0)'Px,y■,称「为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.M於①]2?极坐标系的概念(1)极坐标系如图(1)所示,在平面内取一个定点0,叫做极点,自极点0引一条射线Ox,叫做极轴;再选定一个长度单位,一个角度单位" />
文档库 最新最全的文档下载
当前位置:文档库 › 极坐标与参数方程知识点总结

极坐标与参数方程知识点总结

极坐标与参数方程知识点总结
极坐标与参数方程知识点总结

第一部分:坐标系与参数方程

【考纲知识梳理】

1平面直角坐标系中的坐标伸缩变换

设点P(x,y)是平面直角坐标系中的任意一点,在变换? :严"一?x,(匸〉0 )的作用下,点p(x, y)对应到点

y=U?y,(A;>0) '

Px,y■,称「为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. M於①]

2?极坐标系的概念

(1)极坐标系如图(1)所示,在平面内取一个定点0 ,叫做极点,自极点0引一条射线Ox,

叫做极轴;再选定一个长度单位,一

个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系?

注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可?但极坐标系和平面直角坐标系都是平面坐

标系?

(2)极坐标

设M是平面内一点,极点0与点M的距离|0M|叫做点M的极径,记为;以极轴0灿始边,射线0M为终边的角? x0M叫做点M的极角,记为—有序数对几二叫做点M的极坐标记作M匸门?一般地,不作特殊说明时,我们认为「_ 0门可取任意实数?特别地,当点M在极点时,它的极坐标为0,匚< 三R 。和直角坐标不同,平面内一个点的极坐标有无数种表示?如果规定T -0,0"::^ ::: 2-,那么除极点外,平面内的点可用

唯一的极坐标几二表示;同时,极坐标订二表示的点也是唯一确定的

3?极坐标和直角坐标的互化

(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同

的长度单位,如图(2)所示:

(2)互化公式:设M是坐标平面内任意一点,它的直角坐标是x, y,极坐标是:::0,于

是极坐标与直角坐标的互化公式如表:

点M 直角坐标(X, y )极坐标(巴日)

互化公式P cos日= Psi n 日P2 =x2+ y2 tan? - y

(x 式0 )

x

在一般情况下,由tan二确定角时,可根据点M所在的象限最小正角4?常见曲线的极坐标方程

注:由于平面上点的极坐标的表示形式不唯一 ,即 几二,匚2二? v , -几二? v , -匚-二? v 都表示同一

点的坐标,这与点的直角坐标的唯一性明显不同

?所以对于曲线上的点的极坐标的多种表示形式

,只要求至少

有一个能满足极坐标方程即可?例如对于极坐标方程P = ^点M — A [可以表示为 <4 4;

p = e . 二、参数方程

i ?参数方程的概念

「X = f (t )

一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 (x, y )都是某个变数t 的函数」 ①,并且对

』= g (t )

于t 的每一个允许值,由方程组①所确定的点

M x, y 都在这条曲线上,那么方程①就叫做这条曲线的参数

5 兀 〕 fn n 、 「 兀5兀、 M —,一+2兀 或M —-2兀 或M.——,——[等多种形式 14 4 「 i4 4 丿 (4 4 丿 ,其中,只有M 匕,丁的极坐标满足方程

方程,联系变数x,y的变数t叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程?

2?参数方程和普通方程的互化

(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方

程.

(2)如果知道变数x,y中的一个与参数t的关系,例如x = f t,把它代入普通方程,求出另一个变数与参数

的关系y = g(t ),那么丿' '就是曲线的参数方程,在参数方程与普通方程的互化中,必须使(x,y)的取y = g(t)

值范围保持一致.

注:普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设

参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。

3.圆的参数

如图所示,设圆0的半径为r,点M从初始位置M o出发,按逆时针方向在圆O上作匀速圆周运动,设

x = r cos日

M (x,y ),则丿(占为参数)。这就是圆心在原点0,半径为r的圆的参数方程,其中6的几何意y =r si n 日

2d 2 2

义是OM。转过的角度。圆心为a,b,半径为r的圆的普通方程是x-a ,y-b二r2,

x — a + r cos 日

它的参数方程为:」(日为参数L

y =b +r si n。

4?椭圆的参数方程

2 2

以坐标原点O为中心,焦点在X轴上的椭圆的标准方程为牛?爲=1a b 0其参数方程为

a2b2

x =acos?

严为参数),其中参数?称为离心角;焦点在y轴上的椭圆的标准方程是y =bs in?

-/

2 2 -b cos q)

岭十务=1(a >b >0 )其参数方程为」茁W为参数)其中参数申仍为离心角,通常规定参数弟的

a b 』=asi n?

