文档库 最新最全的文档下载
当前位置:文档库 › 水在不同温度下的密度、粘度、介电常数和离子积常数Kw值

水在不同温度下的密度、粘度、介电常数和离子积常数Kw值

水在不同温度下的密度、粘度、介电常数和离子积常数Kw值
水在不同温度下的密度、粘度、介电常数和离子积常数Kw值

表中水的密度为不含有空气的纯水在标准大气压(101.325kPa)下的密度值。

水的离子积常数K w = αH+·αOH-,且αH+ = αOH-。

水在不同温度下的密度、粘度、介电常数和离子积常数K w值

Densities, Viscosities, Dielectric Constants and Ionic Product Constants of Water at Different

Temperatures

介电常数

介电常数 求助编辑 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数(permittivity),又称诱电率。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。 目录 编辑本段简介 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为相对介电常数(permittivity),又称相对电容率,以εr表示。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。介电常数(又称电容率),以ε表示,ε=εr*ε0,ε0为真空绝对介电常数,ε0=8.85*e-12,F/m。 一个电容板中充入介电常数为ε的物质后电容变大ε倍。 介电常数 电介质有使空间比起实际尺寸变得更大或更小的属性。例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。 当电磁波穿过电介质,波的速度被减小,有更短的波长。 相对介电常数εr可以用静电场用如下方式测量:首先在其两块极板之间为空气的时候测试电容器的电容C0。然后,用同样的电容极板间距离但在极板间加入电介质后侧得电容Cx。然后相对介电常数可以用下式计算εr=Cx/C0

编辑本段相关解释 "介电常数" 在工具书中的解释 1.又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。介电常数愈小绝缘性愈好。空气和CS2的ε值分别为1.0006和 2.6左右,而水的ε值特别大,10℃时为 8 3.83,与温度t的关系是 介电常数 查看全文 2.介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。介电常数用ε表示,一些常用溶剂的介电常数见下表: "介电常数" 在学术文献中的解释

水的电离、水的离子积常数Kw和溶液pH的计算

水的电离、水的离子积常数K w和溶液pH的计算 1.水的电离方程式为:____________________, 水电离时要破坏______________,因此水的电离是_______(填“吸热”或“放热”)过程。 2.根据水的电离方程式,该反应的平衡常数的表达式K=______________。我们把水的电离平衡常数称为水的离子积常数,记为K w。 (1)K w的大小只与________有关,温度越高,水的离子积常数K w越大。 (2)常温下(25℃),水的离子积常数为K w= c(H+)·c(OH—)=10-14。 3.影响水的电离的因素: (1)温度:温度升高,促进(填“促进”或“抑制”)水的电离,K w增大(填“变大”或“变小”);(2)外加的酸或碱:抑制(填“促进”或“抑制”)水的电离。 4.溶液pH的计算:pH=-lg c(H+)=-lg (K w/c(OH—)) 规律:溶液的酸性越强,溶液的pH越_______;溶液的碱性越强,溶液的pH越_______。 5.大量实验证明:常温下,任何水溶液中,c(H+)·c(OH—)为定值,其大小等于水的离子积常数K w。即常温下,在酸溶液、碱溶液、中性溶液中,同时存在H+和OH—,且c(H+)·c(OH—)=10-14。 6.pH的测定方法: (1)pH试纸法:用干燥的玻璃棒蘸取待测液点在pH试纸中央,试纸变色后,与标准比色卡对比即可确定溶液的pH。 注意: ①pH试纸不能事先润湿,也不能伸入待测液中。 ②用pH试纸测出溶液的pH是1~14的整数,只能粗略测定溶液的pH值。 (2)pH计法:常用pH计精确测量溶液的pH,读数时应保留两位小数。 7.酸碱指示剂的颜色变化: (1)无色酚酞试液遇酸不变色,遇碱变红; (2)紫色石蕊试液遇酸变红,遇碱变蓝; 例1.(影响水电离平衡的因素分析) 1.1.常温下,水的电离达到平衡:H2O H++OH-,下列叙述正确的是(B) A.向水中加入稀氨水,平衡逆向移动,c(OH-)降低 B.向水中加入少量固体硫酸氢钠,c(H+)增大,K w不变 C.向水中加入少量固体醋酸钠,平衡逆向移动,c(H+)降低 D.将水加热,K w增大,pH不变 B[向水中加入稀氨水,增大了c(OH-),平衡逆向移动;加入固体NaHSO4,NaHSO4溶于水后电离生成H+,c(H+)增大,K w不变;加入醋酸钠,CH3COO-结合水电离出的H+,使平衡正向移动,c(H+)降低;将水加热,K w增大,pH减小。] 1.2.常温下,若溶液中由水电离产生的c(OH-)=1×10-14mol/L,满足此条件的溶液中一定可以大量共存的离子组是(B) A.Al3+,Na+,NO-3,Cl- B.K+,Na+,Cl-,NO-3 C.K+,Na+,Cl-,Mg2+ D.K+,NH+4,SO2-4,NO-3 例2.(水电离出的OH-或H+ 浓度的计算) (1)常温下,某酸溶液的pH=2,则该溶液由水电离出的c(H+)=_________________; (2)常温下,某碱溶液的pH=12,则该溶液由水电离出的c(H+)=_________________; (3)常温下,某水溶液由水电离出的c(H+)=10-10mol/L,则该水溶液的pH=_________________;解:(1)10-12mol/L (2)10-12mol/L (3)4或10

