文档库 最新最全的文档下载
当前位置:文档库 › (完整版)专题十六:天体运动典型问题

(完整版)专题十六:天体运动典型问题

(完整版)专题十六:天体运动典型问题
(完整版)专题十六:天体运动典型问题

专题十六:天体运动

基本方法:把天体运动看作是匀速圆周运动,F

万=F

往往还需要补充一个等式:在天体表面有——GMm/R2=mg 该式被称为黄金代换。

对卫星(行星)模型

卫星(行星)模型的特征是卫星(行星)绕中心天体做匀速圆周运动。

(1)卫星(行星)的动力学特征:中心天体对卫星(行星)的万有引力提供卫星(行星)做匀速圆周运动的向心力,即有:

(2)卫星(行星)轨道特征:由于卫星(行星)正常运行时只受中心天体的万有引力作用,所以卫星(行星)平面必定经过中心天体中心。

1)讨论卫星(行星)的向心加速度、绕行速度、角速度、周期与半径的关系问题。

由得,故越大,越小。

由得,故越大,越小。

由得,故越大,越小。

得,故越大,越长。

2)求中心天体的质量或密度(设中心天体的半径)

①若已知卫星绕中心天体做匀速圆周运动的周期与半径

根据得,则

②若已知卫星绕中心天体做匀速圆周运动的线速度与半径

由得,则

③若已知卫星绕中心天体做匀速圆周运动的线速度与周期

由和得,则

④若已知中心天体表面的重力加速度及中心天体的球半径

由得,则

一、基本规律

1.关于地球的第一宇宙速度,下列说法中正确的是( )

A它是人造地球卫星环绕地球运转的最小速度

B它是近地圆行轨道上人造卫星运行的最大速度

C 它是能使卫星进入近地轨道最小发射速度

D它是能使卫星进入轨道的最大发射速度

2.地球公转的轨道半径为R

1,周期为T

1

,月球绕地球运转的轨道半径为R

2

,周期

为T

2

,则太阳质量与地球质量之比为()

3.宇宙飞船与目标飞行器在近地圆轨道上成功进行了空间交会对接。对接轨道所处的空间存在极其稀薄的空气,下面说法正确的是()

A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间

B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加

C.如不加干预,天宫一号的轨道高度将缓慢降低

D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用

二、赤道上的物体、近地卫星和同步卫星的比较

(1)忽略地球(星球)自转影响,赤道上的物体,万有引力远大于随地球自转所需的向心力。

(2)在地球(星球)表面或地球(星球)上方高空物体所受的重力就是地球(星球)对物体的万有引力。特别的,在星球表面附近对任意质量为m 的物体有:

GM gR R Mm G mg =?=22这就是黄金代换公式,此式虽然是在星球表面附近推得的,但在星球非表面附近的问题中,亦可用。

(3)地球同步卫星是指相对地面静止的、运行周期与地球的自转周期相等的卫星,这种卫星一般用于通讯,又叫做同步通信卫星,其特点可概括为“五个一定”即位置一定(必须位于地球赤道的上空);周期一定();高度一定

();速率一定();运行方向一定(自西向东运行)。

4.地球赤道上有一物体随地球的自转,所受的向心力为F 1,向心加速度为a 1,线速度为v 1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星(高度忽略),

所受的向心力为F 2,向心加速度为a 2,线速度为v 2,角速度为ω2;地球的同步

卫星所受的向心力为F 3,向心加速度为a 3,线速度为v 3,角速度为ω3.地球表

面的重力加速度为g ,第一宇宙速度为,假设三者质量相等,则( )

A .F 1=F 2>F 3

B .a 1=a 2=g>a 3

C .V 1=v 2=v>v 3

D .ω1=ω3<ω2

5.如图,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引

力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动,以a 1、a 2分别表示该

空间站和月球向心加速度的大小,a 3表示地球同步卫星向心加速度的大小.以下

判断正确的是( )

A .a 3>a 2>a 1

B .a 2>a 1>a 3

C .a 3>a 1>a 2

D .a 2>a 3>a 1

三、变轨问题

卫星的变轨问题

卫星绕中心天体稳定运动时万有引力提供了卫星做匀速圆周运动的向心力,有.当卫星由于某种原因速度突然增大时,,

卫星将做离心运动;当突然减小时,,卫星做向心运动。

6.将卫星发射至近地圆轨道1(如图所示),然后再次点火,将卫星送入同步轨

道3.轨道1、2相切于Q点,2、3相切于P点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()

A.卫星在轨道3上的速度大于轨道1上的速度

B.卫星在轨道3上的角速度大于在轨道1上的角速度

C.卫星在轨道2上经过Q点时的速度大于它在轨道1上经过

Q点时的速度

D.卫星在轨道2上经过P点的加速度等于它在轨道3上经过

P点时的加速度

7.如图在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通

过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则

A.该卫星的发射速度必定大于11.2km/s

B.卫星在同步轨道Ⅱ上的运行速度大于7.9km/s

C.在轨道Ⅰ上,卫星在P点速度大于在Q点的速度

D.卫星在Q点通过加速实现由轨道Ⅰ进入轨道Ⅱ

8.如图所示,“嫦娥一号”探月卫星被月球捕获后,首先

稳定在椭圆轨道Ⅰ上运动,其中P、Q两点分别是轨道工的近月点和远月点,Ⅱ是卫星绕月做圆周运动的轨道,轨道Ⅰ和Ⅱ在P点相切,则()

A.卫星沿轨道Ⅰ运动,在P点的速度大于Q点的速度

B.卫星沿轨道Ⅰ运动,在P点的加速度小于Q点的加速度

C.卫星分别沿轨道Ⅰ、Ⅱ运动到P点的加速度不相等

D.卫星要从轨道Ⅰ进人轨道Ⅱ,须在P点加速

9.如图所示,某次发射同步卫星时,先进入一个近地的圆轨道,

然后在P点变轨,进入椭圆形转移轨道(该椭圆轨道的近地点为

近地圆轨道上的P,远地点为同步轨道上的Q),到达远地点Q

时再次变轨,进入同步轨道。设卫星在近地圆轨道上运行的速率

为v

1,在P点短时间变轨后的速率为v

2

,沿转移轨道刚到达远地点Q时的速率为

v 3,在Q点短时间变轨后进入同步轨道后的速率为v

4

。三个轨道运动的周期分别

为T

1、T

2

、T

3

,则下列说法正确的是:

