文档库 最新最全的文档下载
当前位置:文档库 › (生物科技行业)基础生物化学新—名词解释

(生物科技行业)基础生物化学新—名词解释

(生物科技行业)基础生物化学新—名词解释
(生物科技行业)基础生物化学新—名词解释

第二章核酸

单核苷酸:核苷与磷酸缩合生成的磷酸酯称为单核苷酸。

磷酸二酯键:单核苷酸中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键。

不对称比率:不同生物的碱基组成由很大的差异,这可用不对称比率(A+T)/(G+C)表示。

碱基互补规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G…C(或C…G)和A…T(或T…A)之间进行,这种碱基配对的规律就称为碱基配对规律(互补规律)。

反密码子:在tRNA链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA链上的密码子。反密码子与密码子的方向相反。

6顺反子(cistron):基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。核酸的变性、复性:当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。这个DNA螺旋的重组过程称为“复性”。增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫“增色效应”。

减色效应:DNA在260nm处的光密度比在DNA分子中的各个碱基在260nm处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。

噬菌体(phage):一种病毒,它可破坏细菌,并在其中繁殖。也叫细菌的病毒。

发夹结构:RNA是单链线形分子,只有局部区域为双链结构。这些结构是由于RNA单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构。DNA的熔解温度(T m值):引起DNA发生“熔解”的温度变化范围只不过几度,这个温度

变化范围的中点称为熔解温度(T m)。

分子杂交:不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。这种按照互补碱基配对而使不完全互补

的两条多核苷酸相互结合的过程称为分子杂交。

环化核苷酸:单核苷酸中的磷酸基分别与戊糖的3’-OH及5’-OH形成酯键,这种磷酸内酯的结构称为环化核苷酸。

第三章酶与辅酶

米氏常数(K m值):用Km值表示,是酶的一个重要参数。Km值是酶反应速度(V)达到最大反应速度(V max)一半时底物的浓度(单位M或mM)。米氏常数是

酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。

底物专一性:酶的专一性是指酶对底物及其催化反应的严格选择性。通常酶只能催化一种化学反应或一类相似的反应,不同的酶具有不同程度的专一性,酶的专一性可分为三

种类型:绝对专一性、相对专一性、立体专一性。

辅基:酶的辅因子或结合蛋白质的非蛋白部分,与酶或蛋白质结合得非常紧密,用透析法不能除去。

单体酶:只有一条多肽链的酶称为单体酶,它们不能解离为更小的单位。分子量为13,000——35,000。

寡聚酶:有几个或多个亚基组成的酶称为寡聚酶。寡聚酶中的亚基可以是相同的,也可以是不同的。亚基间以非共价键结合,容易为酸碱,高浓度的盐或其它的变性剂分离。寡聚

酶的分子量从35 000到几百万。

多酶体系:由几个酶彼此嵌合形成的复合体称为多酶体系。多酶复合体有利于细胞中一系列反应的连续进行,以提高酶的催化效率,同时便于机体对酶的调控。多酶复合体的分

子量都在几百万以上。

激活剂:凡是能提高酶活性的物质,都称激活剂,其中大部分是离子或简单的有机化合物。

抑制剂:能使酶的必需基团或酶活性部位中的基团的化学性质改变而降低酶的催化活性甚至使酶的催化活性完全丧失的物质。

变构酶:或称别构酶,是代谢过程中的关键酶它的催化活性受其三维结构中的构象变化的调节同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。

诱导酶:是指当细胞中加入特定诱导物后诱导产生的酶,它的含量在诱导物存在下显著增高,这种诱导物往往是该酶底物的类似物或底物本身。

酶原:酶的无活性前体,通常在有限度的蛋白质水解作用后,转变为具有活性的酶。

酶的比活力:比活力是指每毫克蛋白质所具有的活力单位数,可以用下式表示:

比活力= 活力单位数蛋白质量(mg)

活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的部位,称为酶的活性中心。1.NAD+(nicotinamide adenine dinucleotide):烟酰胺腺嘌呤二核苷酸;辅酶Ⅰ。

2.FAD(flavin adenine dinucleotide):黄素腺嘌呤二核苷酸。

3.THFA(tetrahydrofolic acid):四氢叶酸。

4.NADP+(nicotinamide adenine dinucleotide phosphate):烟酰胺腺嘌呤二核苷酸磷酸;辅酶Ⅱ。

5.FMN(flavin mononucleotide):黄素单核苷酸。

6.CoA(coenzyme A):辅酶A。

7.ACP(acyl carrier protein):酰基载体蛋白。

8.BCCP(biotin carboxyl carrier protein):生物素羧基载体蛋白。

9.PLP(pyridoxal phosphate):磷酸吡哆醛。

第四章生物氧化与氧化磷酸化

生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或

“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子

通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同

时,释放的能量使ADP转变成ATP。

呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。电子在逐步的传递过程中释放出能量被用于合成ATP,以

作为生物体的能量来源。

氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP磷酸化生成ATP的作用,称为氧化磷酸化。氧化磷酸化是生物体内的糖、脂肪、蛋白

质氧化分解合成ATP的主要方式。

磷氧比:电子经过呼吸链的传递作用最终与氧结合生成水,在此过程中所释放的能量用于ADP磷酸化生成ATP。经此过程消耗一个原子的氧所要消耗的无机磷酸的分子数

(也是生成ATP的分子数)称为磷氧比值(P/O)。如NADH的磷氧比值是3,

FADH2的磷氧比值是2。

底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP

(或GTP)的过程称为底物水平磷酸化。此过程与呼吸链的作用无关,以

底物水平磷酸化方式只产生少量ATP。

能荷:能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体中ATP-ADP-AMP系统能量状态。

的第五章糖代谢

糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。

Q酶:Q酶是参与支链淀粉合成的酶。功能是在直链淀粉分子上催化合成(α-1,6)糖苷键,形成支链淀粉。

乳酸循环乳:酸循环是指肌肉缺氧时产生大量乳酸,大部分经血液运到肝脏,通过糖异生作用肝糖原或葡萄糖补充血糖,血糖可再被肌肉利用,这样形成的循环称乳酸循环。发酵:厌氧有机体把糖酵解生成NADH中的氢交给丙酮酸脱羧后的产物乙醛,使之生成乙醇的过程称之为酒精发酵。如果将氢交给病酮酸丙生成乳酸则叫乳酸发酵。

变构调节:变构调节是指某些调节物能与酶的调节部位结合使酶分子的构象发生改变,从而改变酶的活性,称酶的变构调节。

糖酵解途径:糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,是体内糖代谢最主要途径。

糖的有氧氧化:糖的有氧氧化指葡萄糖或糖原在有氧条件下氧化成水和二氧化碳的过程。是糖氧化的主要方式。

肝糖原分解:肝糖原分解指肝糖原分解为葡萄糖的过程。

磷酸戊糖途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为

中间代谢物的过程,又称为磷酸已糖旁路。

D-酶:一种糖苷转移酶,作用于α-1,4糖苷键,将一个麦芽多糖的片段转移到葡萄糖、麦芽糖或其它多糖上。

糖核苷酸:单糖与核苷酸通过磷酸酯键结合的化合物,是双糖和多糖合成中单糖的活化形式与供体。

(二)英文缩写符号:

1.UDPG:尿苷二磷酸葡萄糖,是合成蔗糖时葡萄糖的供体。

2.ADPG:腺苷二磷酸葡萄糖,是合成淀粉时葡萄糖的供体。

3.F-D-P:1,6-二磷酸果糖,由磷酸果糖激酶催化果糖-1-磷酸生成,属于高能磷酸化合物,在糖酵解过程生成。

4.F-1-P:果糖-1-磷酸,由果糖激酶催化果糖生成,不含高能磷酸键。

5.G-1-P:葡萄糖-1-磷酸。由葡萄糖激酶催化葡萄糖生成,不含高能键。

6.PEP:磷酸烯醇式丙酮酸,含高能磷酸键,属于高能磷酸化合物,在糖酵解过程生成。

第六章脂类代谢

必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。

α-氧化:α-氧化作用是以具有3-18碳原子的游离脂肪酸作为底物,有分子氧间接参与,经脂肪酸过氧化物酶催化作用,由α碳原子开始氧化,氧化产物是D-α-羟脂肪酸或

少一个碳原子的脂肪酸。

脂肪酸的β-氧化:脂肪酸的β-氧化作用是脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间断裂,β碳原子氧化成羧基生成含2个碳原子的乙酰CoA和比原来