范围为0,2二。

注:椭圆的参数方程中,参数「的几何意义为椭圆上任一点的离心角,要把它和这一点的旋转角区分开

来,除了在四个顶点处,离心角和旋转角数值可相等外(即在0到2二的范围内),在其他任何一点,两个

n _ n

角的数值都不相等。但当0 _〉-—时,相应地也有0 - - 一,在其他象限内类似。

2 2

5.双曲线的参数方程

x a sec 【P

—_

(申为参数),其中?乏b,2兀且?式冬严式一。

y=bta n ?

2

2

以上参数都是双曲线上任意一点的离心角。 6. 抛物线的参数方程

注:直线参数方程中参数的几何意义:过定点M 0

x 0

,y 0

,倾斜角为:?的直线I 的参数方程为

X =X 0

+t COS 。j 」

(t 为参数),其中t 表示直线I 上以定点M °为起点,任一点M(x ,y )为终点的有向线段 y =

y 0

+tsi n 。

M °M 的数量,当点M 在M °上方时,t > 0 ;当点M 在M °下方时,t v 0 ;当点M 与M °重合时,t =0。 我们也

可以把参数t

理解为以M °为原点,直线I 向上的方向为正方向的数轴上的点 M 的坐标,其单位长

度与原直角坐标系中的单位长度相同。 【要点名师透析】 一、坐标系

(一)平面直角坐标系中的伸缩变换

X = 3x

〖例〗在同一平面直角坐标系中,已知伸缩变换

①:丿/

2y =y

(1)求点A -,-2经过申变换所得的点A 的坐标;

<3 /

1

(2)点B 经过'变换得到点B

( 3,2)

,求点B 的坐标;

以坐标原点 °为中心,焦点在

X 轴上的双曲线的标准议程为

2 2

x y

~ — 2

a b

=1a . 0,b . 0其参数方程为 2

焦点在y 轴上的双曲线的标准方程是 吿

a

2

务=1(an0,b>0 )其参数方程为丿

b

— be 。叫申为参数),其 y = a csCP

以坐标原点为顶点,开口向右的抛物线

=2px( p > 0的参数方程为丿 为参数)

7.直线的参数方程

经过点M 。X o ,y o ,倾斜角为:

--的直线I 的普通方程是y - y 。= tan x - x 。而过M 。x 。,y 。,

倾斜角为a 的直线|的参数方程为丿

X= Xo +tcos?』w ,

(t 为参

数)。

(3)求直线1 :

y = 6x经过,变换后所得到直线的「方程;

2

C : X2丄=1

(4)求双曲线64 经过「变换后所得到曲线 C ?的焦点坐标。

(二)极坐标与直角坐标的互化

兀5兀

A(2=), B(2,—)

〖例2〗在极坐标系中,如果4 4

为等边二角形 ABC的两个顶点,求顶点 C的极坐标

(「_0,0 ::「::2二)。

(三)求曲线的极坐标方程

〖例〗已知 P, Q分别在/ AOB的两边 0A, OB上,/ AOB= —,“ POQ的面积为8,求PQ中点M的 3

极坐标方程。

(四)极坐标的应用

〖例〗如图,点 A在直线x=4上移动,"OPA为等腰直角三角形," OPA的顶角为/ OPA (O, P, A依次按顺时针方向排列),求点P的轨迹方程,并判断轨迹形状。

二、参数方程

(一)把参数方程化为普通方程

x = -4 + cosf, rx = 8cos3;

1例〗已知曲线cl: 2 = 3+別毗(t为参数),c】:? = %皿8,(0为参数)。

(1)化c 一,c_的方程为普通方程,并说明它们分别表示什么曲线;

(2)若C-上的点P对应的参数为t , Q为C-上的动点,求中点T至煩线

2

x=^2t

(t为参数)距离的最小值。

y = _2 廿

(二)椭圆参数方程的应

X + h _ ]

在平面直角坐标系门「中,点匚办二是椭圆-■

上的一个动点,求

的最大值

解答:

(三)直线参数方程的应用

〖例〗过点「一川‘作倾斜角为;;的直线与曲线":'■ I 交于点3',求二':|的值及相应

的“的值。 解析:

(四)圆的参数方程的应用

〖例〗已知曲线C 的参数方程是 (1) 求曲线C 的普通方程;

(2) 求弦AB 的垂直平分线的方程(3)求弦AB 的长 【感悟高考真题】

1 ?在极坐标系中,点(2,

3

)到圆^

=2C0

^ 的圆心的距离为()

^4 + 兀2

/ H 2

(A ) 2 (B )

:

9

(C )

1

9

(D ) " 3

2.