A.在P点变轨时需要加速,在Q点变轨时需要减速B.在P点变轨时需要减速,在Q点变轨时需要加速

C.T

1

2

3

D. v

2

>v

1

>v

4

>v

3

四、多星问题

宇宙中往往会有相距较近,质量可以相比的两颗星球,它

们离其它星球都较远,因此其它星球对它们的万有引力可以忽略不计。在这种情况下,它们将各自围绕它们连线上的某一固定点O做同周期的匀速圆周运动。双星问题具有以下两个特点:

⑴由于双星和该固定点O总保持三点共线,所以在相同时间内转过的角度必相等,即双星做匀速圆周运动的角速度必相等,因此周期也必然相同。

⑵由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然

相等,由可得,可得,,即固定点O离质量大的星较近。

列式时须注意:万有引力定律表达式中的r表示双星间的距离,按题意应该是L,而向心力表达式中的r表示它们各自做圆周运动的半径,在本题中为r1、r2,千万不可混淆。

10.两颗靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,现测得两行星中心距离为R,周期为T,求两行星的总质量.

11.宇宙间存在一些离其它恒星较远的三星系统.其中有一种三星系统如图所示,三颗质量均为m的星位于等边三角形的三个顶点上,若已知两颗星的距离均为d,如果忽略其它星体对它们的引力作用,三星在同一平面内绕其中心O做匀速圆周运动,引力常量为G.则每颗星做圆周运动的周期T为多少?

12.宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对他们的引力作用。设四星系统中每个星体质量均为m,半径均为R,四颗星稳定分别在边长为a的正方形的四个顶点上,其中a远大于R。已知引力常量为G。求四颗星的周期T=?

五、其他

天体运动中也有追及相遇问题,它与地面上的追及相遇问题在思维有上相似之处,即也是找出一些物理量的关系,但它也不同之处,有其自身特点。根据万有引力提供向心力,即,所以当天体速度增加或减少时,对应的圆周轨道会发生相应的变化,所以天体不可能能在同一轨道上追及或相遇。分析天体运动的追及相遇重点是角度、角速度和时间等关系的判断。实际常见的是两类问题:①相距最近,条件:πωω221?=-k t t ,②相距最远,条件:πωω)12(21-=-k t t ,两式中*∈N k 。

13.如图所示,有A 、B 两颗卫星绕同颗质量未知,半径为R 的行星做匀速圆周运动,旋转方向相同,其中A 为近地轨道卫星,周期为T 1,B 为静止轨道卫星,周期为T 2,在某一时刻两卫星相距最近,再经过多长时间,两行星再次相距最近(引力常量G 为已知)?

14.两颗卫星在同一轨道平面绕地球做匀速圆周运动,地球半径为R ,a 卫星离地面的高度等于R ,b 卫星离地面高度为3R ,则:(1)a 、b 两卫星周期之比Ta :Tb 是多少?(2)若某时刻两卫星正好同时通过地面同一点的正上方,则a 至少经过多少个周期两卫星相距最远?

15.飞船沿半径为R 的圆周绕地球运动,其周期为T .如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示,如果地球半径为R 0,求飞船由A 点到B 点所需的时间.

16一宇航员为了估测某一星球表面的重力加速度和该星球的质量,在该星球的表面做自由落体实验:让小球在离地面h 高处自由下落,他测出经时间t 小球落地,又已知该星球的半径为R ,忽略一切阻力。求:(1)该星球表面的重力加速度g ;(2)该星球的质量M ;(3)该星球的第一宇宙速度V.(引力常量G 为已知)

专题十六:天体运动

1. BC

2.B

3.BC

4.D

5.A

6.CD

7.CD 8。A 9.CD 10232/4GT R π

11.Gm d 343

2π 12 13. T 1T 2/(T 2-T 1) 14.(1)1:22 (2)若两卫星同向运转,()7/24+;若两卫星反向运转

()7/2-4 15. T R

R R R R R

2400++ 16.(1)2h/t 2 (2)2R 2h/Gt 2 (3)22t hR

v =

(完整word版)天体运动中的追及相遇问题

天体运动中的追及相遇问题 信阳高中陈庆威2013.09.17 在天体运动的问题中,我们常遇到一些这样的问题。比如,A、B两物体都绕同一中心天体做圆周运动,某时刻A、B相距最近,问A、B下一次相距最近或最远需要多少时间,或“至少”需要多少时间等问题。 而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在思维有上一些相似的地方,即必须找出各相关物理量间的关系,但它也有其自身特点。 根据万有引力提供向心力,即当天体速度增加或减少时,对应的圆周轨道就会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相遇。天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂,成为同学们学习中的难点。而解决此类问题的关键是就要找好角度、角速度和时间等物理量的关系。 一、追及问题 【例1】如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则 ①经过多长时间,两行星再次相距最近? ②经过多长时间,两行星第一次相距最远? 解析:A、B两颗行星做匀速圆周运动,由万有引力提供向心力 ,因此T1