少2个碳原子的脂肪酸。

脂肪酸ω-氧化:ω-氧化是C5、C6、C10、C12脂肪酸在远离羧基的烷基末端碳原子被氧化成羟基,再进一步氧化而成为羧基,生成α,ω-二羧酸的过程。

乙醛酸循环:一种被修改的柠檬酸循环,在其异柠檬酸和苹果酸之间反应顺序有改变,以及乙酸是用作能量和中间物的一个来源。某些植物和微生物体内有此循环,他需要

二分子乙酰辅酶A的参与;并导致一分子琥珀酸的合成。

柠檬酸穿梭:就是线粒体内的乙酰CoA与草酰乙酸缩合成柠檬酸,然后经内膜上的三羧酸载体运至胞液中,在柠檬酸裂解酶催化下,需消耗ATP将柠檬酸裂解回草酰乙酸

和,后者就可用于脂肪酸合成,而草酰乙酸经还原后再氧化脱羧成丙酮酸,丙酮

酸经内膜载体运回线粒体,在丙酮酸羧化酶作用下重新生成草酰乙酸,这样就可

又一次参与转运乙酰CoA的循环。

乙酰CoA羧化酶系:大肠杆菌乙酰CoA羧化酶含生物素羧化酶、生物素羧基载体蛋白

(BCCP)和转羧基酶三种组份,它们共同作用催化乙酰CoA的羧化反

应,生成丙二酸单酰-CoA。

脂肪酸合酶系统:脂肪酸合酶系统包括酰基载体蛋白(ACP)和6种酶,它们分别是:乙酰转酰酶;丙二酸单酰转酰酶;β-酮脂酰ACP合成酶;β-酮脂酰ACP还原

酶;β-羟;脂酰ACP脱水酶;烯脂酰ACP还原酶。

第八章含氮化合物代谢

蛋白酶:以称肽链内切酶(Endopeptidase),作用于多肽链内部的肽键,生成较原来含氨基酸数少的肽段,不同来源的蛋白酶水解专一性不同。

肽酶:只作用于多肽链的末端,根据专一性不同,可在多肽的N-端或C-端水解下氨基酸,如氨肽酶、羧肽酶、二肽酶等。

氮平衡:正常人摄入的氮与排出氮达到平衡时的状态,反应正常人的蛋白质代谢情况。

生物固氮:利用微生物中固氮酶的作用,在常温常压条件下将大气中的氮还原为氨的过程(N2 + 3H2→ 2 NH3)。

硝酸还原作用:在硝酸还原酶和亚硝酸还原酶的催化下,将硝态氮转变成氨态氮的过程,植物体内硝酸还原作用主要在叶和根进行。

氨的同化:由生物固氮和硝酸还原作用产生的氨,进入生物体后被转变为含氮有机化合物的过程。

转氨作用:在转氨酶的作用下,把一种氨基酸上的氨基转移到α-酮酸上,形成另一种氨基酸。

尿素循环:尿素循环也称鸟氨酸循环,是将含氮化合物分解产生的氨转变成尿素的过程,有解除氨毒害的作用。

生糖氨基酸:在分解过程中能转变成丙酮酸、α-酮戊二酸乙、琥珀酰辅酶A、延胡索酸和草酰乙酸的氨基酸称为生糖氨基酸。

生酮氨基酸:在分解过程中能转变成乙酰辅酶A和乙酰乙酰辅酶A的氨基酸称为生酮氨基酸。

核酸酶:作用于核酸分子中的磷酸二酯键的酶,分解产物为寡核苷酸或核苷酸,根据作用位置不同可分为核酸外切酶和核酸内切酶。

限制性核酸内切酶:能作用于核酸分子内部,并对某些碱基顺序有专一性的核酸内切酶,是基因工程中的重要工具酶。

氨基蝶呤:对嘌呤核苷酸的生物合成起竞争性抑制作用的化合物,与四氢叶酸结构相似,又称氨基叶酸。

一碳单位:仅含一个碳原子的基团如甲基(CH3-、亚甲基(CH2=)、次甲基(CH≡)、甲酰基(O=CH-)、亚氨甲基(HN=CH-)等,一碳单位可来源于甘氨酸、苏氨酸、丝氨

酸、组氨酸等氨基酸,一碳单位的载体主要是四氢叶酸,功能是参与生物分子的修饰。(二)英文缩写符号

1.GOT(Glutamate-oxaloacetate transaminase):谷草转氨酶,

2.GPT(Glutamate-pyruvate transaminase):谷丙转氨酶

3.APS(Adenosine phosphosulfate):腺苷酰硫酸

4.PAL(Pheny-lalanine ammonia lyase):苯丙氨酸解氨酶

5.PRPP(Phosphoribosyl pyrophosate):5-磷酸核糖焦磷酸

6.SAM (S-adenoymethionine):S-腺苷蛋氨酸

7.GDH (Glutamate drhyddrogenase):谷氨酸脱氢酶

8.IMP(Inosinic acid):次黄嘌呤核苷酸

14. 核酸的生物合成

半保留复制:双链DNA的复制方式,其中亲代链分离,每一子代DNA分子由一条亲代链和一条新合成的链组成。

不对称转录:转录通常只在DNA的任一条链上进行,这称为不对称转录。

逆转录:Temin和Baltimore各自发现在RNA肿瘤病毒中含有RNA指导的DNA聚合酶,才证明发生逆向转录,即以RNA为模板合成DNA。

冈崎片段:一组短的DNA片段,是在DNA复制的起始阶段产生的,随后又被连接酶连接形成较长的片段。在大肠杆菌生长期间,将细胞短时间地暴露在氚标记的胸腺嘧啶中,就可证明冈崎片段的存在。冈崎片段的发现为DNA复制的科恩伯格机理提供了依据。

复制叉:复制DNA分子的Y形区域。在此区域发生链的分离及新链的合成。

领头链:DNA的双股链是反向平行的,一条链是5/→3/方向,另一条是3/→5/方向,上述的起点处合成的领头链,沿着亲代DNA 单链的3/→5/方向(亦即新合成的DNA沿5/→3/

方向)不断延长。所以领头链是连续的。

随后链:已知的DNA聚合酶不能催化DNA链朝3/→5/方向延长,在两条亲代链起点的3/ 端一侧的DNA链复制是不连续的,而分为多个片段,每段是朝5/→3/方向进行,所以

随后链是不连续的。

有意义链:即华森链,华森——克里格型DNA中,在体内被转录的那股DNA链。简写为W strand。

光复活:将受紫外线照射而引起损伤的细菌用可见光照射,大部分损伤细胞可以恢复,这种可见光引起的修复过程就是光复活作用。

重组修复:这个过程是先进行复制,再进行修复,复制时,子代DNA链损伤的对应部位出现缺口,这可通过分子重组从完整的母链上,将一段相应的多核苷酸片段移至子链的

缺口处,然后再合成一段多核昔酸键来填补母链的缺口,这个过程称为重组修复。内含子:真核生物的mRNA前体中,除了贮存遗传序列外,还存在非编码序列,称为内含子。

外显子:真核生物的mRNA前体中,编码序列称为外显子。

基因载体:外源DNA片段(目的基因)要进入受体细胞,必须有一个适当的运载工具将带入细胞内,并载着外源DNA一起进行复制与表达,这种运载工具称为载体。

质粒:是一种在细菌染色体以外的遗传单元,一般由环形双链DNA构成,其大小从1—200Kb。

代谢调节

诱导酶:由于诱导物的存在,使原来关闭的基因开放,从而引起某些酶的合成数量明显增加,这样的酶称为诱导酶

标兵酶:在多酶促系列反应中,受控制的部位通常是系列反应开头的酶,这个酶一般是变构酶,也称标兵酶。

操纵子:在转录水平上控制基因表达的协调单位,包括启动子(P)、操纵基因(O)和在功能上相关的几个结构基因。

衰减子:位于结构基因上游前导区调节基因表达的功能单位,前导区转录的前导RNA通过构象变化终止或减弱转录。

阻遏物:由调节基因产生的一种变构蛋白,当它与操纵基因结合时,能够抑制转录的进行。辅阻遏物:能够与失活的阻碣蛋白结合,并恢复阻遏蛋白与操纵基因结合能力的物质。辅阻遏物一般是酶反应的产物。

降解物基因活化蛋白:由调节基因产生的一种cAMP受体蛋白,当它与cAMP结合时被激

活,并结合到启动子上促进转录进行。是一种正调节作用。

腺苷酸环化酶:催化ATP焦磷酸裂解产生环腺苷酸(cAMP)的酶。

共价修饰:某种小分子基团可以共价结合到被修饰酶的特定氨基酸残基上,引起酶分子构象变化,从而调节代谢的方向和速度。

级联系统:在连锁代谢反应中一个酶被激活后,连续地发生其它酶被激活,导致原始调节信号的逐级放大,这样的连锁代谢反应系统称为级联系统。

反馈抑制:在代谢反应中,反应产物对反应过程中起作用的酶产生的抑制作用。

交叉调节:代谢产物不仅对本身的反应过程有反馈抑制作用,而且可以控制另一代谢物在不同途径中的合成。

前馈激活:在反应序列中,前身物质对后面的酶起激活作用,使反应向前进行。

钙调蛋白:一种依赖于钙的蛋白激酶,酶蛋白与钙结合引起酶分子构象变化,调解酶的活性。

如磷酸化酶激酶是一种依赖于钙的蛋白激酶。

(二)英文缩写符号

1. CAP(Catabolic gene activator protein):降解物基因活化蛋白

2. PKA(Protein kinase):蛋白激酶A

3. CaM(Calmkdulin):钙调蛋白

4. ORF(Open reading frame):开放阅读框架

第十五章

密码子:存在于信使RNA中的三个相邻的核苷酸顺序,是蛋白质合成中某一特定氨基酸的密码单位。密码子确定哪一种氨基酸叁入蛋白质多肽链的特定位置上;共有64个密码

子,其中61个是氨

基酸的密码,3个是作为终止密码子。

同义密码子:为同一种氨基酸编码的几个密码子之一,例如密码子UUU和UUC 二者都为苯丙氨酸编码。

反密码子:在转移RNA反密码子环中的三个核苷酸的序列,在蛋白质合成中通过互补的碱基配对,这部分结合到信使RNA的特殊密码上。

变偶假说:克里克为解释tRNA分子如何去识别不止一个密码子而提出的一种假说。据此假说,反密码子的前两个碱基(3ˊ端)按照碱基配对的一般规律与密码子的前两个

(5ˊ端)碱基配对,然而tRNA反密码子中的第三个碱基,在与密码子上3ˊ端

的碱基形成氢键时,则可有某种程度的变动,使其有可能与几种不同的碱基配对。移码突变:一种突变,其结果为导致核酸的核苷酸顺序之间的正常关系发生改变。移码突变是由删去或插入一个核苷酸的点突变构成的,在这种情况下,突变点以前的密码子并

