等值面的切线方向。( × ) 8、标量场梯度的旋度恒等于0。( √ ) 9、习题, 。

第2章 电磁场的基本规律 (电场部分) 1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。 2、在国际单位制中,电场强度的单位是V/m(伏特/米)。 3、静电系统在真空中的基本方程的积分形式是: V V s D dS dV Q ρ?==? ?和 0l E dl ?=?。 4、静电系统在真空中的基本方程的微分形式是:V D ρ??=和0E ??=。 5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。 6、在两种媒质分界面的两侧,电场→ E 的切向分量E 1t -E 2t =0;而磁场→ B 的法向分量 B 1n -B 2n =0。 7、在介电常数为 的均匀各向同性介质中,电位函数为 22 11522 x y z ?= +-,则电场强度E =5x y z xe ye e --+。 8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。 9、电荷只能在分子或原子范围内作微小位移的物质称为( D )。 A.导体 B.固体 C.液体 D.电介质 10、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。 A.ε0εr B. 1/ε0εr C. εr D. 1/εr 11、导体电容的大小( C )。 A.与导体的电势有关 B.与导体所带电荷有关 C.与导体的电势无关 D.与导体间电位差有关 12、z >0半空间中为ε=2ε0的电介质,z <0半空间中为空气,在介质表面无自由电荷分布。

电磁场及电磁波课程教学大纲

《电磁场与电磁波》课程教学大纲适用专业:电子信息专业本科 学时:50 学分:3学分 课程代码:B01000252 一、教学目的、任务与教学原则和方法 一切电现象,都会产生电磁场,而电磁波的辐射与传播规律,更是一切无线电活动的基础。因此,在各国的理工科大学中,《电磁场与电磁波》都是通信工程、电子信息工程等专业的专业基础课,课程理论性、系统性很强,逻辑严谨,学习它不仅可以获得场和波的理论,而且有助于培养正确的思维方法和分析问题的能力。 “电磁场与电磁波”还是多种学科的交叉点,它不仅是微波、天线、电磁兼容的理论基础,而且各种现代通信方式,如光纤通信、移动通信、卫星通信,以及电视、雷达等各种专门学科,都是以电磁波携带信息的方式来实现的。广泛应用的超小超薄的大规模集成电路更是充满了电磁场的问题。由于“电磁场与电磁波”是众多学科的理论基础,从而成为相关专业课程建设的一个非常重要的环节。 本课程包括电磁场与电磁波两大部分。电磁场部分是在《电磁学》课程的基础上,运用矢量分析的方法,描述静电场和恒定磁场的基本物理概念,在总结基本实验定律的基础上给出电磁场的基本规律,研究静态场的解题方法。电磁波部分主要是介绍有关电磁波在各种介质中的传播规律及天线的基本理论,其教学目的和要求: (一)内容方面,应使学生牢固掌握矢量运算,梯度、散度和旋度概念,高斯公式和斯托克司公式;掌握恒定和时变电磁场的麦克斯韦方程组、泊松方程、电磁波的波动方程等;掌握分离变量法、镜像法、有有界空间中电磁波的求解方法等;理解电磁场的矢势和标势、规范变换、规范不变性、库仑规范、洛仑兹规范、时谐平面电磁波、推迟势、电磁辐射、截止频率和谐振频率等概念。 (二)能力方面,应使学生学会和掌握如何通过数学方法求解一些基本和实际问题,对结果给予物理解释的科学研究方法;使学生在运算能力和抽象思维能力方面受到初步而又严格的训练;培养学生解决和研究问题的能力,培养学生严谨的科学学风。 (三)方法方面,着重物理概念、基本规律和基本问题的解释和阐述,注意本课程与大学物理电磁学的衔接,以及与后继课程联系,注重解决常见基本问题和实际问题。在帮助学生打下坚实基础的前提下,坚持教学内容与现代科学技术接轨,使现代科学技术的成果渗透到本课程内容之中,提高学生的兴趣,拓宽学生的知识面。 通过本课程的学习,使学生牢固掌握电磁场与电磁波方面的基本概念、基本理论及主要分析方法,具有基本的电磁问题解题能力,对天线理论也要有一定的了解。为以后现代通信技术的学习与应用打下良好的基础。 二、本课程的内容及要求 第一章矢量分析 【教学目的和要求】 理解标量场与矢量场的概念,了解标量场的等值面和矢量场的矢量线