果A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内,A 比B 多转了 π。所以再次相距最近的时间t 1,由;第一次相 距最远的时间t 2,由。如果在问题中把“再次” 或“第一次”这样的词去掉,那么就变成了多解性问题。 【例2】如图2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。地球的轨道半径为R ,运转周期为T 。地球和太阳中心的连线与地球和行星的连线的夹角叫地球对行星的观察视角(简称视角)。已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上天文爱好者观察该行星的最佳时期。若某时刻该行星正好处于最佳观察期,问该行星下一次处于最佳观察期至少需经历多长时间? 解析:由题意可得行星的轨道半径θsin R r = 设行星绕太阳的运行周期为T /,由开普勒大三定律有: 23 23T r T R ' =,得:θ3sin T T =' 绕向相同,行星的角速度比地球大,行星相对地球 θ θπππω33sin )sin 1(222T T T -=-'=? 某时刻该行星正好处于最佳观察期,有两种情况:一是 刚看到;二是马上看不到,如图3所示。到下一次处于最佳观察期至少需经历时间分别为 两者都顺时针运转:T t ?--=?-= ) sin 1(2sin )2(2331θπθ θπωθπ 两者都逆时针运转: T t ?-+=?+= )sin 1(2sin )2(2332θπθ θπωθπ 二、相遇问题 【例3】设地球质量为M ,绕太阳做匀速圆周运动,有一质量为m 的飞船由静止 开始从P 点沿PD 方向做加速度为a 的匀加速直线运动,1年后在D 点飞船掠过地球上空,再过3个月又在Q 处掠过地球上空,如图4所示(图中“S ”表示太阳)。根据以上条件,求地球与太阳之间的万有引力大小。 视角 太阳 行星 图2 太阳 行星 地球 图3 θ θ

2018高考物理总复习专题天体运动的三大难点破解1深度剖析卫星的变轨讲义

拼十年寒窗挑灯苦读不畏难;携双亲期盼背水勇战定夺魁。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。 二、重难点提示: 重点:1. 卫星变轨原理; 2. 不同轨道上速度和加速度的大小关系。 难点:理解变轨前后的能量变化。 一、变轨原理 卫星在运动过程中,受到的合外力为万有引力,F 引=2 R Mm G 。卫星在运动过程中所需要的向心力为:F 向= R m v 2 。当: (1)F 引= F 向时,卫星做圆周运动; (2)F 引> F 向时,卫星做近心运动; (3)F 引

运动进入轨道2沿椭圆轨道运动,此过程为离心运动;到达B点,万有引力过剩,供大于求做近心运动,故在轨道2上供需不平衡,轨迹为椭圆,若在B点向后喷气,增大速度可使飞船沿轨道3运动,此轨道供需平衡。 2. 回收变轨 在B点向前喷气减速,供大于需,近心运动由3轨道进入椭圆轨道,在A点再次向前喷气减速,进入圆轨道1,实现变轨,在1轨道再次减速返回地球。 三、卫星变轨中的能量问题 1. 由低轨道到高轨道向后喷气,卫星加速,但在上升过程中,动能减小,势能增加,增加的势能大于减小的动能,故机械能增加。 2. 由高轨道到低轨道向前喷气,卫星减速,但在下降过程中,动能增加,势能减小,增加的动能小于减小的势能,故机械能减小。 注意:变轨时喷气只是一瞬间,目的是破坏供需关系,使卫星变轨。变轨后稳定运行的过程中机械能是守恒的,其速度大小仅取决于卫星所在轨道高度。 3. 卫星变轨中的切点问题 【误区点拨】 近地点加速只能提高远地点高度,不能抬高近地点,切点在近地点;远地点加速可提高近地点高度,切点在远地点。

-天体运动单元测试题及答案

天体运动单元测试题 一、选择题 1.“神舟七号”在绕地球做匀速圆周运动的过程中,下列事件不可能发生的是( ) A .航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 B .悬浮在轨道舱内的水呈现圆球形 C .航天员出舱后,手中举起的五星红旗迎风飘扬 D .从飞船舱外自由释放的伴飞小卫星与飞船的线速度相等 2.我国的“神舟七号”飞船于2008年9月25日晚9时10分载着3名宇航员顺利升空,并成功“出舱”和安全返回地面.当“神舟七号”在绕地球做半径为r 的匀速圆周运动时,设飞船舱内质量为m 的宇航员站在可称体重的台秤上.用R 表示地球的半径,g 表示地球表面处的重力加速度,g ′表示飞船所在处的重力加速度,N 表示航天员对台秤的压力,则下列关系式中正确的是( ) A .g ′=0 B .g ′=22R g r C .N=mg D .N=R mg r 3.“坦普尔一号”彗星绕太阳运行的轨道是一个椭圆,其运动周期为5.74年,则关于“坦 普尔一号”彗星的下列说法中正确的是( ) A .绕太阳运动的角速度不变 B .近日点处线速度大于远日点处线速度 C .近日点处加速度大于远日点处加速度 D .其椭圆轨道半长轴的立方与周期的平方之比是一个与太阳质量有关的常数 4.地球表面的重力加速度为g ,地球半径为R ,引力常量为G .假设地球是一个质量分布均 匀的球体,体积为343 R π,则地球的平均密度是( ) A .34g GR π B .234g GR π C .g GR D .2g G R 5.“嫦娥二号”已于2010年10月1日发射,其环月飞行的高度距离月球表面100km ,所探测到的有关月球的数据将比环月飞行高度为200km 的“嫦娥一号”更加翔实.若两颗卫星环月的运行均可视为匀速圆周运动,运行轨道如图所示.则( ) A .“嫦娥二号”环月运行的周期比“嫦娥一号”更小 B .“嫦娥二号”环月运行时的线速度比“嫦娥一号”更小 C .“嫦娥二号”环月运行时的角速度比“嫦娥一号”更小 D .“嫦娥二号”环月运行时的向心加速度比“嫦娥一号”更小 6.人造卫星绕地球做匀速圆周运动,其轨道半径为R ,线速度为v ,周期为T ,要使卫星的周期变为2T ,可以采取的办法是( ) A .R 不变,使线速度变为2 v

高三物理第二轮复习圆周运动和天体运动专题练习

高三物理第二轮复习圆周运动和天体运动专题练习 班级姓名座号 1.自行车和人的总质量为m,在一水平地面运动,若自行车以速度v转过半径为R的弯道,自行车的倾角应多大?自行车所受地面的摩擦力多大? 2.(14分)一颗在赤道上空运行的人造卫星,其轨道半径为r=2R (R为地球半径),卫星的运动方向与地球自转方向相同。已知地球自转的角速度为ω,地球表面处的重力加速度为g。 (1)求人造卫星绕地球转动的角速度。 (2)若某时刻卫星通过赤道上某建筑物的正上方,求它下次通过该建筑物上方需要的时间。 3.如图所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的 17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重 力加速度)