不改变,并将决定正确的氨基酸顺序;但突变点以后的所有密码子都将改变。且将

决定错误的氨基酸顺序。

氨基酸同功受体:每一个氨基酸可以有多过一个tRNA作为运载工具,这些tRNA称为该氨基酸同功受体。

反义RNA:具有互补序列的RNA。反义RNA可以通过互补序列与特定的mRNA相结合,结合位置包括mRNA 结合核糖体的序列(SD序列)和起始密码子AUG,从而抑制

mRNA 的翻译。又称干扰mRNA 的互补RNA。

信号肽: 信号肽假说认为,编码分泌蛋白的mRNA在翻译时首先合成的是N 末端带有疏水氨基酸残基的信号肽,它被内质网膜上的受体识别并与之相结合。信号肽经由膜中蛋

白质形成的孔道到达内质网内腔,随即被位于腔表面的信号肽酶水解,由于它的

引导,新生的多肽就能够通过内质网膜进入腔内,最终被分泌到胞外。翻译结束

后,核糖体亚基解聚、孔道消失,内质网膜又恢复原先的脂双层结构。

简并密码:或称同义密码子(synonym codon),为同一种氨基酸编码几个密码子之一,例如密码子UUU和UUC二者都为苯丙氨酸编码。

核糖体: 核糖体是很多亚细胞核蛋白颗粒中的一个,由大约等量的RNA和蛋白质所组成,是细胞内蛋白质合成的场所。

多核糖体(polysome):在信使核糖核酸链上附着两个或更多的核糖体。

氨酰基部位:在蛋白质合成过程中进入的氨酰-tRNA结合在核蛋白体上的部位。

肽酰基部位:指在蛋白质合成过程中,当下一个氨酰基转移RNA接到核糖核蛋白体的氨基部位时,肽酰tRNA所在核蛋白体上的结合点。

肽基转移酶:蛋白质合成中的一种酶。它能催化正在增长的多肽链与下一个氨基酸之间形成肽键。在细菌中此酶是50S核糖核蛋白体亚单位中的蛋白质之一。

氨酰-tRNA合成酶:催化氨基酸激活的偶联反应的酶,先是一种氨基酸连接到AMP生成一种氨酰腺苷酸,然后连接到转移RNA分子生成氨酰-tRNA分子。

蛋白质折叠:蛋白质的三维构象,称为蛋白质的折叠。是由蛋白质多肽链的氨基酸顺序所决定的。不同的蛋白质有不同的氨基酸顺序,也就各自按照一定的方式折叠而成该蛋白质独有的天然构象。这个蛋白质折叠是在自然条件下自发进行的,在生物体内条件下,它是在热力学上最稳定的形式。多肽链在核糖体上一面延长,一面自发地折叠成其本身独有的构象。当肽链终止延长并从核糖体上脱落时,它也就折叠成天然的三维结构。

核蛋白体循环:是指已活化的氨基酸由tRNA转运到核蛋白体合成多肽链的过程。

2.EF(elongation factor):原核生物蛋白质合成的延伸因子。

3.RF(release factor):原核生物蛋白质合成的终止因子(释放因子)。

4.hnRNA(heterogeneous nuclear RNA):核不均一RNA。

5.fMet-tRNA f :原核生物蛋白质合成的第一个氨酰基转移RNA。

6.Met-tRNA i :真核生物蛋白质合成的第一个氨酰基转移RNA。

基酸侧链基团与DNA的碱基结合而实现。

基础生物化学复习题目及答案

第一章核酸 一、简答题 1、某DNA样品含腺嘌呤15、1%(按摩尔碱基计),计算其余碱基的百分含量。 2、DNA双螺旋结构就是什么时候,由谁提出来的?试述其结构模型。 3、DNA双螺旋结构有些什么基本特点?这些特点能解释哪些最重要的生命现象? 4、tRNA的结构有何特点?有何功能? 5、DNA与RNA的结构有何异同? 6、简述核酸研究的进展,在生命科学中有何重大意义? 7、计算(1)分子量为3 105的双股DNA分子的长度;(2)这种DNA一分子占有的体积;(3)这种DNA一分子占有的螺旋圈数。(一个互补的脱氧核苷酸残基对的平均分子量为618) 二、名词解释 变性与复性 分子杂交 增色效应与减色效应 回文结构 Tm cAMP Chargaff定律 三、判断题 1 脱氧核糖核苷中的糖苷3’位没有羟基。错 2、若双链DNA 中的一条链碱基顺序为pCpTpGpGpC,则另一条链为pGpApCpCpG。错 3 若属A 比属B 的Tm 值低,则属A 比属B 含有更多的A-T 碱基对。对 4 原核生物与真核生物的染色体均为DNA 与组蛋白的复合体。错 5 核酸的紫外吸收与pH 无关。错 6 生物体内存在的核苷酸多为5’核苷酸。对 7 用碱水解核苷酸可以得到2’与3’核苷酸的混合物。对 8 Z-型DNA 与B-型DNA 可以相互转变。对 9 生物体内天然存在的DNA 多为负超螺旋。对 11 mRNA 就是细胞种类最多,含量最丰富的RNA。错 14 目前,发现的修饰核苷酸多存在于tRNA 中。对 15 对于提纯的DNA 样品,如果测得OD260/OD280<1、8,则说明样品中含有蛋白质。对 16 核酸变性或降解时,存在减色效应。错 18 在所有的病毒中,迄今为止还没有发现即含有RNA 又含有DNA 的病毒。对 四、选择题 4 DNA 变性后(A) A 黏度下降 B 沉降系数下降C浮力密度下降 D 紫外吸收下降 6 下列复合物中,除哪个外,均就是核酸与蛋白质组成的复合物(D) A 核糖体 B 病毒C端粒酶 D 核酶 9 RNA 经NaOH 水解的产物为(D) A 5’核苷酸B2’核苷酸C3’核苷酸 D 2’核苷酸与3’核苷酸的混合物 10 反密码子UGA 所识别的密码子为(C) A、ACU B、ACT C、UCA D TCA 13 反密码子GψA 所识别的密码子为(D) A、CAU B、UGC C、CGU D UAC