工程电磁场教案-国家精品课华北电力学院崔翔-第4章(倪光正主编教材)

第四章 准静态电磁场 4.1 准静态电磁场 1.电准静态场 由麦克斯韦方程组知,时变电场由时变电荷和时变磁场产生的感应电压产生。时变电荷产生库仑电场,时变磁场产生感应电场。在低频情况下,一般时变磁场产生的感应电场远小于时变电荷产生的库仑电场,可以忽略。此时,时变电场满足 ρ =??≈??D 0E 称为电准静态场。可见,电准静态场与静电场类似,可以定义时变电位函数? ,即 ?-?=E 且满足泊松方程 ε ρ?-=?2 与电准静态场对应的时变磁场满足 0 t =????+ =??B D E H γ 2.磁准静态场 由麦克斯韦方程组知,时变磁场由时变传导电流和时变电场产生的位移电流产生。在低频情况下,一般位移电流密度远小于时变传导电流密度,可以忽略。此时,时变磁场满足 0=??≈??B J H c 称为磁准静态场。可见,磁准静态场与恒定磁场类似,可以定义时变矢量位函数A ,即 A B ??= 且满足矢量泊松方程 c J A μ-=?2 与磁准静态场对应的时变电场满足 ρ =????- =??D B E t

例1:图示圆形平板电容器,极板间距d = 0.5 cm ,电容 器填充εr =5.4的云母介质。忽略边缘效应,极板间外施电压 t t u 314cos 2110)(=V ,求极板间的电场与磁场。 [解]:极板间的电场由极板上的电荷和时变磁场产生。 在工频情况下,忽略时变磁场的影响,即极板间的电场为电 准静态场。在如示坐标系下,得 ()()()V/m t 31410113t 31410 501102d u z 4z 2z e e e E -?=-??=-=-cos .cos . 由全电流定律得出,即由 ()z z 20r 4S l t 31431410113d t H 2d e e S D l H ?-π??-=???=π=???ρεερφsin . 极板间磁场为 φφφρe e H t 314103352H 4sin .-?== A/m 也可以由麦克斯韦方程直接求解磁场强度,如下 t t 0r ??=??=??E D H εε 展开,得 t 314106694H 14sin .)(-?=??φρρ ρ 解得 φφφρe e H t 314103352H 4sin .-?== A/m 讨论:若考虑时变磁场产生的感应电场,则有 t t ??-=??-=??H B E 0μ 展开,得 t E z 314cos 103.231440ρμρ -??-=??- 解得 t E z 314cos 10537.428ρ-?= V/m 可见,在工频情况下,由时变磁场产生的感应电场远小于库仑电场。 图 平板电容器

电磁场原理课教案

课程教案 (按章编写) 课程名称:电磁场原理 适用专业:电气工程及自动化 年级、学年、学期:2年级,学年第二学期 教材:《电磁场原理》,俞集辉主编,重庆大学出版社,2007.2参考书:《工程电磁场导论》,冯慈璋主编,高等教育出版社2000年6月《电磁场与电磁波》第三版,谢处方、饶克谨编,赵家升、袁敬闳修 订,高等教育出版社1999年6月第三版 《工程电磁场原理》倪光正主编,,高等教育出版社,2002 《电磁场》雷银照编,高等教育出版社2008年6月 《Electromagnetic fields and waves》Robert R. G. 等编著,Higher Education Press, 2006 任课教师:汪泉弟俞集辉何为李永明张淮清杨帆徐征编写时间:2010年1月 学时分配: 矢量分析:6学时; 静电场:12学时; 恒定电场:4学时; 恒定磁场:10学时; 时变场:12学时; 平面电磁场:8学时; 导行电磁波:6学时; 电磁能量辐射与天线:6学时。