在极坐标系中,圆

'二~2sin 的圆心的极坐标是( )

Jl

H

(A )

2

( B ) ' '

2

(C ) (1,°) ( D ) (1

「)

X = COSG

3. 在直角坐标系xOy 中,曲线C 1

的参数方程为"引,(

<x 为参数).在极坐标系(与直角坐标系 xOy 有相同的长度单

位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2

的方程为

p (cos 日-sin 日)+1 =0,则C 1与C 2的交点个数为 _____

x = 2 cos a

4. 直角坐标系xOy 中,曲线C 1

的参数方程为』

F3

sinCt (

。为参数)?在极坐标系(与直角坐标系xOy 取相同的

长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2

的方程为

p

(cos -sin 日)+1 =0,则G 与C 2的交点个数为

Ji = 2 + 72 cos % 了二品沁B

为参数),且曲线C 与直线「

匚=0相交于两点A 、B

轴正半轴建立直角坐标系,则该曲线的直角坐标方程为

"x =3 +cosG

x = 2cos 二

?T 23)在直角坐标系xOy 中,曲线C1的参数方程为

2 2sin

' ( ?

uuv uuuv

为参数)M 是C1上的动点,P 点满足OP =2

°M ,P 点的轨迹为曲线 C2 (I )求C2的方程

Q =-

(n )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线

3

与C1的异于极点的交点为 A ,与C2

5. ( 1)(坐标系与参数方程选做题)若曲线的极坐标方程为

:、= 2sinr 4co^,以极点为原点,极轴为 x

6. (2011 ?陕西高考理科? T15C)直角坐标系

Xoy

中, 以原点为极点,x

轴的正半轴为极轴建立极坐标系,

设点A ,B 分别在曲线 \=3 + cos 日

C 1

: ^

4 si

门二

p 为参数)和曲线C 2

: ' =

1

上,则| AB |

的最小值为

7.(坐标系与参数方程选做题)直角坐标系

xOy

中,以原点为极点,

X 轴的正半轴为极轴建立极坐标系,

设点A , B 分别在曲线

(二为参数)和曲线C 2

:::

"上,则

| AB|

的最小值为

8. ( 2011天津高考理科 ?T11).已知抛物线 C 的参数方程为丿

t

为参数)若斜率为1的直线经过抛

、y = &

物线C 的焦点,且与圆 (x - 2 2 2

4

)

+y

=

r (r

>

0)

相切,则 r =

9.(坐标系与参数方程选做题) 的交点坐标为

.

已知两曲线参数方程分别为

X 5

COSd(g 〒v 二)

.y 二 Sinr

和 y 5*2 x t

4 (t R)

t

10. ( 2)在直角坐标系 xOy (I )已知在极坐标系 中,直线 (与直角坐标系

x

= 3cos (.为参数)

曲线C 的参数方程为

y

= sin -

l 的方程为x-y+4=0 , xOy 取相同的长度单位,且以原点 O 为极点,以x 轴正半轴为极轴)

中,点P 的极坐标为

"兀、

4, ,判断点 2

P 与直线I 位置关系;

(II )设点

Q 是曲线 C 上的一个动点, 求它到直线 I 的距离的最小值.

11.选修4-4:坐标系与参数方程 x 二 5cos :

(本小题满分10分)在平面直角坐标系

xOy

中,求过椭圆.

y

=

3sin

「(

为参数)的右焦点,且与直线

y

=3 7

(t 为参数)平行的直线的普通方程。

12. (2011新课标全国高考理科

的异于极点的交点为 B,求

13. (2011新课标全国高考文科-T 23)在直角坐标系xOy 中,曲线C1的参数方程为

x =2cos :

uuv uuu

y 二2

? 2SIn 〉(:.为参数)M 是C1上的动点,P 点满足OP =20M ,P 点的轨迹为曲线C2

(I )求C2的方程

e =-

(n )在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线 3

与C1的异于极点的交点为 A ,与C2

14. (2011 ?辽宁高考理科?T 23)(本小题满分10分)(选修4-4 :坐标系与参数方程)在平面直角坐标系

X =acos

;(a Ab >0,?为参数) .y^bsin ,

.在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线 1: 9 =a 与

n

C1, C2各有一个交点.当a=0时,这两个交点间的距离为 2,当a= 2

时,这两个交点重合.

(I)分别说明C1 , C2是什么曲线,并求出 a 与b 的值;

n

n

(II )设当〉=4

时,I 与C1, C2的交点分别为 A1 , B1,当a=- 4

时,I 与C1, C2的交点为 A2 , B2,求四边形 A1A2B2B1的面积.