基础生物化学知识重点

绪论(老师只要求了结部分已经自动过滤) 基本概念: 新陈代谢:生物体与外界环境之间的物质和能量简化以及生物体内物质和能量的装换过程重点内容:生物化学的主要研究内容:1.生物体内的化学组成2.生物体内的物质代谢,能量装换和代谢调节3.生物体内的信息代谢 核酸 一、基本概念: 核苷酸:核苷酸即核苷的磷酸酯 碱基互补配对:A-T,G-C 三叶草结构:t-RNA的二级结构,一般由四臂四环组成:氨基酸接受臂,二氢酸尿嘧啶环,反密码子环,额外环,假尿嘧啶核苷-胸腺嘧啶核糖核甘酸环(TΨC环) 增色效应:DNA变性后由于双螺旋分子内部的碱基暴露,260nm紫外吸收值升高。减色效应:核酸的光吸收值通常比其各个核算组成部分的光吸收值之和小30%~40%,是由于碱基密集堆积的缘故。 变性和复性:指的是在一定物理和化学因素的作用下,核酸双螺旋结构在碱基之间的氢键断裂,变成单链的过程。复性恰好相反。 重点内容: 1.核酸的生物学功能(1.生物分子遗传变异基础, 2.遗传信息的载体, 3.具有催化作用, 4.对基因的表达有调控作用),基本结构单位(核苷酸),基本组成部分(磷酸,含氮碱基,戊糖) 2.核苷酸的名称(A:腺嘌呤T:胸腺嘧啶C:胞嘧啶G:鸟嘌呤U:尿嘧啶)符号(后面统一描述) 3.DNA双螺旋结构的特点(1.有反向平行的多核苷酸链互相盘绕,2.亲水骨架在外,疏水碱基在内,一周十个碱基,螺距3.4nm,3.两条DNA链借助氢键结合在一起)和稳定因素(氢键,碱基堆积力,带负电的磷酸基团静电力,碱基分子内能): 4.核酸的紫外吸收特性(因为核酸中含有的嘌呤碱和嘧啶碱具有共轭双键的特性所以对紫外光有吸收特性,在260nm处有最大吸收值,不同的核酸吸收峰值不同)、T m(熔解温度)(把热变性过程中的光吸收达到最大吸收一半(双螺旋解开一半)时的温度叫做熔解温度)值及变性和复性的关系:(G-C)%=(T m-69.3)*2.44 5.α-螺旋、β—折叠以及β-转角的结构特点:1.主要维持空间力为氢键,2.α螺旋是一段肽链中所有的Cα的扭角都是相等的,这段肽链则会围绕某个中心轴成规则螺旋构想,3.β折叠是由两条多肽链侧向聚集,通过相邻肽链主链上的N-H与C=O之间有规则的氢键形成,4.转角结构使得肽链不时扭曲走向成为β转角 蛋白质、氨基酸化学 一、基本概念 氨基酸:羧酸分子中α碳原子上的一个氢原子被氨基取代所生成的衍生物,是蛋白质的基本结构单位。 寡肽:2~20个氨基酸残基通过肽键连接形成的肽 多肽:由20个以上的氨基酸残基组成的肽 肽键:一个氨基酸的羧基与另一氨基酸的氨基发生缩合反应脱水成肽时,羧基和氨基形成的酰胺键。具有类似双键的特性,

生物化学基础期末考试试题

生物化学基础期末考试试题 1、蛋白质的基本组成单位是()。 [单选题] * A.葡萄糖 B.氨基酸(正确答案) C.多肽 D.色氨酸 2、下列哪个不属于必需氨基酸()。 [单选题] * A.缬氨酸 B.赖氨酸 C.酪氨酸(正确答案) D.色氨酸 3、许多氨基酸之间以肽键连接而成的一种结构称为()。 [单选题] * A.蛋白质 B.多肽链(正确答案) C.蛋白质一级结构 D.二肽 4、蛋白质的一级结构,是指蛋白质多肽链中()的排列顺序。 [单选题] * A.氨基酸 B.氨基酸残基(正确答案) C.肽 D.肽键

5、蛋白质在某些物理和化学因素作用下,其特定的空间构象被破坏,从而导致其理化性质改变和生物活性的丧失,称为蛋白质的()。 [单选题] * A.脱水缩合 B.变性(正确答案) C.复性 D.破坏 6、以下作为模板,传递DNA遗传信息的是()。 [单选题] * A.DNA B.信使RNA(正确答案) C.转运RNA D.核糖体RNA 7、以下负责转运氨基酸的是()。 [单选题] * A.DNA B.信使RNA C.转运RNA(正确答案) D.核糖体RNA 8、以下提供蛋白质生物合成场所的是()。 [单选题] * A.DNA B.信使RNA C.转运RNA D.核糖体RNA(正确答案) 9、以下储存遗传信息的是()。 [单选题] * A.DNA(正确答案)

B.信使RNA C.转运RNA D.核糖体RNA 10、核酸的基本组成单位是()。 [单选题] * A.DNA B.核苷 C.核苷酸(正确答案) D.含氮碱基 11、核苷酸的排列顺序属于DNA分子的()。 [单选题] * A.一级结构(正确答案) B.二级结构 C.三级结构 D.四级结构 12、双螺旋结构属于DNA分子的()。 [单选题] * A.一级结构 B.二级结构(正确答案) C.三级结构 D.四级结构 13、酶的化学本质是()。 [单选题] * A.氨基酸 B.蛋白质(正确答案) C.无机物 D.维生素

【高中生物】基础生物化学新—名词解释

(生物科技行业)基础生物化学新—名词解释

第二章核酸 单核苷酸:核苷与磷酸缩合生成的磷酸酯称为单核苷酸。 磷酸二酯键:单核苷酸中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键。 不对称比率:不同生物的碱基组成由很大的差异,这可用不对称比率(A+T)/(G+C)表示。 碱基互补规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G…C(或C…G)和A…T(或T…A)之间进行,这种碱基配对的规律就称为碱基配对规律(互补规律)。 反密码子:在tRNA链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA链上的密码子。反密码子与密码子的方向相反。 6顺反子(cistron):基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。核酸的变性、复性:当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。这个DNA螺旋的重组过程称为“复性”。增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫“增色效应”。 减色效应:DNA在260nm处的光密度比在DNA分子中的各个碱基在260nm处吸收的光密度的总和小得多(约少35%~40%),这现象称为“减色效应”。 噬菌体(phage):一种病毒,它可破坏细菌,并在其中繁殖。也叫细菌的病毒。 发夹结构:RNA是单链线形分子,只有局部区域为双链结构。这些结构是由于RNA单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构。DNA的熔解温度(T m值):引起DNA发生“熔解”的温度变化范围只不过几度,这个温度 变化范围的中点称为熔解温度(T m)。 分子杂交:不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。这种按照互补碱基配对而使不完全互补 的两条多核苷酸相互结合的过程称为分子杂交。 环化核苷酸:单核苷酸中的磷酸基分别与戊糖的3’-OH及5’-OH形成酯键,这种磷酸内酯的结构称为环化核苷酸。 第三章酶与辅酶 米氏常数(K m值):用Km值表示,是酶的一个重要参数。Km值是酶反应速度(V)达到最大反应速度(V max)一半时底物的浓度(单位M或mM)。米氏常数是 酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。 底物专一性:酶的专一性是指酶对底物及其催化反应的严格选择性。通常酶只能催化一种化学反应或一类相似的反应,不同的酶具有不同程度的专一性,酶的专一性可分为三 种类型:绝对专一性、相对专一性、立体专一性。

微生物学实验报告

2012级制药专业 工业微生物学实验报告 姓名: 刘甜甜学号: 2012304090 班级: 制药12-2班指导老师:王健 日期:2014.6.11

一、实验目的 1、抑制或杀死微生物的一些物理、化学及生物的因素抑菌、杀菌的原理。 2、掌握物理、化学及生物的因素抑菌、杀菌的试验方法。 3、了解细菌的形态特征、染色特点。 4、了解细菌在普通培养基、选择培养基、血平板上的菌落特征。 5、掌握细菌分离划线培养的方法。 6、掌握细菌的初步生化反应。 7、掌握细菌密集划线法,掌握细菌K-B药敏纸片法。 二、实验内容 1 细菌Gram’s stain染色,镜检,观察记录细菌形态和特色特征 1.1 实验原理:染色原理:G+菌与Gˉ菌细胞壁不同,G+菌比Gˉ菌细胞内核糖核酸镁盐含量高,G+菌比Gˉ等电点低。 1.2 实验步骤: 1.2.1.制片:○1涂片:取半滴生理盐水置一洁净玻片上,以无菌操作技术自平板上去菌落少许,与生理盐水混匀,均匀涂布约1cm2大小,自然干燥; ②固定:取含菌膜的玻片与酒精灯火焰上来回三次,使菌膜牢固附于玻片表面; 1.2.2染色:①初染:取结晶紫一到两滴覆盖于菌膜表面,轻微摇动,维持30〃~40〃,细流水冲洗,切勿直接冲洗涂片区域; ②媒染:取卢氏碘液1~2滴覆盖菌膜表面,轻微摇动,维持30〃~40〃,用上法细流水冲洗; ③脱色:取95%酒精2~3滴于菌膜表面,轻微摇动,局部接近无色即可, 用上法细流水冲洗; ④复染:取1:10稀释石炭酸复红覆盖涂片区域,轻微摇动,用上法细流水冲洗; ⑤吸水纸初步吸干玻片水分,然后自然干燥; 1.2.3 镜检:于涂片区域加半滴香波油,油镜(100倍目镜)下。 图1:Gram’s stain(1000×)图2:染色试验 三、分离培养 1实验原理:四区划线法是把混杂着在一起的微生物或同一微生物群体的不同细胞用接种环在平板培养基表面通过分区划线稀释而得到较多独立分布的单个细胞,经培养繁殖后生成个菌落。有时这些单菌落并非由单个细胞繁殖而来,故必须反复分离多次才能得到纯种。其原理是微生物样品在固体培养基表面多次作“由点到线”稀释而达到分离的目的。