第1章矢量分析 一、教学目标及基本要求 1.通过课程的介绍,知道“电磁场原理”课程的学习内容、作用;课程的特点、已具 有的基础;学习的重点、难点和解决的办法;教材、参考书和教学时间安排;本课程学习的基本要求等等。 2.对矢量分析章节的学习,要建立起标量场和矢量场的概念,掌握梯度、散度和旋度 等“三度”运算,以及此基础上的场函数的高阶微分计算。 3.掌握矢量的基本运算法则和相应的微分、积分方法,学会按矢量场的散度和旋度分 析场的基本属性。 4.掌握矢量微分算符的基本应用以及高斯散度定理和斯托克斯定理,了解场的赫姆霍 兹定理、两个特殊积分定理的推导和圆柱坐标系与球坐标系中矢量微分算符的情况。 二、教学内容及学时分配 1.1矢量代数与位置矢量(0.5学时) 1.2标量场及其梯度(1学时) 1.3矢量场的通量及散度(1学时) 1.4矢量场的环量及旋度(1学时) 1.5场函数的高阶微分运算(1学时) 1.6矢量场的积分定理(0.5学时) 1.7赫姆霍兹定理(0.5学时) 1.8圆柱坐标系与球坐标系(0.5学时) 三、教学内容的重点和难点 重点 1.场概念的建立 2.标量场的梯度、矢量场的散度和旋度的定义及计算。 难点 1.微分矢量算符 的理解和直角坐标系中的应用 2.散度、旋度概念的理解及检源的作用 四、教学内容的深化与拓宽 介绍本课程与电磁学的区别和联系,电磁场理论借助数学表述的准确、精炼关系。应强调学习知识和解决问题的能力培养是相辅相成的。 五、教学方式与手段及教学过程中应注意的问题 采用多媒体手段利用电子课件进行教学,在教学过程中应注意: a.讲数学内容,应联系后面电磁场的物理实际; b.既要讲清数学概念和定理,更要重视它们的应用,在应用中巩固对概念和定理的认识; c.运用多媒体教学手段,要更加重视课内讲授的方式,在必要的地方应辅以粉笔板书。

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题 一、填空题 1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。散度与通量的关系是矢量场中任意一点处通量对体积的变化率。 2、 散度 在直角坐标系的表达式 z A y A x A z y x A A ?? ????++=??= div ; 散度在圆柱坐 标系下的表达 ; 3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。当S 点P 时,存在极限环量密度。 二者的关系 n dS dC e A ?=rot ; 旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。

4.矢量的旋度在直角坐标系下的表达式 。 5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。 梯度的大小为该点标量函数?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达 式 ; 7、直角坐标系下方向导数 u l ??的数学表达式是cos cos cos l αβγ????????uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ???=++=?=???; 8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。