4.(14分)2005年10月17日凌晨4时33分,“神六”返回舱缓缓降落在内蒙古四子王旗主着陆场,意味着我国首次真正意义上有人参与的空间飞行试验取得圆满成功,标志着中国航天迈入新阶段。两位宇航员在离地高度为h的圆轨道运行了t时间,请问在这段时间内“神六”绕地球多少圈?已知地球半径为R,地球表面重力加速度为g。 5.(18分)宇航员在月球表面完成下面实验:在一固定的竖直光滑圆弧轨道内部最低点静止放置一质量为m的小球(可视为质点)如图所示,当施加给小球一瞬间水平冲量I时,刚好能使小球在竖直面内做完整的圆周运动.已知圆弧轨道半径为r,月球的 半径为R,万有引力常量为G. (1)若在月球表面上发射一颗环月卫星,所需最小发射速度为多大? (2)轨道半径为2R的环月卫星周期为多大? 6.人类选择登陆火星的时间在6万年以来火星距地球最近的一次,这时火星与地球之间的距离仅有5.58×107km。登陆前火星车在距火星表面H高处绕火星做匀速圆周运动,绕行n圈的时间为t,已知火星半径为R,真空中的光速为c=3.00×108m/s。 求: (1)火星车登陆后不断向地球发送所拍摄的照片,照片由火星传送到地球需要多长时间? (2)若假设地球、火星绕太阳公转均为匀速圆周运动,其周期分别为T地和T火,试证明:T地

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

物理必修二天体运动各类问题

天体运动中的几个“另类”问题 江苏省靖江市季市中学范晓波 天体运动部分的绝大多数问题,解决的原理及方法比较单一,处理的基本思路是:将天体的运动近似看成匀速圆周运动,根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。 如有必要,可结合黄金代换式简化运算过程。不过,还有几类问题仅依靠 基本思路和方法,会让人感觉力不从心,甚至就算找出了结果但仍心存疑惑,不得要领。这就要求我们必须从根本上理解它们的本质,把握解决的关键,不仅要知其然,更要知其所以然。 一、变轨问题 例:某人造卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变。每次测 量中卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为,后来变为,以、 表示卫星在这两个轨道上的线速度大小,、表示卫星在这两个轨道上绕地球运动的周期,则() A.,, B.,, C.,, D.,, 分析:空气阻力作用下,卫星的运行速度首先减小,速度减小后的卫星不能继续沿原轨 道运动,由于而要作近(向)心运动,直到向心力再次供需平衡,即,卫星又做稳定的圆周运动。

如图,近(向)心运动过程中万有引力方向与卫星运动方向不垂直,会让卫星加速,速度增大(从能量角度看,万有引力对卫星做正功,卫星动能增加,速度增大),且增加的数 值超过原先减少的数值。所以、,又由可知。 解:应选C选项。 说明:本题如果只注意到空气阻力使卫星速度减小的过程,很容易错选B选项,因此,分析问题一定要全面,切忌盲目下结论。 卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术。 以卫星从椭圆远点变到圆轨道为例加以分析:如图,在轨道远点,万有引力, 要使卫星改做圆周运动,必须满足和,而在远点明显成立,所以 只需增大速度,让速度增大到成立即可,这个任务由卫星自带的推进器完成。“神舟”飞船就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的。 二、双星问题 例:在天体运动中,将两颗彼此相距较近的行星称为双星。它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。如果双星间距为,质量分别为和,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星的线 速度。 分析:双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相等。但两者做匀速圆周运动的半径不相等。

专题提升(五) 天体运动中的三类典型问题

专题提升(五) 天体运动中的三类典型问题 基础必备 1.两个靠近的天体称为双星,它们以两者连线上某点O为圆心做匀速圆周运动,其质量分别为m1,m2,如图所示,以下说法正确的是( A ) A.线速度与质量成反比 B.线速度与质量成正比 C.向心力与质量的乘积成反比 D.轨道半径与质量成正比 解析:设两星之间的距离为L,轨道半径分别为r1,r2,根据万有引力提供向心力得,G=m 1ω2r1,G=m2ω2r2,则m1r1=m2r2,即轨道半径和质量成反比,故D错误;根据v=ωr可知,线速度与轨道半径成正比,则线速度与质量成反比,故A正确,B错误;由万有引力公式F 向=G,向心力与质量的乘积成正比,故C错误. 2.(多选)2017年4月20日19时41分,“天舟一号”货运飞船在文昌航天发射场成功发射,后与“天宫二号”空间实验室成功对接.假设对接前“天舟一号”与“天宫二号”都围绕地球做匀速圆周运动,下列说法正确的是( AC ) A.“天舟一号”货运飞船发射加速上升时,里面的货物处于超重状态

B.“天舟一号”货运飞船在整个发射过程中,里面的货物始终处于完全失重状态 C.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接 D.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向前喷气减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接 解析:“天舟一号”货运飞船发射加速上升时,加速度向上,则里面的货物处于超重状态,选项A正确,B错误;为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接,选项C正确,D错误. 3.某同学学习了天体运动的知识后,假想宇宙中存在着由四颗星组成的孤立星系.如图所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F,母星与任意一颗小星间的万有引力为9F.则( A ) A.每颗小星受到的万有引力为(+9)F B.每颗小星受到的万有引力为(+9)F