15. 极坐标

P

=C °s ^和参数方程?

y

2

V (t 为参数)所表示的图形分别是(D)

A.直线、直线

B.直线、圆

C.圆、圆

D.圆、直线 16. 极坐标方程(p-1) =(p-0)表示的图形是

(A )两个圆

(B)两条直线 (C) 一个圆和一条射线 (D) 一条直线和一条射线

17. __________________________________________________________________________________ 在极坐

标系(p 9) (0 < 9 <2)中,曲线p=sin

日与pc °s ^ =一1的交点的极坐标为 _____________________________ .

18.

已知P 为半圆C:丿 (日为参数,°兰日兰71

)上的点,点A 的坐标为(1,0) ,

O 为坐标原点,

y = si n 日

点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为一。

的异于极点的交点为 B,求

AB

xOy 中,曲线C1的参数方程为

—豐申为参数)

』=si

,曲线C2的参数方程为

3

(I)以O为极点,x

轴的正半轴为极轴建立极坐标系,求点M的极坐标;

(II )求直线AM的参数方程。【考点模拟演练】

一、选择题

二、填空题

0= 6截圆 p= 2cos 12 .直线2x+ 3y — 1 = 0经过变换可以化为 6x + 6y — 1 = 0,则坐标变换公式是

X 二 t

13. (皖南八校2011届高三第二次联考)已知平面直角坐标系 xOy 内,直线I 的参数方程式为 ?y

= t 一2

(t

1 .已知极坐标平面内的点P 2,—号5

,则

P 关于极点的对称点的极坐标与直角坐标分别为

A. 2, n ,(1, 3)

2 .在平面直角坐标系 xOy 中,点P 的直角坐标为 极坐标系,则点

P 的极坐标可以是(

) C.?,— 3)

D. ?,—

B.[2, — n

(1,-护)

D. 2, — ~ , (— 1

,—

3)

C. 2, ( — 1, 3) (1, — .3).若以原点O 为极点,x 轴正半轴为极轴建立

4n

3

4_n 3

A. 1

,- 3 B. 2

3.在直角坐标系xOy 中,已知点C ( — 3, — .3),若以O 为极点,x 轴的正半轴为极轴,则点 C 的极坐标 (p 0 )( p,>— n < 0 <可写为 __________ . 过点2, n 平行于极轴的直线的极坐标方程是(

4. p cos=04

B . p sin =(4

C . p sin =0 _ 2

D . p cos=6 , 2

答案:C

5. 曲线的参数方程是

(t 是参数,t 工0)它的普通方程是

6. 7.

y= 1 — t2

(x — 1)2(y — 1) = 1

y= — + 1 y 1—x2

n

直线p cos=92关于直线0= 4对称的直线方程为(

p cos=0— 2 B . p sin =0

C . p sin =(— 2

D . p= 2si n

x=— 1-乎t

已知直线I 的参数方程为 l.y=2 +£

(t 为参数),则直线I 的斜率为

x = 2cos

直线3x — 4y — 9= 0与圆:J

|y = 2si (0为参数)的位置关系是 A ?相切

9.设直线过极坐标系中的点 C.直线过圆心

B .相离

M (2,0),且垂直于极轴,则它的极坐标方程为 D .相交但不过圆心

10?在极坐标系中,直线

p sin 0+ = 2被圆p= 4截得的弦长为

〔0— p R )所得的弦长是

11?在极坐标系中,直线

P= 2罷s in (日+工)为参数),以Ox为极轴建立极坐标系(取相同的长度单位),圆C的极坐标方程为

4 , 则直线I的圆C的位置关系是_______________ 。

X =x0+t cos 日

14.已知曲线的参数方程为y=y°+

tsin H汾别以t和°为参数得到两条不同的曲线,这两条曲线公共点个数

为___ .

15.已知2x2+3y2-6x=0 (x,y€ R),则x2+y2 的最大值为_______ .

16. _____________ 从极点O作直线与另一直线I : 'cos *4相交于点M,在OM上取一点P,使OM ? OP=12,则点P 的轨迹方程为.

三、解答题

17.在极坐标系中,已知圆

C的圆心C? n,半径r=3,

(1)求圆C的极坐标方

程;

⑵若Q点在圆C上运动,P在OQ的延长线上,且|OQ| : |QP|= 3 : 2,求动点P的轨迹方程.