基础生物化学必过版讲解

一.名词解释 1.等电点(PI):使某氨基酸解离所带正、负电荷数相等,净电荷为零时的溶液PH称为该氨基酸的等电点。 2.蛋白质的一级结构:是指蛋白质多肽链中氨基酸的排列顺序。 3.蛋白质的二级结构:蛋白质二级结构是指蛋白质多肽链中主链原子在局部空间的排布,不包括氨基酸残基侧链的构象。 4.变构效应(别构效应):指一些蛋白质由于受某些因素的影响,其一级结构不变而空间结构发生一定的变化,导致其生物功能的改变。 5.盐析:向蛋白质溶液中加入高浓度的中性盐致使蛋白质溶解度降低而从溶液中析出的现象, 6.蛋白质的变性:在某些理化因素的作用下,蛋白质特定的空间结构破坏而导致理化性质改变和生物学活性丧失,这种现象称为蛋白质的变性。 7.核酸变性:是指在理化因素作用下,核酸分子中的氢键断裂,双螺旋结构松散分开,形成无规则单链线团结构的过程。 8.DNA的复性:变性DNA在适当条件下,两条彼此分开的单链重新缔合成为双螺旋结构的过程称为复性。 9.酶的活性中心::酶分子中能直接与底物分子结合,并催化底物化学反应的部位称为~ 10.必需基团:与酶活性密切相关的化学基团称为必需基团。 11.别构酶(变构酶):有些酶分子的变构中心可以与变构剂发生非共价结合,引起酶分子构象的改变,对酶起到激活或抑制的作用,这类酶通常称为变构酶。 12.同工酶:催化相同的化学反应,但酶蛋白的分子结构、理化性质和免疫学性质不同的一组酶称为同工酶。 13.生物氧化:在生物细胞内,糖类、脂肪、蛋白质等有机物质氧化分解,生成 CO 2和H 2 O,并释放能量的过程,叫做生物氧化,又称细胞呼吸或组织呼吸。 14.呼吸链: (电子传递链)指线粒体内膜上由一系列递氢体和递电子体按一定 顺序排列形成的传递氢或电子的体系,可将代谢物脱下的成对氢原 子传递给氧生成水。由于此过程与细胞呼吸有关,因此称为呼吸链, 也叫电子传递链。简称ETC。 15.底物水平磷酸化:在底物氧化过程中,形成了某些高能中间代谢物,再通过酶促磷酸基团转移反应,直接偶联ATP的形成,称为底物水平磷酸化。 16.氧化磷酸化:由代谢物脱下的氢通过呼吸链传递给氧生成水,同时逐步释放 能量,使ADP磷酸化形成ATP,这种氧化和磷酸化相偶联的过程称为氧化磷酸化。 17.糖酵解:指葡萄糖或糖原在缺氧情况下分解为丙酮酸和少量ATP的过程。 18.三羧酸循环:也称柠檬酸循环(TCA),指从乙酰辅酶A和草酰乙酸缩合成含 三个羧基的柠檬酸开始,经过脱氢、脱羧等一系列反应,最终草 酰乙酸得以再生的循环反应过程。 19.糖的有氧氧化:指葡萄糖或糖原在有氧条件下彻底氧化成CO2和H2O,并产 生大量能量的过程。是糖氧化的主要方式。 20.糖异生作用:由非糖物质转变为葡萄糖的过程称为糖异生作用 21. 脂肪酸的β-氧化概念:脂肪酸在体内氧化时在羧基端的β-碳原子上进行氧化,生成乙酰CoA和少了两个碳原子的脂酰辅酶A,该过程称作β-氧化。

基础生物化学习题及答案

《基础生物化学》习题 练习(一)蛋白质 一、填空 1.蛋白质具有的生物学功能是 、 、 、 、 、 、 和 等。 2.蛋白质的平均含氮量为 ,这是蛋白质元素组成的重要特点。 3.某一食品的含氮量为1.97%,该食品的蛋白质含量为 %。 4.组成蛋白质的氨基酸有 种,它们的结构通式为 ,结构上彼 此不同的部分是 。 5.当氨基酸处于等电点时,它以 离子形式存在,这时它的溶解 度 ,当pH>pI 时,氨基酸以 离子形式存在。 6.丙氨酸的等电点为6.02,它在pH8的溶液中带 电荷,在电场中向 极移动。 7.赖氨酸的pk 1(-COOH)为2.18,pk 2(3H N +-)为8.95,pk R (εH N + -)为10.53,其 等电点应是 。 8.天冬氨酸的pk 1(-COOH)为2.09,pk 2(3H N +-)为9.82,pk R (β-COOH)为3.86, 其等电点应是 。 9.桑格反应(Sanger )所用的试剂是 ,艾德曼(Edman )反应 所用的试剂是 。 10.谷胱甘肽是由 个氨基酸组成的 肽,它含有 个肽键。 它的活性基团是 。 11.脯氨酸是 氨基酸,与茚三酮反应生成 色产物。 12.具有紫外吸收能力的氨基酸有 、 和 。 一般最大光吸收在 nm 波长处。 13.组成蛋白质的20种氨基酸中,含硫的氨基酸有 和 两种。 能形成二硫键的氨基酸是 ,由于它含有 基团。 14.凯氏定氮法测定蛋白质含量时,蛋白质的含量应等于测得的氨素含量乘 以 。 二、是非 1.天氨氨基酸都具有一个不对称性的α-碳原子。( ) 2.蛋白质分子中因含有酪氨酸,色氨酸和苯丙氨酸,所以在260nm 处有最大吸 收峰。( ) 3.自然界中的氨基酸都能组成蛋白质。( ) 4.蛋白质在280nm 处有紫外吸收是因为其中含有—SH —的氨基酸所致。( )

最新工业微生物学实验考卷A0708答案

工业微生物学实验考卷A0708答案

一、填空题(共30分,其中8和11小题每空1分,其余每空0.5 分) 1. 显微镜物镜的放大倍数可由外形来辨别,镜头长度越短,口径越大,放大倍数越低。物镜的放大倍数都标在镜头上,常用的低倍镜为_ 10 ×、20×;高倍镜为 40 ×、45×;油镜为90×、 100 ×。若20×的目镜与45×的物镜配合使用,显微镜的总放大倍数为900倍,一般用 45×20 表示。 2. 新玻璃器皿含有游离碱,一般先将其浸于 2%盐酸溶液中浸泡数小时,然后用自来水清洗干净;用过的培养皿或试管若含有废弃 培养基或菌体,需先经高压蒸气灭菌或沸水煮沸后,倒掉污 物,方可清洗。 3. 微生物培养基的分类方法和种类很多,如按培养基中凝固剂含量的多少可分为固体、半固体和液体培养基;按照 培养基的原料来源可分为合成、半合成和天然 培养基,如PDA培养基根据其原料来源属于其中的半合成培养基。 仅供学习与交流,如有侵权请联系网站删除谢谢8

4. 固体培养基的配制过程可简单描述为:配料(称量)→溶解→校正pH→加凝固剂→融化→分装→加棉塞、包扎→灭菌→无菌检查,其中最后一步非常关键,可检测培养基的是否可用。 5.培养基的灭菌一般多采用高压蒸气灭菌,灭菌压力为0.1Mpa,即 121 ℃,时间20 min,若培养基中含糖成分的含量较高,一般多采用过滤除菌或减压灭菌,减压灭菌时温度为 115 ℃。 6.对不同的微生物进行斜面接种时,常根据需要采用不同的接种方法,如细菌和放线菌多采用密波状蜿蜒划线,酵母菌多采用中央划线法,用来观察菌种的形态和培养特征;霉菌多用点接法。 7.利用显微镜观察不同的微生物常采用不同的制片方法,如细菌需经过固定和染色后利用油镜(物镜)观察;酵母菌需制备水浸片,不需要染色,高倍镜下观察;霉菌制片时需要乳酸苯酚油作为一种介质,防止菌丝成团影响观察;另外,在观察假丝酵母和青霉菌时,需对菌体作小室培养以便观察到完整的菌体形态。 8.微生物学中可根据细菌的生理生化实验结果对未知菌进行鉴定,如利用MR实验和V-P实验可检测微生物利用葡萄糖产酸能力;明胶液化实验可检测细菌是否产蛋白酶;硝酸盐还原实验可检测细菌 仅供学习与交流,如有侵权请联系网站删除谢谢8

工业微生物发酵技术汇总

发酵技术指标 沃蒙特发酵技术服务平台 NO 项目英文技术名称名称指标 1他克莫司Tacrolimus 发酵单位:大于 1.0g/L, 发酵周期: 240 小时 , 提取收 率: 60-70% 2西罗莫司Sirolimus\Rapamyci 发酵单位: 1000±200 mg/L,发酵周期: 192hrs ,收率:35- 40% n产品含量:≥ 98% 3乳酸链球菌素Nisin 发酵水平 : 12-15g /L ,发酵时间:16-20小时,收率 :65% 以上。 4霉酚酸mycophenolate 发酵单位: 12g/L 以上,发酵时 间:160 小时,提取得率:mofetil, MMF 75% 5去甲金霉素DMCT,Demethylchlor 发酵单位: 10± 2g/L ,发酵时间: 200 小时,产品收率: 75% tetracycline 6雄烯二酮Androstenedione 发酵时间 96 ± 24 hrs ,每 3- 3.3 公斤植物甾醇可获 得 1 公斤雄烯二酮。 7利福霉素Rifamycin 发酵周期 220 小时,发酵单位大于 20g/L ,收率 65% 86- 羟基烟酸6-Hydroxynicotinic 纯度:≥ 98%,用途说明:用于合成维 生素 A Acid 9L- 缬氨酸Valine 发酵产酸: 60±5 克 /L ,发酵周 期: 60 ± 5 小时,提取 收 率: 65%(医药级) 10 L- 异亮氨酸Isoleucine 发酵产酸: 25-30 克 / 升,发酵周期 : 60-72 小时, 提取收 率: 80% 发酵单位 :35 ± 3g/L ,发酵时间 :33-35 小时,产品 得率 : 饲 11 L- 色氨酸Tryptophan 料级≥ 85%,药品级 ≥ 70%,产品质量 :>98.0%( 纯度 ) , 糖转化率: 18% 12 糖化酶Glucoamylase 发酵周期: 6~7 天,酶 活: 8 万- 10 万 U 13 耐高温淀粉酶Amylase 发酵周期: 140h,酶活: 17 万单位 14 纤维素酶Cellulase 发酵周期: 6~7 天,酶活: 80-100IU 15 超级泰乐菌素Super tylosin 发酵单位: 14000- 16000U/ml 发酵时间: 130-150 小时提 取 收率: 70-75%