(完整版)天体运动中的追及相遇问题

天体运动中的追及相遇问题 信阳高中 陈庆威 2013.09.17 在天体运动的问题中,我们常遇到一些这样的问题。比如, A 、B 两物体都 绕同一中心天体做圆周运动,某时刻 A 、B 相距最近,问 A 、B 下一次相距最近或 最远需要多少时间,或“至少”需要多少时间等问题。 而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在 思维有上一些相似的地方, 即必须找出各相关物理量间的关系, 但它也有其自身 特点。 根据万有引力提供向心力, 即当天体速度增加或减少时, 对应的圆周轨道就 会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相 遇。天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂, 成为 同学们学习中的难点。 而解决此类问题的关键是就要找好角度、 角速度和时间等 物理量的关系。 、追及问题 【例 1】如图 1所示,有 A 、B 两颗行星绕同一颗恒星 M 做圆周运动,旋转方向相 同, A 行星的周期为 T 1,B 行星的周期为 T 2,在某一时刻两行星相距最近,则 ①经过多长时间,两行星再次相距最近? ②经过多长时间,两行星第一次相距最远? 有达到一周,但是要它们的相距最近,只有 A 、B 行星和恒星 M 的连线再次在一 条直线上,且 A 、B 在同侧,从角度上看,在相同时间内, A 比 B 多转了2π; 如 解析:A 、B 两颗行星做匀速圆周运动 ,由 万有引力提供向心力 B 还没

果 A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内, A 比 B 多转了 距最远的时间 t 2,由 。如果在问题中把“再次” 或“第一次”这样的词去掉,那么就变成了多解性问题。 【例 2】 如图 2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。 地球的轨道半径为 R ,运转周期为 T 。地球和太阳中心的连线与地球和行星的连 线的夹角叫地球对行星的观察视角(简称视角)。已知该行星的最大视角为θ, 当行星处于最大视角处时, 是地球上天文爱好者观察该行星的最佳时期。 若某时 刻该行星正好处于最佳观察期, 问该行星下一次处于最佳观察期至少需经历多长 时间? 解析: 由题意可得行星的轨道半径 r Rsin 设行星绕太阳的运行周期为 T / ,由开普勒大三定律有: 二、相遇问题 【例 3】设地球质量为 M ,绕太阳做匀速圆周运动,有一质量为 m 的飞船由静止 开始从 P 点沿PD 方向做加速度为 a 的匀加速直线运动, 1年后在 D 点飞船掠过地 球上空,再过 3个月又在 Q 处掠过地球上空,如图 4所示(图中“ S ”表示太阳) 根据以上条件, 求地球与太阳之间的万有引力大小。 π。所以再次相距最近的时间 太阳 R 3 T 2 3 T r 2 ,得:T T sin 3 绕向相同, 行星的角速度比地球大,行星相对地球 2 2 (1 sin 3 ) 行星 视角 地球 图2 T T sin 3 某时刻该行星正好处于 最佳观察期, 刚看到;二是马上看不到 , 如图 3 所示。 观察期至少需经历时间分别为 有两种情况: 到下一次处于最佳 两者都顺时针运转: t 1 2 ) sin 3 ?T 3 2 (1 sin 3 ) 两者都逆时针运转: t 2 ( 2 ) sin 3 ?T 2 (1 sin 3 ) 太阳 行星 θθ 地球 图3 t 1, ;第一次相

天体运动中的几个“特殊”问题

天体运动专题讲座: 天体运动中的几个“特殊”问题 天体运动部分的绝大多数问题,解决的原理及方法比较单一,处理的基本思路是:将天体的运动近似看成匀速圆周运动,根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。 如有必要,可结合黄金代换式简化运算过程。不过,还有几类问题仅依靠基本思路和方法,会让人感觉力不从心,甚至就算找出了结果但仍心存疑惑,不得要领。这就要求我们必须从根本上理解它们的本质,把握解决的关键,不仅要知其然,更要知其所以然。 一、变轨问题 例:某人造卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变。每次测量中 卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为,后来变为,以、表示 卫星在这两个轨道上的线速度大小,、表示卫星在这两个轨道上绕地球运动的周期,则() A.,, B.,, C.,,D.,, 二、双星问题 例:在天体运动中,将两颗彼此相距较近的行星称为双星。它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。如果双星间距为,质量分别为 和,试计算:(1)双星的轨道半径;(2)双星的运行周期; (3)双星的线速度。 分析:双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终 与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相 等。但两者做匀速圆周运动的半径不相等。

三、追及问题 例:两颗卫星在同一轨道平面内绕地球做匀速圆周运动,地球半径为,卫星离地面的 高度等于,卫星离地面高度为,则: (1)、两卫星运行周期之比是多少? (2)若某时刻两卫星正好同时通过地面同一点正上方,则至少经过多 少个周期与相距最远? 分析:两卫星周期之比可按基本思路处理;要求与相距最远的最少时间,其实是一个追 及和相遇问题,可借用直线运动部分追及和相遇问题的处理思想,只不过,关键一步应该变换成“利用角位移关系列方程”。或直接将角位移关系转化成转动圈数关系,运算过程更简洁。 四、超失重问题 例:某物体在地面上受到的重力为,将它放置在卫星中,在卫星以加速度 随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为时,求此时卫星距地球表面有多远?(地球半径,取) 分析:物体具有竖直向上的加速度,处于超重状态,物体对支持物的压力大于自身实际重力;而由于高空重力加速度小于地面重力加速度,同一物体在高空的实际重力又小于在地面的实际重力。 说明:航天器在发射过程中有一个向上加速运动阶段,在返回地球时有一个向下减速阶段,这两个过程中航天器及内部的物体都处于超重状态;航天器进入轨道作匀速圆周运动时,由于万有引力(重力)全部提供向心力,此时航天器及内部的所有物体都处于完全失重状态。 既掌握基本问题的处理方法,又熟悉“特殊”问题的分析要点,这样在面对天体运动问题时才能应付自如。

自主招生培训——圆周运动与天体运动

万有引力定律和天体运动 1,证明:一个质量分布均匀的球壳对球体内任一质点的万有引力为零。 2,2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有 (A)在轨道Ⅱ上经过A的速度小于经过B的速度 (B)在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能 (C)在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期 (D)在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度 3,我国于2007年10月24日成功发射了“嫦娥一号”探月卫星, 卫星由地面发射后,由发射轨道进入停泊轨道,然后再由停泊轨道调速后进入地月转移轨道,再次调速后进入工作轨道,开始绕月做匀速圆周运动,对月球进行探测,其奔月路线简化后如图所示。 ?卫星从停泊轨道进入地月转移轨道时速度应增加还是减小? ?若月球半径为R,卫星工作轨道距月球表面高度为H。月球表面 的重力加速度为(g为地球表面的重力加速度),试求:卫星在 工作轨道上运行的线速度和周期。 ?速度应增加(2分) ?由向心力公式得:(2分)