18.在极坐标系中,直线

n

l的极坐标方程为9= 3(P R),以极点为原点,极轴为

x轴的正半轴建立平面

x= 2cos a

角坐标系,曲线C的参数方程为(a为参数),求直线I与曲线C的交点P的直角坐标.

y= 1 + cos 2 a

高中数学参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0. 2.圆锥曲线的参数方程 (1)圆 圆心在(a,b),半径为r 的圆的参数方程是?? ?+=+=? ? sin cos r b y r a x (φ是

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

参数方程和极坐标方程知识点归纳

专题九:坐标系与参数方程 1、平面直角坐标系中的伸缩变换 设点),(y x P 是平面直角坐标系中的任意一点,在变换?? ?>?='>?='). 0(,y y 0), (x,x :μμλλ?的作用 下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩 变换。 2、极坐标系的概念 在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。 点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 注: 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与 ),(θπρ+表示同一点。 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的。 极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数ρ、θ对应惟一点P (ρ,θ),但平面内任一个点P 的极坐标不惟一.一个点可以有无数个坐标,这些坐标又有规律可循的,P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.若对ρ、θ的取值范围加以限制.则除极点外,平面上点的极坐标就惟一了,如限定ρ>0,0≤θ<π2或ρ<0,π-<θ≤π等. 极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的. 3、极坐标与直角坐标的互化 设是平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ,从图中可以得出: ) 0(ta ≠= x x y θ? ?? 图1

(完整版)极坐标与参数方程知识点、题型总结(可编辑修改word版)

?y ' = ? y,(> 0). 0 ? 极坐标与参数方程知识点、题型总结 一、伸缩变换:点 P (x , y ) 是平面直角坐标系中的任意一点,在变换 : ?x ' = ? x,(> 0), 的作用下,点 P (x , y ) 对应到点 P '(x ', y ') ,称伸缩变换 ? 一、 1、极坐标定义:M 是平面上一点, 表示 OM 的长度,是∠MOx ,则有序实数实 数对(,) , 叫极径,叫极角;一般地,∈[0, 2) , ≥ 0 。,点 P 的直角坐标、 极坐标分别为(x ,y )和(ρ,θ) ?x = cos ? ?2 = x 2 + y 2 ? 2、直角坐标? 极坐标 y = sin 2、极坐标? 直角坐标?tan = y (x ≠ 0) ? ?? x 3、求直线和圆的极坐标方程:方法一、先求出直角坐标方程,再把它化为极坐标方程方法二、(1)若直线过点 M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为: ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆心为 M (ρ0,θ0),半径为 r 的圆方 程为ρ2-2ρ0ρcos(θ-θ0)+ρ 2-r 2=0 二、参数方程:(一).参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的 ?x = f (t ), 坐标 x , y 都是某个变数t 的函数? y = g (t ), 并且对于t 的每一个允许值,由这个方程所确 定的点 M (x , y ) 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x , y 的变数t 叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方 程叫做普通方程。 (二).常见曲线的参数方程如下:直线的标准参数方程 x = x 0 + t cos 1、过定点(x 0,y 0),倾角为α的直线: (t 为参数) y = y 0 + t sin (1) 其中参数 t 的几何意义:点 P (x 0,y 0),点 M 对应的参数为t ,则 PM =|t| (2)直线上 P 1 , P 2 对应的参数是t 1, t 2 。|P 1P 2|=|t 1-t 2|= t 1+t 2 2-4t 1t 2.

(完整版)常微分方程的大致知识点

= + ?x = + ?x = + ?x 常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有 x 或 y 的项) y x 4、一阶线性非齐次方程 常数变易法,或 y = e ? a ( x )dx [? b (x )e -? a ( x )dx dx + C ] 5、伯努力方程 令 z = y 1-n ,则 dz = (1 - n ) y -n dy ,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 dx 6、全微分方程 若?M ?y 若 ?M ?y dx = ?N ,则u (x , y ) = C ,(留意书上公式) ?x ≠ ?N ,则找积分因子,(留意书上公式) ?x f (x f ( y , (二)毕卡序列 x y 1 y 0 0 x f (x , y 0 )dx , y 2 y 0 0 x f (x , y 1 )dx , y 3 y 0 0 f (x , y 2 )dx ,其余类推 (三)常系数方程 1、常系数齐次L (D ) y = 0 方法:特征方程 7、可降阶的二阶微分方程 d 2 y = , dy ) ,令 dy = d 2 y p ,则 = dy dx 2 d 2 y = dx dy ) ,令 dx dy = p ,则 dx 2 d 2 y dx = p dp dx 2 dx dx dx 2 dy 8、正交轨线族