基础生物化学心得

基础生物化学心得 生物化学是研究生物的化学组成和生命过程中各种化学变化的科学,是研究生命的化学本质的科学。也是研究生命现象的重要手段。生物化学不但可以在生物体内研究各种生命现象,还可以在体外研究生命现象的某个过程。 首先来说说生物化学的静态部分。基础生物化学从第一章开始到第六章完,我们学习了细胞中各种组分的结构和功能,了解了小分子如何形成生物大分子,或进一步形成大分子聚集体。从了解蛋白质的元素组成开始,我们学习了核酸、酶、维生素、辅酶、生物膜。核酸作为生命的遗传物质,有DNA和RNA两种类型,对生命的延续以及新物种的诞生都提供了理论依据。新陈代谢是生物体进行一切生命活动的基础,而新陈代谢的进行又离不开酶的催化作用,因此,了解酶的作用和本质,为理解细胞中复杂的生命活动的顺利进行奠定了基础。然而我们都知道单成分的催化活性依赖于酶活性中心三维结构上靠得很近的少数氨基酸残基,而双成分酶必须与辅基或辅酶等蛋白质的辅助因子成分结合才能表现出酶的全部活性,于是维生素就成了不可少的一种物质,比如当体内缺乏维生素B2时人体就会引起口角炎、皮肤炎等病症,可见学习基础生物化学对我们的身体健康都是有益的。 从第七章开始。我们就学习了基础生物化学的动态部分,当然这个部分与静态部分是离不开的,且是建立在静态部分上进行的。这部分讲得最多的就是代谢,代谢包括物质代谢与相传伴的能量代谢。在分解代谢过程中,营养物质蕴藏的化学能便释放出来,比如糖类代谢生成水和二氧化碳,在这个过程中释放出大量的能量,供机体进行一切生命活动。不管是糖类、蛋白质、脂肪,还是核酸代谢对我们生命活动来说都是非常重要的,他们之间也存在着联系,而且这些联系有着不可忽视的作用。这些都是要通过必要的生物化学手段才能够去认识清楚,进而对解释、揭示生命起着很大的作用。 第十三章到第十五章,就介绍了DNA、RNA和蛋白质的合成。对这些物质合成所需要的原料、模板、酶以及生物合成的基本过程进行讲解。这对于我们去控制他们的合成,有了理论基础和可行性。当我们不需要他们合成时我们就可

工业微生物-名词解释

1?间歇培养或分批培养:微生物在化学成分一定的培养基中进行培养。 同步培养:培养基中所有细胞处于同一生长阶段,群体与个体的行为一致。 2?芽抱:某些细菌在生长的一定阶段,细胞内形成一个圆形、椭圆形或圆柱形,对不良环境条件具有较强抗性的休眠体。 3?伴抱晶体:有些芽抱杆菌在形成芽抱的同时,在细胞内产生晶体状内含物。 4. 连续培养:在对数生长期的培养容器中不断加入新鲜的培养基,同时不断放出代谢物,使微生物所需 的营养及时得到补充,有害的代谢产物及时排除,菌体的生长不受影响。 5. 发酵热:发酵过程中释放出来的净热量。 6. 原生质体融合:通过人工的方法,使遗传性状不同的两个细胞的原生质体发生融合,并产生重组子的过程。 7. 营养缺陷型菌株:野生菌株经过人工诱变处理后,丧失了合成某种营养物质的能力,这些菌株生长的培养基中必需添加该种营养物质。 8. 接合:通过供体菌和受体菌的细胞直接接触、传递大段DNA (包括质粒)遗传信息的现象。 整合:外来DNA片段插入染色体中的过程。 9. 转导:借助噬菌体,把供体细胞中DNA片段携带到受体细胞中,从而使后者获得前者部分遗传性状的现象。 10. 转染:将病毒的DNA (或RNA)人为地抽提分离出来,用它来感染感受态的受体细胞,并进而产生正常病毒的后代,是特殊的“转化”。 11. 转化:某一基因型的细胞直接从周围介质中吸收另一基因型细胞的DNA,并将它整合到自己的基因组中,造成基因型和表型发生相应变化的现象。 12. 巴斯德效应:指在厌氧条件下,向高速发酵的培养基中通入氧气,抑制糖酵解的现象。 13. 半合成抗生素:通过人工化学合成的方法对它的结构进行修饰与改造,把它的“短板”弥补上,扬长避短,发挥更好的效力。因为是基于它原有的结构作为起始原料。 14. 组成酶:它的合成与环境无关,随菌体形成而合成,是细胞固有酶,在菌体内的含量相对稳定。 15. 诱导酶:只有在环境中存在诱导剂时,才开始合成,一旦环境中没有了诱导剂,合成就终止。 同工酶:催化相同的化学反应,而酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。 16. 初级代谢产物:对微生物的生产是必需的,与微生物细胞的形成过程同步。如氨基酸、核苷酸、乙醇

浙江大学工业微生物学2000真题

浙江大学2000年工业微生物考研试题 一、是非题(共16分。只需注明 “ 对 ” 或 “ 错 ” ) ? 遗传型相同的个体在不同环境条件下会有不同的表现型。 EMP 和 HMP 代谢途径往往同时存在于同一种微生物的糖代谢中。 如果碱基的置换,并不引起其编码的肽链结构的改变,那么,这种突变现象称为沉默突变。 低剂量照射紫外线,对微生物几乎没有影响,但以超过某一阈值剂量的紫外线照射,则会导致微生物的基因突变。 在宿主细胞内, DNA 病毒转录生成 mRNA ,然后以 mRNA 为模板翻译外壳蛋白、被膜蛋白及溶菌酶。 总状毛霉和米根霉同属藻状菌纲。 大多数微生物可以合成自身所需的生长因子,不必从外界摄取。 产子囊孢子的细胞一定是双倍体,而出芽生殖的细胞可以是双倍体,也可以是单倍体。 E.coli K12( l ) 表示一株带有 l 前噬菌体( Prophage) 的大肠杆菌 K12 溶源菌株。 因为不具吸收营养的功能,所以,将根霉的根称为“假根”。 因为细菌是低等原核生物,所以,它没有有性繁殖,只具无性繁殖形式。 与单独处理相比,诱变剂的复合处理虽然不能使微生物的总突变率增大,但能使正突变率大大提高。 微生物系统分类单元从高到低依次为界、门、纲、科、目、属、种。 在自然条件下,某些病毒DNA 侵染宿主细胞后,产生病毒后代的现象称为转染(transfect) 。 一个操纵子中的结构基因通过转录、转译控制蛋白质的合成,而操纵基因和启动基因通过转录、转译控制结构基因的表达。 蓝细菌是一类含有叶绿素 a 、具有放氧性光合作用的原核生物。 二填充题(共 30分): 实验室常见的干热灭菌手段有 a 和 b 等。 实验室常用的有机氮源有 a 和 b 等,无机氮源有 c 和 d 等。为节约成本,工厂中常用e 等作为有机氮源。 细菌的个体形态主要有 a 、 b 和 c 等。 细菌肽聚糖由 a 和 b 交替交联形成基本骨架,再由 c 交差相连,构成网状结构。 a 是芽孢所特有的化学物质。一般它随着芽孢的形成而形成,随芽孢的萌发而消失。 微生物系统命名采用 a 法,即 b 加 c 。 中体 (mesosome) 是 a 内陷而成的层状、管状或囊状结构。它主要功能 b 。 鞭毛主要化学成分为 a ,鞭毛主要功能为 b 。 荚膜的主要化学成分有 a 和 b 等,常采用 c 方法进行荚膜染色。 霉菌细胞壁化学组成是 a 等;酵母菌细胞壁化学组成是 b 和 c 等。 培养基按其制成后的物理状态可分为 a 、 b 和 c 。 枝原体突出的形态特征是 a ,所以,它对青霉素不敏感。 碳源对微生物的主要作用 a 。 Actinomycetes 是一类介于 a 和 b 之间,又更接近于 a 的原核微生物。它的菌丝因其形态和功能不同可分为 c 、 d 和 e 。 霉菌的有性繁殖是通过形成 a 、 b 和 c 三类孢子而进行的。其过程都经历 d 、 e 、 f 三阶段。大多数霉菌是 g 倍体。