得:(2分) 由周期公式得:T==(2分) 4,天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。(引力常量为G) 设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为 w1,w2。根据题意有 w1=w2 ① r1+r2=r ② 根据万有引力定律和牛顿定律,有 ③ ④ 联立以上各式解得 ⑤ 根据角速度与周期的关系知 ⑥ 联立③⑤⑥式解得

天体运动常见问题总结解析

问题9:会讨论重力加速度g 随离地面高度h 的变化情况。 例15、设地球表面的重力加速度为g,物体在距地心4R (R 是地球半径)处,由于地球 的引力作用而产生的重力加速度g ,,则g/g , 为 A 、1; B 、1/9; C 、1/4; D 、1/16。 分析与解:因为g= G 2 R M ,g , = G 2)3(R R M +,所以g/g , =1/16,即D 选项正确。 问题10:会用万有引力定律求天体的质量。 通过观天体卫星运动的周期T 和轨道半径r 或天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。 例16、已知地球绕太阳公转的轨道半径r=1.49?1011 m, 公转的周期T= 3.16?107 s,求太阳的质量M 。 分析与解:根据地球绕太阳做圆周运动的向心力来源于万有引力得: G 2r Mm =mr(2π/T)2 M=4π2r 3/GT 2=1.96 ?1030 kg. 例17 、宇航员在一星球表面上的某高处,沿水平方向抛出一小球。经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L 。已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G 。求该星球的质量M 。 分析与解:设抛出点的高度为h,第一次平抛的水平射程为x,则有 x 2+h 2=L 2 由平抛运动规律得知,当初速度增大到2倍时,其水平射程也增大到2x,可得 (2x )2+h 2=(3L)2 设该星球上的重力加速度为g ,由平抛运动的规律得: h= 2 1gt 2 由万有引力定律与牛顿第二定律得: mg= G 2R Mm 联立以上各式解得M=2 2 332Gt LR 。 问题11:会用万有引力定律求卫星的高度。 通过观测卫星的周期T 和行星表面的重力加速度g 及行星的半径R 可以求出卫星的高度。 例18、已知地球半径约为R=6.4?106 m,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地球的距离约 m.(结果只保留一位有效数字)。 分析与解:因为mg= G 2R Mm ,而G 2 r Mm =mr(2π/T)2

高三一轮专题复习:天体运动知识点归类解析

天体运动知识点归类解析 【问题一】行星运动简史 1、两种学说 (1)地心说:地球是宇宙的中心,而且是静止不动的,太阳、月亮以及其他行星都绕地球运动。支持者托勒密。 (2).日心说:太阳是宇宙的中心,而且是静止不动的,地球和其他行星都绕太阳运动。(3).两种学说的局限性 都把天体的运动看的很神圣,认为天体的运动必然是最完美,最和谐的圆周运动,而和丹麦天文学家第谷的观测数据不符。 2、开普勒三大定律 开普勒1596年出版《宇宙的神秘》一书受到第谷的赏识,应邀到布拉格附近的天文台做研究工作。1600年,到布拉格成为第谷的助手。次年第谷去世,开普勒成为第谷事业的继承人。 第谷去世后开普勒用很长时间对第谷遗留下来的观测资料进行了整理与分析他在分析火星的公转时发现,无论用哥白尼还是托勒密或是第谷的计算方法得到的结果都与第谷的观测数据不吻合。他坚信观测的结果,于是他想到火星可能不是按照人们认为的匀速圆周运动他改用不同现状的几何曲线来表示火星的运动轨迹,终于发现了火星绕太阳沿椭圆轨道运行的事实。并将老师第谷的数据结果归纳出三条著名定律。 第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫 过的面积相等。 如图某行星沿椭圆轨道运行,远日点离太阳的距离为a,近日

点离太阳的距离为b ,过远日点时行星的速率为a v ,过近日点时的速率为b v 由开普勒第二定律,太阳和行星的连线在相等的时间内扫过相等的面积,取足够短的时间t ?,则有: t bv t av b a ?=?2 1 21① 所以 b a v v a b = ② ②式得出一个推论:行星运动的速率与它距离成反比,也就是我们熟知的近日点快远日点慢的结论。②式也当之无愧的作为第二定律的数学表达式。 第三定律:所有行星的轨道半长轴的三次方跟它的公转周期平方的比值都相等。 用a 表示半长轴,T 表示周期,第三定律的数学表达式为k T a =23 ,k 与中心天体的质量有 关即k 是中心天体质量的函数)(23 M k T a =①。不同中心天体k 不同。今天我们可以由万有 引力定律证明:r T m r Mm G 2234π=得2234πGM T r =②即2 4)(π GM M k =可见k 正比与中心天体的质量M 。 ①式)(23 M k T a =是普遍意义下的开普勒第三定律多用于求解椭圆轨道问题。 ②式2 234πGM T r =是站在圆轨道角度下得出多用于解决圆轨道问题。为了方便记忆与区分我 们不妨把①式称为官方版开三,②式成为家庭版开三。 【问题二】:天体的自转模型 1、重力与万有引力的区别