? ? dy 单的实根, , y = C e 1x + C e 2 x 1 2 1 2 单的复根1, 2 = ± i , y = e x (C cos x + C 2 sin x ) 重的实根 = = , y = (C + C x )e x 1 2 1 2 重的复根1, 2 = ± i ,3, 4 = ± i , y = e x [(C + C 2 x ) c os x + (C 3 + C 4 x ) sin x ] 2、常系数非齐次L (D ) y = 方法:三部曲。 f (x ) 第一步求L (D ) y = 0 的通解Y 第二步求L (D ) y = f (x ) 的特解 y * 第三步求L (D ) y = f (x ) 的通解 y = Y + y * 如何求 y * ? 当 f (x ) = P m (x )e x 时, y * = x k Q (x )e x 当 f (x ) = P m (x )e ux cos vx + Q (x )e ux sin vx 时, y * = x k e ux (R (x ) cos vx + S m (x ) sin vx ) 当 f (x ) 是一般形式时, y * = ? x W (x ,) f ()d ,其中 W(.)是郎斯基行列式 x 0 W () (四)常系数方程组 方法:三部曲。 第一步求 dX dt = A (t ) X 的通解, Φ(t )C 。利用特征方程 A - I = 0 ,并分情况讨论。 第二步求 dX dt 第三步求 dX dt = A (t ) X + f (t ) 的特解, Φ(t )?Φ-1 (s ) f (s )ds ,(定积分与不定积分等价) = A (t ) X + f (t ) 的通解, Φ(t )C + Φ(t )?Φ-1 (s ) f (s )ds (五)奇点与极限环 ? dx = ax + b y dt ? ? = cx + dy 1、分析方程组? dt 的奇点的性质,用特征方程: A - I = 0 特征方程的根有 3 种情况:相异实根、相异复根、相同实根。第一种情况:相异实根,1 ≠ 2 1 1 m m m

高中数学选修4-4知识点清单

高中数学选修4-4 坐标系与参数方程知识点总结 第一讲 一平面直角坐标系 1.平面直角坐标系 (1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系. (2)平面直角坐标系: ①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系; ②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向; ③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y 轴统称为坐标轴; ④坐标原点:它们的公共原点称为直角坐标系的原点; ⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系. (3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P 2.

设点P(x,y)是平面直角坐标系中的任意一点,在变换φ 点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二极坐标系 (1)定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向. (3)图示 2.极坐标 (1)极坐标的定义:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ). (2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z). 若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系. 3.极坐标与直角坐标的互化公式 如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ). (1)极坐标化直角坐标 =ρcosθ, =ρsinθW. (2)直角坐标化极坐标 2=x2+y2, θ=y x(x≠0). 三简单曲线的极坐标方程 1.曲线的极坐标方程 一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程. 2.圆的极坐标方程 (1)特殊情形如下表:

常微分方程的大致知识点

常微分方程的大致知识点Last revision on 21 December 2020

常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有x y y x 或的项) 4、一阶线性非齐次方程 常数变易法,或])([)()(?+??=-C dx e x b e y dx x a dx x a 5、伯努力方程 令n y z -=1,则dx dy y n dx dz n --=)1(,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 6、全微分方程 若x N y M ??=??,则C y x u =),(,(留意书上公式) 若 x N y M ??≠??,则找积分因子,(留意书上公式) 7、可降阶的二阶微分方程 ),(22dx dy x f dx y d =,令dx dy dx y d p dx dy ==22,则 ),(22dx dy y f dx y d =,令dy dp p dx y d p dx dy ==22,则 8、正交轨线族 (二)毕卡序列 ?+=x x dx y x f y y 0),(001,?+=x x dx y x f y y 0),(102,?+=x x dx y x f y y 0),(203,其余类推 (三)常系数方程 1、常系数齐次0)(=y D L 方法:特征方程 单的实根21,λλ,x x e C e C y 2121λλ+= 单的复根i βαλ±=2,1,)sin cos (21x C x C e y x ββα+= 重的实根λλλ==21,x e x C C y λ)(21+= 重的复根i βαλ±=2,1,i βαλ±=4,3,]sin )(cos )[(4321x x C C x x C C e y x ββα+++=

高考数学:极坐标与参数方程知识点总结

高考数学:极坐标与参数方程知识点总结 极坐标与参数方程这部分题目比较简单,考法固定,同学们一定要掌握住,高考不失分啊! 第一讲 一平面直角坐标系 1.平面直角坐标系 (1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系.

(2)平面直角坐标系: ①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系; ②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向; ③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y轴统称为坐标轴; ④坐标原点:它们的公共原点称为直角坐标系的原点; ⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系. (3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P,填表:

二极坐标系 (1)定义:在平面内取一个定点O,叫做极点;自极点O 引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向. (3)图示

2.极坐标 (1)极坐标的定义:设M是平面内一点,极点O与点M 的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ). (2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z). 若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系. 3.极坐标与直角坐标的互化公式 如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ).