工业微生物学实验试卷A0809答案

2008-2009学年第 一学期本科试卷 课程名称:工业微生物学实验(A) 答案 第 1 页 (共 8 页) 学 院: 专 业: 学号: 姓名: ―――――――――――――装――――――――――――订――――――――――――线―――――――――――――― 题号 一 二 三 四 五 六 七 八 总成绩 得分 得分 一、名词解释(共20分,每小题4分) 1. 无菌操作:培养基经灭菌后,用经过灭菌的接种工具在无菌条件下接种含菌材料于培养基上,这一操作称为无菌操作。 2. 培养基:是人工配制的能满足微生物生长繁殖和积累代谢产物的营养基质。 3. 假菌丝: 酵母生长旺盛时,出芽形成的芽细胞尚未脱离母细胞又长出了新芽,容易形成成串的细胞。如果各细胞之间连接处面积小于细胞直径,形成的这种藕节状的细胞串称为假菌丝。 4. 大肠菌群: 大肠菌群系指一群在37℃、24h 能发酵乳糖,产酸、产气,需氧和兼性厌氧的革兰氏阴性无芽孢杆菌。 5. 细菌菌落总数: 指被检样品通过一定的处理方法,培养一段时间后,每毫升或每毫克样品中所含细菌的菌落数。由于经过适当稀释的样品中每个细胞可形成一个单菌落,所以菌落数即是细菌活菌总数。 得分 二、判断题(共10分,每题1分) 1.无菌吸管上端塞入棉花的主要目的是为了防止菌液吸入口中( A )。 A.错 B.对

年级:06级专业:生物工程(本科)课程号:S040101046 2.稀释平板计数时,细菌,放线菌,真菌的计数标准是选择每皿中菌落数在30-300个的稀释度进行计数( A )。 A.错 B.对 3.为了满足微生物对微量元素的需要,配制培养基所用的水最好使用自来水( B)。 A.错 B.对 4.实验室通常使用血球计数板测酵母菌的总菌数或霉菌的孢子数( B )。 A.错 B.对 5.浸油的油镜镜头可用软的卫生纸擦净( A )。 A.错 B.对 6.稀释平板计数通常采用的是二倍稀释法( A )。 A.错 B.对 7.使用手提灭菌锅灭菌后,为了尽快排除锅内蒸汽,可直接打开排气阀排气( A )。 A.错 B.对 8.镜台测微尺每小格的实际长度是10微米( B )。 A.错 B.对 9.用血球计数板计数时,任数5个大方格(80个小格)的菌数即可( A )。 A.错 B.对 10.测微生物的细胞大小时,需要校正的是镜台测微尺每格的实际长度( A )。 A.错 B.对 15分,每空0.5分) 1. 检查乳品和饮料是否含有大肠杆菌(E.coli)等肠道细菌,可采用___伊红美兰 ____培养基,在这种培养基平板上___能分解乳糖产酸的菌_(大肠菌群)_____会形成具有___金属_______光泽的紫黑色小菌落。 第 2 页(共8 页)

最新浙江大学工业微生物真题

浙江大学工业微生物92-97 1992 年攻读硕士学位研究生入学考试试题 一填空(共15分) 1、细菌一般进行a 繁殖,即b 。酵母的繁殖方式分为有性和无性两类,无性繁殖又可分为c ,d 两种形式,有性繁殖时形成 e ;霉菌在有性繁殖中产生的有性孢子种类有 f ,g ,h ;在无性繁殖中产生的无性孢子种类有i ,j ,k ;放线菌以l 方式繁殖,主要形成m ,也可以通过n 繁殖。 2、一摩尔葡萄糖通过EMP途径和TCA循环彻底氧化,在原核微生物中产生a 摩尔ATP,在真核微生物中产生b 摩尔ATP,这是因为在真核微生物中,c 不能通过线粒体膜,只能借助于d 将EMP途径产生的磷酸二羟丙酮还原成 e ,后者可进入线粒体,将氢转移给f ,形成g ,自身又回复到磷酸二羟丙酮。这一过程称为“穿梭”,每次穿梭实际损失h 个ATP。 3、微生物基因突变的机制包括a 、b 及c 。诱发突变的方法分为物理方法和化学方法,物理方法主要是d , e , f 和g ;化学诱变剂包括h ,i 和j 。 二是非题(叙述正确的在括号写T,错误的写F,共10分) 1、自养型、专性厌氧型微生物不是真菌() 2、在酵母细胞融合时,用溶菌酶破壁() 3、从形态上看,毛霉属细菌都有假根() 4、营养缺陷型菌株不能在基本培养基上正常生长() 5、产黄青霉在工业生产上只用于生产青霉素() 6、分子氧对专性厌氧微生物的抑制和制死作用是因为这些微生物内缺乏过氧化氢酶() 7、同工酶是指能催化同一个反应,有相同控制特征的一组酶() 8、基因位移是借助于酶或定向酶系统实现的主动输送,因此不需要消耗能量() 9、培养基中加入一定量NaCl的作用是降低渗透压() 10、噬菌体的RNA必须利用寄主的蛋白质合成体系翻译,因此只能在寄主体内繁殖() 三. 名词解释(共15分) 1、抗代谢物 2、温和噬菌体 3、阻遏酶 4、转化 5、活性污泥 四在恒化器中培养微生物,在稳态操作时,μ=D,D为稀释率,μ可用Monod公式描述:求:a. 恒化器出口底物浓度S0和微生物浓度X0 b. 当稀释率D增加到一定程度后会产生“清洗”现象,求发生清洗现象的最小稀释率Dcrit c. 单位体积细胞产率可以用细胞出口浓度X0与稀释率的乘积DX0表示。求当DX0达到最大值时的稀释率Dmax 五. 简要叙述工业微生物研究和实验中的微生物培养基必须具备的要素和对于大规模生产 时对培养基的基本要求。(15分) 六. 以肌苷酸生产菌为例,说明营养缺陷型菌株筛选的机理及筛选的方法。(15分) 七. 试述革兰氏阳性菌和阴性菌在细胞壁组成上的差别,并判断下述几种微生物的染色结果是什么。 a. 枯草芽孢杆菌 b. 金黄葡萄球菌 c. 大肠杆菌 d. 乳链球菌 e.假单孢菌 1993年攻读硕士学位研究生入学考试试题 一填空(共15分,每格0.5分)

工业微生物学3章习题

工业微生物学3章 1、 什么是营养物质?营养物质有哪些生理功能? 营养指物体从外部环境摄取其生命活动所必需的能量和物质,以满足其生长和繁殖需要的过程,这些能量和物质即为营养物质。 营养物质的生理功能有:为生物提供必需的能量,结构合成物质,调节生物体的新陈代谢,为生物提供良好的生理环境。 4、什么是能源?试以能源为主,对微生物营养类型进行分类能源是指能为微生物的生命活动提供最初能量来源的营养物或辐射能。 能源是指能为微生物的生命活动提供必需的能量来源的营养物质和辐射能。 以能源,碳源不同可将微生物分成四大类: 7、什么是生长因子?它主要包括哪几类化合物?是否任何微生物都需要生长因子?如何才能满足微生物对生长因子的需求? 生长因子:某些微生物不能从普通的碳源。氮源合成,而需要另处少量加入来满足生长需要的有机物质。 主要包括:氨基酸,维生素,嘌呤和嘧啶及其衍生物、甾醇、胺类、C4~C6 的分枝或直链脂肪酸等。 各种微生物所需的生长因子互不相同,有的需要多种,有的不需要,培养条件也会影响微生物对生长因子的需求。 为了满足微生物对生长因子的需求,一般要在培养基本中添加少量的该种生长因子。 9、为什么实验室配制培养基时,一般采用蛋白胨而不是以蛋白质为氮源?为什么枯草杆菌能水原明胶,而大肠杆菌则不能? 蛋白胨是水解产物,微生物可直接利用,另处蛋白胨比蛋白质更易保存,所以实验室一般用蛋白质胨作氮源。 大肠杆菌是G+ 菌,它的细胞壁中含有脂多糖和外壁层,使蛋白分解酶无法穿过细胞壁,来到胞外水解明胶,而枯草杆菌是G-菌,情况相反,因而可以水解明胶。 13、什么是选择性培养基?它在工业微生物学工作中有何重要性?试举一例并分析其中的选择性原理。 根据某种某类微生物的特殊营养要求,或对某些物理,化学条件的抗性而设计的培养基,称为选择性培养基,其重要性在于它可以使混合菌样中的劣势变成优势菌,从而提高该菌的筛选效率。 例如,已知结晶紫可以抑制革兰氏阳性菌,那么,在革兰氏阳,阴性菌的混合培养物中加入结晶紫,即可使革兰氏阳性菌的生长受到抑制,而分离对象革兰氏阴性菌则可趁机大大增殖,在数量占据优势。 16、什么是微生物的最适生长温度?温度对同一微生物的生长速度,生长量代谢速度及各代谢产物的累积的影响不否相同?研究这一问题有何实践意义? 最适生长温度是某微生物分裂代时最短成生长速率最高时的培养温度。同一微生物的不同生理过程有着不同的最适温度,温度对同一微生物的生长速度,生长量,代谢速度及各代谢产物的累积量的影响各不相同。 研究这一问题,使我们能根据目标产物的情况,选择最适温度,以提高发酵生产效率。 19、 24、导酵母菌接种到含有葡萄糖和最低限度无机盐的培养液中,并分装到烧瓶A 和B 中,将烧瓶A 放在30 的好氧培养中,烧瓶B 放在30 的 氧培养。问: A 哪个培养能获得更多的A TP ?A B 哪个培养能获得更多的酒精:B C 哪个培养中的细胞世代时间更短?A D 哪个培养能获得更多的细胞量?A E 哪个培养液的吸光更高?A 能 源 CO2(自养型)------- 自养型 有机碳化物-------光能异养型 光: 光能营养型 化合物: 化能营养型