人教版物理必修二天体运动测试题

人教版物理必修二天体运动测试题(含参考答案) 总分:100分 时间:60min 一、选择题(除特殊说明外,本题仅有一个正确选项,每小题4分,共计40分) 1. 人造卫星在运行中因受高空稀薄空气的阻力作用,绕地球运转的轨道半径会慢慢减小,在半径缓慢变化过程中,卫星的运动还可近似当作匀速圆周运动。当它在较大的轨道半径r 1上时运行线速度为v 1,周期为T 1,后来在较小的轨道半径 r 2上时运行线速度为v 2,周期为T 2,则它们的关系是 ( ) A .v 1﹤v 2,T 1﹤T 2 B .v 1﹥v 2,T 1﹥T 2 C .v 1﹤v 2,T 1﹥T 2 D .v 1﹥v 2,T 1﹤T 2 2. 土星外层上有一个土星环,为了判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度v 与该层到土星中心的距离R 之间的关系来判断 ① 若v R ∝,则该层是土星的一部分 ②2v R ∝,则该层是土星的卫星群. ③若1v R ∝,则该层是土星的一部分 ④若21v R ∝,则该层是土星的卫星群.以上说法正确的是 A. ①② B. ①④ C. ②③ D. ②④ 3.假如地球自转速度增大,关于物体重力的下列说法中不正确的是 ( ) A 放在赤道地面上的物体的万有引力不变 B.放在两极地面上的物体的重力不变 C 赤道上的物体重力减小 D 放在两极地面上的物体的重力增大

4.在太阳黑子的活动期,地球大气受太阳风的影响而扩张,这样使一些在大气层外绕地球飞行的太空垃圾被大气包围,而开始下落。大部分垃圾在落地前烧成灰烬,但体积较大的则会落到地面上给我们造成威胁和危害.那么太空垃圾下落的原因是( ) A .大气的扩张使垃圾受到的万有引力增大而导致的 B .太空垃圾在燃烧过程中质量不断减小,根据牛顿第二定律,向心加速度就会不断增大,所以垃圾落向地面 C .太空垃圾在大气阻力的作用下速度减小,那么它做圆运动所需的向心力就小于实际受到的万有引力,因此过大的万有引力将垃圾拉向了地面 D .太空垃圾上表面受到的大气压力大于下表面受到的大气压力,所以是大气的力量将它推向地面的 5.用 m 表示地球通讯卫星(同步卫星)的质量,h 表示它离地面的高度,R 表示地球的半径,g 表示地球表面处的重力加速度,ω表示地球自转的角速度,则通讯卫星所受万有引力的大小为( ) A.等于零 B.等于22 ()R g m R h + C.等于3 4 2ωg R m D.以上结果都不正确 6. 关于第一宇宙速度,下列说法不正确的是 ( ) A 第一宇宙速度是发射人造地球卫星的最小速度 B .第一宇宙速度是人造地球卫星环绕运行的最大速度 C .第一宇宙速度是地球同步卫星环绕运行的速度 D .地球的第一宇宙速度由地球的质量和半径决定的 7.某人造地球卫星绕地球做匀速圆周运动,假如它的轨道半径增加到原来的n 倍后,仍能够绕地球做匀速圆周运动,则( )

圆周运动与天体运动

冲刺2010·名师易错点睛·物理 圆周运动与天体运动 7】 一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量( ) A .飞船的轨道半径 B .飞船的的运行速度 C .飞船的运行周期 D .行星的质量 【答案】 C 【8】 某同学在物理学习中记录了一些与地球、月球有关的数据资料如下: 地球半径R=6400km ,月球半径r=1740km , 地球表面重力加速度g 0=9.80m/s 2, 月球表面重力加速度g ′=1.56m/s 2, 月球绕地球转动的线速度v=1km/s , 月球绕地球转动一周时间为T=27.3天 光速c=2.998×105km/s , 1969年8月1日第一次用激光器向位于天顶的月球表面发射出激光光束,经过约t=2.565s 接收到从月球表面反射回来的激光信号,利用上述数据可算出地球表面与月球表面之间的距离s ,则下列方法正确的是 ( ) A .利用激光束的反射2 t c s ?=来算 B .利用月球运动的线速度、周期关系T r R s v )(2++= π来算 C .利用地球表面的重力加速度,地球半径及月球运动的线速度关系r R s v m m ++= 20g 月月来算 D .利用月球表面的重力加速度,地球半径及月球运动周期关系 )(422 r R s T m g m ++='π月月来算 【答案】 AB 【解析】 激光束在地月之间往返的距离为ct ,故A 选项正确;月球绕地球运动的半径为s+R+r ,则月球的线速度与周期的关系为T r R s v )(2++=π,B 正确;月球所受的向心力不等于月球质量乘以地面的重力加速度,C 错误;D 中月球质量乘以月球表面的重力加速度

(精)解决天体运动问题的方法

解决天体运动问题的方法 一、基本模型 计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。 二、基本规律 1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。所需向心力由中心天体对它的万有引力提供。设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由 牛顿第二定律及万有引力定律有:。这就是分析与求解天体运行问题的基本关系式,由 于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示 为:或。 2.在天体表面,物体所受万有引力近似等于所受重力。设天体质量为M,半径为R,其表面的重力加速度 为g,由这一近似关系有:,即。这一关系式的应用,可实现天体表面重力加 速度g与的相互替代,因此称为“黄金代换”。 3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最 大,所需向心力最大。对于赤道上的物体,由万有引力定律及牛顿第二定律 有:,式中N为天体表面对物体的支持力。如果天体自转角速度过大,赤道上的 物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天 体不瓦解所对应的最大自转角速度;如果已知天体自转的角速度,由 及可计算出天体不瓦解的最小密度。 三、常见题型 1.估算天体质量问题