第二节 水的离子积和溶液pH值

第二节水的离子积和溶液pH值 [基础知识精析] 复习目标: 1.水的电离平衡和离子积的概念; 2.影响水的电离平衡的因素; 3.溶液的酸碱性和pH的关系; 4.酸碱指示剂及变色范围和变色原理。 5.掌握水的离子积常数及溶液pH值表示的意义; 6.掌握C(H+)、pH值与溶液酸碱性的关系; 7.了解指示剂的变色范围,学会pH值的使用方法; 8.掌握溶液pH值的有关计算。 一、水的离子积是指水达到电离平衡时的离子浓度的乘积。通常把K w叫做水的离子积常数,简称水的离子积,K w只与温度有关。 已知在25℃时,水中的H+浓度与OH-浓度均为1×10-7 mol·L-1, 所以在25℃时,K w= c(H+)·c(OH-)=1×10-7×1×10-7=1×10-14。 二、影响水的电离的因素 页:1 1.加入酸或碱,抑制水的电离,K w不变; 2.加入某些盐,促进水的电离,K w不变; 3.电离过程是一个吸热过程,升高温度,促进水的电离,水的离子积增大。 三、溶液的酸碱性和pH值 页:1 1.常温时,由于水的电离平衡的存在,不仅纯水,而且在酸性或碱性的稀溶液中,均存在H+、OH-,且c(H+)·c(OH-)=1×10-14。 中性溶液中,c(H+)=c(OH-)=1×10-7 mol·L-1; 酸性溶液中,c(H+)>c(OH-),c(H+)>1×10-7 mol·L-1; 碱性溶液中,c(H+)<c(OH-),c(H+)<1×10-7 mol·L-1。 强调:①含水的稀溶液中,H+与OH-共存,H+与OH-的相对多少决定溶液的酸碱性,但二者浓度的积必为常数; ②碱性溶液中的c(H+)= K w/c(OH-);同理,酸性溶液中的c(OH-)= K w/ c(H+)。 说明:当我们表示很稀的溶液时,如,c(H+)=1×10-7 mol·L-1,用c(H+)或c(OH-)表示溶液的酸碱性很不方便。 2.溶液的pH pH=-lg{c(H+)} 强调:①c(H+)=m×10-n mol·L-1,PH=n-lgm。 pH只适用于C(H+)≤1 mol/L或C(OH-)≤1 mol/L的稀溶液,即pH取值范围为0 ~ 14,当C(H+)> 1 mol/L或C(OH-)> 1 mol/L 反而不如直接用C(H+)或C(OH-)表示酸碱度方便。 常温下溶液酸碱性与pH的关系 页:1