极坐标和参数方程知识点典型例题及其详解(供参考)

极坐标和参数方程知识点+典型例题及其详解 知识点回顾 (一)曲线的参数方程的定义: 在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ???==) ()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数. (二)常见曲线的参数方程如下: 1.过定点(x 0,y 0),倾角为α的直线: αα sin cos 00t y y t x x +=+= (t 为参数) 其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离. 根据t 的几何意义,有以下结论. ○ 1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ?--4)(2. ○ 2.线段AB 的中点所对应的参数值等于2 B A t t +. 2.中心在(x 0,y 0),半径等于r 的圆: θθ sin cos 00r y y r x x +=+= (θ为参数) 3.中心在原点,焦点在x 轴(或y 轴)上的椭圆: θθsin cos b y a x == (θ为参数) (或 θ θsin cos a y b x ==) 中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(. sin ,cos 00???+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:

2018年电大第三版常微分方程答案知识点复习考点归纳总结参考

习题1.2 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为:

dx dy =- y x y x +- 令x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1 dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0 解:原方程为:dx dy =y e y 2e x 3 2 e x 3-3e 2y -=c. 9.x(lnx-lny)dy-ydx=0 解:原方程为: dx dy =x y ln x y 令 x y =u ,则dx dy =u+ x dx du

极坐标与参数方程知识点总结大全72285

1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面 直角坐标系都是平面坐标系. (2)极坐标 设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作. 一般地,不作特殊说明时,我们认为可取任意实数. 特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.

如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的. 3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是 (),于是极坐标与直角坐标的互化公式如表: 点直角坐标极坐标 互化公式 在一般情况下,由确定角时,可根据点所在的象限最小正角.

4.常见曲线的极坐标方程 曲线图形极坐标方程圆心在极点,半径为的圆 圆心为,半径为的圆 圆心为,半径为的圆 过极点,倾斜角为的直线 (1) (2) 过点,与极轴垂直的直线 过点,与极轴平行的直线

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

极坐标与参数方程知识点总结

第一部分:坐标系与参数方程 【考纲知识梳理】 1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换()() ?? ?>?='>?='0,0,:μμλλ?y y x x 的作用下,点()y x P ,对应到点()y x P '',,称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图(1)所示,在平面取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标 设M 是平面一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对()θρ,叫做点M 的极坐标,记作M ()θρ,.一般地,不作特殊说明时,我们认为θρ,0≥可取任意实数.特别地,当点M 在极点时,它的极坐标为()()R ∈θθ,0。和直角坐标不同,平面一个点的极坐标有无数种表示.如果规定πθρ20,0<≤>,那么除极点外,平面的点可用唯一的极坐标()θρ,表示;同时,极坐标()θρ,表示的点也是唯一确定的. 3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图(2)所示: (2)互化公式:设M 是坐标平面任意一点,它的直角坐标是()y x ,,极坐标是()()0,≥ρθρ,于是点M 直角坐标()y x , 极坐标()θρ, 互化公式 ?? ?==θ ρθ ρsin cos y x () 0tan 2 22≠=+=x x y y x θρ 在一般情况下,由θ确定角时,可根据点M 所在的象限最小正角. 曲线 图形 极坐标方程

常微分方程期末试题知识点复习考点归纳总结参考

期末考试 一、填空题(每空2 分,共16分)。 1.方程22d d y x x y +=满足解的存在唯一性定理条件的区域是 . 2. 方程组 n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 维空间中的一条积分曲线. 3.),(y x f y '连续是保证方程),(d d y x f x y =初值唯一的 条件. 4.方程组???????=-=x t y y t x d d d d 的奇点)0,0(的类型是 5.方程2)(2 1y y x y '+'=的通解是 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是 7.二阶线性齐次微分方程的两个解)(1x y ?=,)(2x y ?=成为其基本解组的充要条件是 8.方程440y y y '''++=的基本解组是 二、选择题(每小题 3 分,共 15分)。 9.一阶线性微分方程 d ()()d y p x y q x x +=的积分因子是( ). (A )?=x x p d )(e μ (B )?=x x q d )(e μ (C )?=-x x p d )(e μ (D )?=-x x q d )(e μ 10.微分方程0d )ln (d ln =-+y y x x y y 是( ) (A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程 11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( ). (A) 1±=x (B)1±=y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程222+-='x y y ( )奇解. (A )有一个 (B )有无数个 (C )只有两个 (D )无 三、计算题(每小题8分,共48分)。 14.求方程22 2d d x y xy x y -=的通解 15.求方程0d )ln (d 3=++y x y x x y 的通解 16.求方程2 221)(x y x y y +'-'=的通解