《电磁场与电磁波》课程教学大纲-通信工程

《电磁场与电磁波》教学大纲 、课程基本信息 课程名称:电磁场与电磁波 课程编码:58083004 课程类别:专业教育必修 适用专业:通信工程 开课学期:3-3 课程学时:总学时:64学时;其中理论48学时,实验16学时。 课程学分:4 先修课程:大学物理、模拟电子线路、数字逻辑电路 并修课程: 课程简介:《电磁场与电磁波》课程是高等学校通信工程等电子科学与技术类各专业本科生必修的一门技术基础课。电磁场与电磁波是通信技术的理论基础,是通信工程专业本科学生的知识结构中重要组成部分。本课程包括电磁场与电磁波两大部分。电磁场部分是在《电磁学》课程的基础上,运用矢量分析的方法,描述静电场和恒定磁场的基本物理概念,在总结基本实验定律的基础上给出电磁场的基本规律,研究静态场的解题方法。电磁波部分主要是介绍有关电磁波在各种介质中的传播规律及天线的基本理论。二、课程教育目标 本课程使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。 培养学生正确的思维方法和分析问题的能力,使学生学会用”场"的观点去观察、分析和计算一些简单、典型的场的问题。其教育目标主要表在以下三方面: 1、内容方面,应使学生牢固掌握矢量运算,梯度、散度和旋度概念,高斯公式和斯托克司公式; 掌握恒定和时变电磁场的麦克斯韦方程组、泊松方程、电磁波的波动方程等;掌握分离变量法、镜 像法、有有界空间中电磁波的求解方法等;理解电磁场的矢势¦和标势、规范变换、规范不变性、库仑规范、洛仑兹规范、时谐平面电磁波、推迟势、电磁辐射、截止频率和谐振频率等概念。 2、能力方面,应使学生学会和掌握如何通过数学方法求解一些基本和实际问题,对结果给予物理解释的科学研究方法;使学生在运算能力和抽象思维能力方面受到初步而又严格的训练;培养学生解决和研究问题的能力,培养学生严谨的科学学风。 3、方法方面,着重物理概念、基本规律和基本问题的解释和阐述,注意本课程与大学物理电磁学的衔接,以及与后继课程联系,注重解决常见基本问题和实际问题。在帮助学生打下坚实基础的前提下,坚持教学内容与现代科学技术接轨,使现代科学技术的成果渗透到本课程内容之中,提高学生的兴趣,拓宽

工程电磁场导论-知识点-教案_第一章

电磁场理论 第一章静电场1.1 电场强度电位 4 2 2 了解:定义法求解带电体电场强度和电位方法 掌握:库仑定律、电场强度、电位的定义及定义式 掌握:静电场环路定律及应用,叠加法计算电场强度和电位 知识点:库仑定律;电场强度定义;电位定义;叠加法计算;电力线;等 位线(面);静电场环路定律;电场强度与电位关系的微分表示及意义;电偶 极子定义及其在远区场的电场强度和电位. 重点:静电场环路定律,电场强度与电位关系 难点:静电场环路定律的微分表示,电场强度与电位关系的微分表示及意义 1. 从学生比较熟悉的大学物理中的电场强度和电位的积分式及意义引出 其微分式及意义;=-?? E 2. 从高等数学中的Stocks定理讲解静电场环路定律.0 ??= E 《工程电磁场导论》(冯慈璋马西奎主编,高等教育出版社) P13 1-1-1 直接应用1.1节三个例题(均匀带电直导线、平面、球面)的结果简化运算 1-1-3 =-?? E的应用 上机编程:用数值积分法研究静电场场分布(2学时,地点:新实验楼B215)

电磁场理论 1.2 高斯定律 2 2 了解:静电场中导体和电介质的性质 掌握:各向同性线性电介质中,电极化强度、电通量密度与电场强度的关系掌握:高斯定律积分式、微分式及应用 知识点:静电场中导体的特点;静电场中电介质的特点;电极化强度;电通量密度;高斯定律 重点:高斯定律 难点:电极化强度、电通量密度与电场强度的关系 用高斯定律计算电场强度 1. 从高等数学中的高斯定理讲解高斯定律.??=ρ D 2. 应用高斯定律计算1.1节三个例题,和本节例1-8, 并总结均匀带电直导线、平面、球面、球体的电场强度和电位特点. 《工程电磁场导论》(冯慈璋马西奎主编,高等教育出版社) P13 1-1-1 直接应用1.1节三个例题(均匀带电直导线、平面、球面)的结果简化运算 1-1-3 =-?? E的应用