由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的轨道半径及周 期,可估算出被绕天体的质量。 例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟。若还知道引力常量和月球半径,仅利用以上条件不能求出的是 A.月球表面的重力加速度B.月球对卫星的吸引力 C.卫星绕月运行的速度D.卫星绕月运行的加速度 解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。 对于卫星的绕月运行,由万有引力定律及牛顿第二定律有:,由此式可 求知月球的质量M。由“黄金代换”有:,由这两式可求知月面重力加速度g。由线速度 的定义式有:,由此式可求知卫星绕月运行的速度。由万有引力定律及牛顿第二定律 有:,由此式可求知绕月运行的加速度。由万有引力定律有:,由于不知也不可求知卫星质量m,因此,不能求出月球对卫星的吸引力。故,本题选B。 2.估算天体密度问题 若已知天体的近“地”卫星(卫星轨道半径等于天体半径)的运行周期,可以估算出天体的密度。 例2.天文学家新发现了太阳系外的一颗行星。这颗行星的体积是地球的4.7倍,质量是地球的25倍。已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N·m2/kg2,由此估算该行星的平均密度约为 A.1.8×103kg/m3 B.5.6×103kg/m3 C.1.1×104kg/m3 D.2.9×104kg/m3 解析:对于近地卫星饶地球的运动有:,而,代入已知数据解得: ρ=2.9×104kg/m3。本题选D 3.运行轨道参数问题 对于做圆周运动的天体,若已知它的轨道半径,可以计算它的运行线速度、角速度、周期等运行参数,并且可以看出,这些参数取决于轨道半径。 例3.最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运动一周所用的时间为1200年,它与该恒星的距离为地球到太阳距离的100陪。假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有 A.恒星质量与太阳质量之比 B.恒星密度与太阳密度之比 C.行星质量与地球质量之比 D.行星运行速度与地球公转速度之比

2019高考物理一轮复习天体运动专题检测(带答案)精品教育.doc

2019届高考物理一轮复习天体运动专题检测 (带答案) 人类行为学意义上的天体运动,应该理解为现代人崇尚回归自然、崇尚返朴归真、崇尚人与自然的和谐共融的一种行为。以下是2019届高考物理一轮复习天体运动专题检测,请考生及时练习。 1.(2019福建高考)若有一颗宜居行星,其质量为地球的p 倍,半径为地球的q倍,则该行星卫星的环绕速度是地球卫星环绕速度的() A.1倍 B.3倍 C.7倍 D5.倍 2.(2019宜春模拟)2019年3月8日凌晨,从吉隆坡飞往北京的马航MH370航班起飞后与地面失去联系,机上有154名中国人。之后,中国紧急调动了海洋、风云、高分、遥感等4个型号近10颗卫星为地面搜救行动提供技术支持。假设高分一号卫星与同步卫星、月球绕地球运行的轨道都是圆,它们在空间的位置示意图如图1所示。下列有关高分一号的说法正确的是 () A.其发射速度可能小于7.9 km/s B.绕地球运行的角速度比月球绕地球运行的大 C.绕地球运行的周期比同步卫星的大 D.在运行轨道上完全失重,重力加速度为0

对点训练:卫星运行参量的分析与比较 3.(2019浙江高考)长期以来卡戎星(Charon)被认为是冥王星唯一的卫星,它的公转轨道半径r1=19 600 km,公转周期T1=6.39天。2019年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r2=48 000 km,则它的公转周期T2最接近于() A.15天 B.25天 C.35天 D.45天 4.(2019赣州模拟)如图2所示,轨道是近地气象卫星轨道,轨道是地球同步卫星轨道,设卫星在轨道和轨道上都绕地 心做匀速圆周运动,运行的速度大小分别是v1和v2,加速度大小分别是a1和a2则() 图2 A.v1v2 a1 B.v1v2 a1a2 C.v1 D.v1a2 5.(多选)截止到2019年2月全球定位系统GPS已运行了整整25年,是现代世界的奇迹之一。GPS全球定位系统有24颗卫星在轨运行,每个卫星的环绕周期为12小时。GPS系统的卫星与地球同步卫星相比较,下面说法正确的是() A.GPS系统的卫星轨道半径是地球同步卫星半径的倍

天体运动相关问题处理

天体运动 开普勒行星运动三定律 引力势能 机械能守恒定律 动量守恒 1.根据行星绕日做椭圆运动(开普勒第一定律)的面积速度为恒量(开普勒第二定律),试证明各行星绕日 运行的周期T 与椭圆轨道的半长轴a 之间的关系为C T a =23 (开普勒第三定律),并求出常量C 的表达式。 2.要发射一颗人造地球卫星,使它在半径为2r 的预定轨道上绕地球做匀速圆 周运动,为此先将卫星发射到半径为1r 的近地暂行轨道上绕地球做匀速圆周运动,如图所示,在A 点,实际上使卫星速度增加,从而使卫星进入一个椭圆的转移轨道上,当卫星到达转移轨道的远地点B 时,再次改变卫星速度,使它进入预定轨道运行,试求卫星从A 点到达B 点所需的 时间,设万有引力恒量为G ,地球质量为M 。 3.质量为m 的飞船在半径为R 的某行星表面上空高R 处绕行星作圆周运动,飞船在A 点短时间向前喷气,使飞船与行星表面相切地到达B 点,如图所示。设喷气相对飞船的速度大小 为Rg u =,其中g 为该行星表面处的重力加速度。(1)试求飞船在A 点短时 间喷气后的速度;(2)求所喷燃料(即气体)的质量。

4.天文学家在16世纪就观测到了哈雷彗星,天文资料显示:哈雷彗星的近日距为0.59天文单位,远日距为3 5.31天文单位(1天文单位 = 地日距离R ,),地球公转速率为km/s 30。试根据以上资料求: (1)哈雷彗星的回归周期为多少年; (2)哈雷彗星的最大速率v 是多少。 5.卫星沿圆周轨道绕地球运行,轨道半径R r 3=,其中地球半径km 6400=R 。由于制动装置短时间作用,卫星的速度减慢,使它开始沿着与地球表面相切的椭圆轨道运动,如图所示。问:制动后经过多少时间卫星落回到地球上? 6.宇宙飞船在距火星表面H 高度处作匀速圆周运动,火星半径为R ,今设飞船在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原速度的a 倍,因a 量很小,所以飞船新轨道不会与火星表面交会,如图所示,飞船喷气质量可忽略不计。 (1)试求飞船新轨道的近火星点的高度近h 和远火星点高度远h ; (2)设飞船原来的运动速度为0v ,试计算新轨道的运行周期T 。 7.地球m 绕太阳M (固定)做椭圆运动,已知轨道半长轴为a ,半短轴 为b ,如图所示,试求地球在椭圆各顶点1,2,3的运动速度的大小及其曲 率半径。

相关文档
相关文档 最新文档