高中数学参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

常微分方程基本知识点

常微分方程基本知识点 第一章 绪论 1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要) 例:03)(22=-+y dx dy x dx dy (1阶非线性); x e dx y d y =+22sin 。 2.运用导数的几何意义建立简单的微分方程。(以书后练习题为主) (习题1,2,9题) 例:曲线簇cx x y -=3满足的微分方程是:__________. 第二章 一阶方程的初等解法 1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要) 2.齐次方程的解法(变量代换);(重要) 3.线性非齐次方程的常数变易法; 4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要); 例题:(1).经变换_____y c u os =___________后, 方程1cos sin '+=+x y y y 可化为___线性_____方程; (2).经变换_____y x u 32-=____________后, 方程1 )32(1 '2+-=y x y 可化为____变量分离__方程; (3).方程0)1(222=+-dy e dx ye x x x 为:线性方程。

(4).方程221 'y x y -=为:线性方程。 5.积分因子的概念,会判断某个函数是不是方程的积分因子; 6.恰当方程的解法(分项组合方法)。(重要) 第三章 一阶方程的存在唯一性定理 1.存在唯一性定理的内容要熟记,并能准确确定其中的h ; 2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题 3.1的1,2,3题) 第四章 高阶微分方程 1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质; 2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系; 3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要) 4.n 阶线性非齐次微分方程的常数变易法(了解); 5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(比较系数法、复数法);(重要) 例题:t te x x 24=-'',确定特解类型? (习题4.2相关题目) 6.2阶线性方程已知一个特解的解法(作线性齐次变换)。(重要) 7.其他如Euler 方程、高阶方程降阶、拉普拉斯变换法等了解。

极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结 一、伸缩变换:点),(y x P 是平面直角坐标系中的任意一点,在变换 ???>?='>?='). 0(,y y 0),(x,x :μμλλ?的作用下,点),(y x P 对应到点),(y x P ''',称伸缩变换 一、 1、极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是M Ox ∠,则有序实数实 数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。,点P 的直角坐标、极坐标分别为(x ,y )和(ρ,θ) 2、直角坐标?极坐标 cos sin x y ρθρθ=??=?2、极坐标?直角坐标222 tan (0)x y y x x ρθ?=+??=≠?? 3、求直线和圆的极坐标方程:方法一、先求出直角坐标方程,再把它化为极坐标方程 方法二、(1)若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为: ρsin(θ-α)=ρ0sin(θ0-α)(2)若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ02-r 2=0 二、参数方程:(一).参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数???==), (),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确 定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 (二).常见曲线的参数方程如下:直线的标准参数方程 1、过定点(x 0,y 0),倾角为α的直线: αα sin cos 00t y y t x x +=+=(t 为参数) (1)其中参数t 的几何意义:点P (x 0,y 0),点M 对应的参数为t ,则PM =|t| (2)直线上12,P P 对应的参数是12,t t 。|P 1P 2|=|t 1-t 2|= t 1+t 2 2 -4t 1t 2.

坐标系与参数方程-知识点总结

坐标系与参数方程 1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0) x x y y λλ?μμ'=>?? '=>?的 作用下,点P(x,y)对应到点(,)P x y ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示, 在平面取一个定点O ,叫做极点, 自极点O 引一条射线Ox ,叫做极轴; 再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:(i)极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景; (ii)平面直角坐标系的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标 设M 是平面一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ; 以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ. 有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ. 一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面一个点的极坐标有无数种表示. 如果规定0,02ρθπ>≤<,那么除极点外,平面的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.

3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴 作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设M 是坐标平面任意一点,它的直角 坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与 直角坐标的互化公式如下: 极坐标(,)ρθ 直角坐标(,)x y : cos sin x y ρθ ρθ=??=? 直角坐标(,)x y 极坐标(,)ρθ: 222 tan (0) x y y x x ρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程

极坐标与参数方程基本知识点

极坐标与参数方程基本知识 点 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

极坐标与参数方程基本知识点 一、极坐标知识点 1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换???>?='>?='). 0(,y y 0),(x,x :μμλλ?的作用下,点),(y x P 对应到点),(y x P ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。 2.极坐标系的概念:在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴. ①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可. 3.点M 的极坐标:设M 是平面内一点,极点O 与点M 的距离||OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的xOM ∠叫做点M 的极角,记为θ。有序数对),(θρ叫做点M 的极坐标,记为),(θρM . 极坐标),(θρ与)Z )(2,(∈+k k πθρ表示同一个点。极点O 的坐标为)R )(,0(∈θθ. 4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。 如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。 5.极坐标与直角坐标的互化: (1)互化的前提条件 ①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合 ③两种坐标系中取相同的长度单位.

相关文档
相关文档 最新文档