03水的电离及离子积常数

03. 水的电离及离子积常数 一、知识梳理 O H++OH- 1、水的电离方程式:H 2、水电离特点:(1)可逆(2)吸热(3)极弱 3、水的离子积:K W =[H+]·[OH-] 25℃时, [H+]=[OH-] =10-7mol·L-1;K W =[H+]·[OH-] = 1×10-14mol2?L-2 注意:K W只与温度有关,温度一定,则K W值一定 K W不仅适用于纯水,也适用于任何稀溶液(酸、碱、盐) 4、影响水电离平衡的外界因素: ①酸、碱:抑制水的电离 ②温度:促进水的电离(因为水的电离是吸热的) ③易水解的盐:促进水的电离 二、典例分析 一定温度时,测得纯水中[OH-]=2.5×10-7 mol·L-1,则[H+]为() A.2.5×10-7mol·L-1 B.0.1×10-7 mol·L-1 C.1×10?14 /2.5×10-7mol·L-1 D.无法确定[H+] 考点:离子积常数. 分析:纯水中氢离子浓度等于氢氧根离子浓度,据此分析解答. 解答:纯水呈中性,所以纯水中氢原子浓度等于氢氧根离子浓度,为2.5×10-7mol·L-1,故选:A. 点评:本题考查了离子浓度的计算,明确纯水电离的特点是解本题关键,难度不大. 三、实战演练 1、在25℃时,1mol·L-1的盐酸溶液中,水的K W(单位:mol2?L-2)为() A.1×10-14 B.0 C.大于1×10-14 D.小于1×10-14 2、下列说法中,正确的是() A.向纯水中加入少量盐酸,K W将增大 B.25℃时,水的离子积常数K W为1×10-14mol2?L-2 C.100℃时,纯水的[H+]=10-7mol·L-1 D.100℃时,pH=7的溶液呈中性

浅析水的离子积和水的电离平衡常数,徐度建

浅析水的电离平衡常数和水的离子积 徐度建汪莉 (江西师范大学化学化工学院江西南昌 330022) 摘要:水的电离方程式可简写成:H2O=H++OH-.根据质量作用定律,水的平衡常数可表示为K C=C(H+)×C(OH-)/C(H2O),但现今多数教材直接采用水的离子积Kw=C(H+)×C(OH-),而忽略了水的电离平衡常数和水的离子积之间的关系,本文简要的解释了Kc和Kw的联系. 关键词:水的电离平衡常数水的离子积 平时教学中,譬如在化学反应A-+H 2 O=HA+OH-,学生往往会根据已学的平衡常 数的知识,将此平衡写成K= C (HA)× C (OH-)/ C (H 2 O)× C (A-)[3].有些老师可能会认为 这是错的,不应当加上水且水应当为1,故可忽略不计.但当仔细追究,水的溶度是为1mol/L吗?本文选举了最为典型的水的电离平衡方程为例,其他的读者可据具体情况自行分析. 水的电离方程式为:H 2 O=H++OH-,根据质量作用定律可示为 K C = C (H+)× C (OH-)/ C (H 2 O)[1](1). 当反应物及生成物均以活度表示时,其化学平衡常数又可改写成 kθ=α(H+)×α(OH-)/α(H 2 O). α(H2O)=γ(H2O) ×c(H2O), γ(H2O)为水的活度系数,又根据德拜-休克尔公式来计算,即 -lgγ=0.512Z2[I0.5/(1+βaI0.5)], Z为离子的电荷数;β是常数,250C时为0.00328;a为离子体积参数;I为溶液的离子强度[2].水为中性分子,故电荷数为0,可推知水的γ=1. 在室温下,1L水中只有1.0×10-7mol水发生电离,即约55.5mol只有10-7mol 发生电离,电离前后水的物质的量几乎不变,则c(H 2 O)可视为一个平衡常数,即55.5mol/L[4]. 未电离的水分子的数量比它的离子数量是非常大的,实际上可认为是不变的. 因此在等式(1)中c(H 2 O)为常数, C(H+)× C( OH-)=K C ×(H 2 O)=K c ×55.6=Kw[1] 电离平衡常数可改写为:Kw =K× C (H 2 O)= C (H+)× C (OH-),其中KW是随温度变化而 变化的物理量, C (H 2 O)是一个常数,用Kw表示,称之为谁的离子积常数,简称为 水的离子积.常温下水的离子积为10-14. 水的离子积为水的电离平衡常数的另一种表示方法,水的离子积不仅反映了水的酸强度,也反映了碱的强度,相对前者更为简单实用.现今教材对此转换不加解释,事必造成了读者的误解. 参考文献: [1]别特拉申著;周定等译.定性分析(第一册)[M]高等教育出版社,1959:39-41. [2]武汉大学主编.分析化学(第五版)[M]高等教育出版社,2006:110-111. [3]凯尔纳等主编;李克安金钦汉等译.分析化学[M]北京大学出版社,2001:77-78.