工业微生物育种全解

1.工业微生物育种在发酵工业中的作用如何?其目的是什么? 工业微生物育种建立在: (1)遗传和变异(微生物遗传学)的基础之上; (2)物理和化学诱变剂的发现和应用; (3)工业自动化(自动仪表装置和微机)。 工业微生物育种在发酵工业中占有重要地位,是决定该发酵产品能否具有工业化价值及发酵过程成败与否的关键。 2.工业微生物发展经历了哪几个阶段? 1)自然选育阶段 2)人工诱变选育阶段 3)杂交育种阶段 4)代谢控制育种阶段 5)基因工程育种阶段 3.工业微生物育种的核心指标有哪些? 1)在遗传上必须是稳定的。稳定性。 2)易于产生许多营养细胞、孢子或其它繁殖体。 3)必须是纯种,不应带有其他杂菌及噬菌体。 4)种子的生长必须旺盛、迅速。 5)产生所需要的产物时间短。转化率。 6)比较容易分离提纯。 7)有自身保护机制,抵抗杂菌污染能力强。 8)能保持较长的良好经济性能。产率。

9)菌株对诱变剂处理较敏感,从而可能选育出高产菌株。 10)在规定的时间内,菌株必须产生预期数量的目的产物,并保持相对地稳定。 4.革兰氏阳性和阴性菌的细胞壁结构有何差异?它们对溶菌酶和青霉素的敏感有何不同? 5.缺壁细菌有哪些类型和异同?制备缺壁细菌主要有哪些途径?原生质体:G+菌经溶菌酶或青霉素处理; 球状体:G-菌,残留部分细胞壁。 是研究遗传规律和进行原生质体育种的良好实验材料。 L型细菌:自发突变形成细胞壁缺陷菌株; 6.原生质体制备时,为什么不同微生物要选择不同的酶?举例说明。 酶在原生质体制备中主要用来酶解细胞壁的,不同的微生物其细胞壁成分及含量可能不同,所以要用不同的酶。 酵母菌的细胞壁主要成分有葡聚糖、甘露聚糖蛋白质、几丁质。霉菌的细胞壁:主要成分是纤维素、几丁质、葡聚糖等。

南京工业大学微生物实验考试试题

南京工业大学微生物实验课试题库及标准答案 选择题: 01.革兰氏染色的关键操作步骤是: A.结晶紫染色。 B.碘液固定。 C.酒精脱色。 D.复染。 答:(C) 02.放线菌印片染色的关键操作是: A.印片时不能移动。 B.染色。 C.染色后不能吸干。 D.A-C。 答:(A)。 03.高氏培养基用来培养: A.细菌。 B.真菌。 C.放线菌。 答:(C)。 04.肉汤培养基用来培养: A.酵母菌。 B.霉菌。 C.细菌。 答:(C)。 05.无氮培养基用来培养: A.自生固氮菌。 B.硅酸盐细菌。 C.根瘤菌。 D.A,B均可培养。 E.A,B,C均可培养。 答:(D)。 06.在使用显微镜油镜时,为了提高分辨力,通常在镜头和盖玻片之间滴加: A.二甲苯。 B.水。 C.香柏油。 答:(C)。 07.常用的消毒酒精浓度为: A.75%。 B.50%。 C.90%。 答:(A)。 08.用甲醛进行空气熏蒸消 毒的用量是: A.20ml/M3。 B.6ml/M3。 C.1ml/M3。 答:(B)。 09.高压蒸汽灭菌的工艺条 件是: A.121℃/30min。. B.115℃/30min。 C.130℃/30min。 答:(A)。 10.巴氏消毒的工艺条件 是: A.62-63℃/30min。 B.71-72℃/15min。 C.A.B.均可。 答:(C)。 11.半固体培养基的主要用 途是: A.检查细菌的运动性。 B.检查细菌的好氧性。 C.A.B.两项。 答:(C)。 12.半固体培养基的琼脂加 入量通常是: A.1%。 B.0.5%。 C.0.1%。 答:(B)。 13.使用手提式灭菌锅灭菌 的关键操作是: A.排冷气彻底。 B.保温时间适当。 C.灭菌完后排气不能太快。 D.A-C。 答:(A)。 14.目镜头上的"K"字母表 示: A.广视野目镜。 B.惠更斯目镜。 C.补偿目镜。 答:(C)。 15.目镜头上的"P"字母表 示: A.平场目镜。 B.广视野目镜。 C.平场补偿目镜。 答:(A)。 16.物镜头上的"PL"字母表 示: A.正低相差物镜。 B.正高相差物镜。 C.负高相差物镜。 答:(A)。 17.物镜头上的"UVL"字母 表示。 A.无荧光物镜。 B.照相物镜。 C.相差物镜。 答:(C)。 18.镜头上标有"对C"字母 的镜头是: A.相差调整望远镜。 B.摄影目镜。 C.相差目镜。 答:(A)。 19."PA"表示: A.马铃薯培养基。 B.高氏培养基。 C.肉汤培养基。 答:(A)。 20.无菌室空气灭菌常用方 法是: A.甲醛熏蒸。 B.紫外灯照射。 C.喷石炭酸。 D.A.B.并用。 答:(D)。 21.干热灭菌的关键操作 是:

基础生物化学—复习题

第二部分自测试题 自测试题一 一、写出下列缩写符号的中文名称:(每个1分,共10分) (1)Gln (2)THFA (3)PRPP (4)cAMP (5)hnRNA(6)GSH (7)SAM (8)NADPH (9)cDNA (10)Lys 二、解释下列生化名词:(每个2分,共10分) 1.蛋白质的二级结构 2.酶的活性中心 3.糖酵解 4.脂肪酸的β氧化 5.生物氧化 三、选择答案(从所给出的四个答案中选择一个合适的,写出其编号)(每题1分,共20 分): 1. 已知一种核酸中含有A 18%、C 32%、G 32%、T 18%,判断它是哪种核酸? A 双链DNA B 单链DNA C 双链RNA D 单链RNA 2. 下列核酸中稀有碱基或修饰核苷相对含量最高的是: A DNA B rRNA C tRNA D mRNA 3.谷氨酸有三个可解离基团,其pK1=2.6,pK R=4.6,pK2=9.6,它的等电点(pI)应当是多少? A 3.6 B 7.1 C 6.1 D 4.6 4.下列关于蛋白质变性作用的论述哪一个是错误的? A 变性作用指的是蛋白质在某些环境因素作用下,高级结构(天然构象)被破坏,丧 失其生物学活性; B 某些变性蛋白在去掉变性因素之后,可以恢复原有构象和活性; C 许多变性蛋白水溶性降低,易被蛋白酶降解; D 蛋白质变性之后,多处肽链断裂,分子量变小。 5.下列有关酶的论述哪一个是错误的? A 酶是活细胞产生的,以蛋白质为主要成分的生物催化剂; B 有的RNA也具有催化活性,称为核酶(ribozyme); C 酶具有高度专一性、高的催化效率和可调控性; D 酶的底物全都是小分子量有机化合物。 6.已知某酶的Km=0.05 mol/L,在下列哪个底物浓度下反应速度可达到最大反应速度的90%? A 0.05 mol/L B 0.45 mol/L C 0.9 mol/L D 4.5 mol/L 7.在琥珀酸脱氢酶反应体系中加入丙二酸,Km增大,Vmax不变,丙二酸应当属于琥珀酸脱氢酶的什么抑制剂? A 竞争性抑制剂 B 非竞争性抑制剂 C 非专一的不可逆抑制剂 D 专一的不可逆抑制剂 8.以下关于三羧酸循环的描述哪一个是错误的? A 三羧酸循环是糖、脂肪和氨基酸彻底氧化的共同途径; B 1分子葡萄糖经糖酵解和三羧酸循环彻底氧化成CO2和H2O,同时生成36(或38) 分子ATP;

相关文档
相关文档 最新文档