电磁场与电磁波习题集

电磁场与电磁波 补充习题 1 若z y x a a a A -+=23,z y x a a a B 32+-=,求: 1 B A +;2 B A ?;3 B A ?;4 A 和B 所构成平面的单位法线;5 A 和B 之间较 小的夹角;6 B 在A 上的标投影和矢投影 2 证明矢量场z y x a xy a xz a yz E ++=是无散的,也是无旋的。 3 若z y x f 23=,求f ?,求在)5,3,2(P 的f 2?。 5 假设0x 的区域为电介质,介电常数为03ε,如果空气中的电场强度z y x a a a E 5431++=(V/m ),求电介质中的电场强度。 7 同轴电缆内半径为a ,电压为0V ,外导体半径b 且接地,求导体间的电位分布,内导体的表面电荷密度,单位长度的电容。 10 在一个无源电介质中的电场强度x a z t C E )cos(βω-=V/m ,其中C 为场的幅度,ω为 角频率,β为常数。在什么条件下此场能够存在?其它的场量是什么? 11 已知无源电介质中的电场强度x a kz t E E )cos(-=ωV/m ,此处E 为峰值,k 为常数,求此区域内的磁场强度,功率流的方向,平均功率密度。 12 自由空间的电场表示式为x a z t E )cos(10βω+=V/m ,若时间周期为100ns ,求常数k , 磁场强度,功率流方向,平均功率密度,电场中的能量密度,磁场中的能量密度。 13 已知无源区的电场强度为y a kz t x C E )cos(sin -=ωαV/m ,用相量求磁场强度,场存在的必要条件,每单位面积的时间平均功率流。 14 若自由空间中均匀平面波的磁场强度为x a z t H )30000cos(100β+= A/m , 求相位常数,波长,传播速度,电场强度,单位面积时间平均功率流。 16 决定下面波的极化类型 m a y t a y t E m a e e a e e E m a e a e E z x y z j j x z j j z x j y x j /V )5.0s i n (4)5.0c o s (3/V 916/V 10010010041004300300 ---=-=+=-----ππ 17 电场强度为y x a z t a z t )sin(5)cos(12βωβω--- V/m 的均匀平面波以200M rad/s 在无耗媒质中(1,5.2==r r με)传播,求相应的磁场强度,相位常数,波长,本征阻抗,相

电磁场与电磁波教学实验指导书

电磁场与电磁波教学实验指导书 “电磁场与电磁波”是理工科院校电子信息类专业一门重要的专业基础课。由于该课程核心的基本概念、基本理论和分析方法都很重要,而且系统性、理论性很强,因此在学习本课程时,开设必要的实验课,使抽象的概念和理论能形象化、具体化,对学生加深理解和深刻地掌握基本理论和分析方法,培养学生分析问题和解决问题的能力都是十分有益的。做好本课程的实验,是学好本课程的必要的教学辅助环节。 同学们在做每个实验之前,一定要仔细阅读教材和实验指导书。了解和熟悉实验设备、弄懂实验原理和实验目的、明确实验方法和实验步骤、并牢记相关注意事项,以使各实验得以安全、顺利地完成。实验过程中要按实验步骤要求进行操作,认真观察实验现象,详细、规范地记录实验数据。实验完成后,要认真分析实验结果,详细地写出实验报告。 实验仪器 JMX-JY-002电磁波综合实验仪 一、概述 电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。它能使学生通过应用本发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第电磁感应定律、电偶极子、天线基本结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及相关特性的认识,培养学生对电磁波分析和电磁波应用的创新能力。《JMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。 二、特点 1、理论与实践结合性强 2、直接面向《电磁场与波》的课程建设与改革需要,紧密配合教学大纲,使课堂环节与实验环节紧密结合。 3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。 4、实验内容的设置,融综合性、设计性与验证性与一体,帮助学生建立一套电磁波的形象化思维方式,加深和加强对电磁波产生、发射、传输、接收过程及相关特性的认识。 5、培养学生对电磁波分析和电磁波应用的创新能力。 三、系统配置及工作原理

相关文档
相关文档 最新文档