化学平衡常数及其计算

考纲要求 1.了解化学平衡常数(K)的含义。2.能利用化学平衡常数进行相关计算。 考点一化学平衡常数 1.概念 在一定温度下,当一个可逆反应达到化学平衡时,生成物浓度幂之积与反应物浓度幂之积的比值是一个常数,用符号K表示。 2.表达式 对于反应m A(g)+n B(g)p C(g)+q D(g), K=c p?C?·c q?D? c m?A?·c n?B? (固体和纯液体的浓度视为常数,通常不计入平衡常数表达式中)。3.意义及影响因素 (1)K值越大,反应物的转化率越大,正反应进行的程度越大。 (2)K只受温度影响,与反应物或生成物的浓度变化无关。 (3)化学平衡常数是指某一具体反应的平衡常数。 4.应用 (1)判断可逆反应进行的程度。 (2)利用化学平衡常数,判断反应是否达到平衡或向何方向进行。 对于化学反应a A(g)+b B(g)c C(g)+d D(g)的任意状态,浓度商:Q c=c c?C?·c d?D? c a?A?·c b?B? 。 Q<K,反应向正反应方向进行; Q=K,反应处于平衡状态; Q>K,反应向逆反应方向进行。 (3)利用K可判断反应的热效应:若升高温度,K值增大,则正反应为吸热反应;若升高温度,K值减小,则正反应为放热反应。 深度思考

1.正误判断,正确的打“√”,错误的打“×” (1)平衡常数表达式中,可以是物质的任一浓度() (2)催化剂能改变化学反应速率,也能改变平衡常数() (3)平衡常数发生变化,化学平衡不一定发生移动() (4)化学平衡发生移动,平衡常数不一定发生变化() (5)平衡常数和转化率都能体现可逆反应进行的程度() (6)化学平衡常数只受温度的影响,温度升高,化学平衡常数的变化取决于该反应的反应热() 2.书写下列化学平衡的平衡常数表达式。 (1)Cl2+H2O HCl+HClO (2)C(s)+H2O(g)CO(g)+H2(g) (3)CH3COOH+C2H5OH CH3COOC2H5+H2O (4)CO2-3+H2O HCO-3+OH- (5)CaCO3(s)CaO(s)+CO2(g) 3.一定温度下,分析下列三个反应的平衡常数的关系 ①N2(g)+3H2(g)2NH3(g)K1 ②1 2N2(g)+ 3 2H2(g)NH3(g)K2 ③2NH3(g)N2(g)+3H2(g)K3 (1)K1和K2,K1=K22。 (2)K1和K3,K1=1 K3。 题组一平衡常数的含义 1.研究氮氧化物与悬浮在大气中海盐粒子的相互作用时,涉及如下反应:2NO2(g)+NaCl(s)NaNO3(s)+ClNO(g)K1

平衡常数、电离常数、水解常数、离子积常数、溶度积常数相关计算

平衡常数、电离常数、水解常数、离子积常数、溶度积常数相关计算班级:姓名: ⒈将足量BaCO3(K sp=8.1×10-9)分别加入①30mL水②10mL0.2mol/LNa2CO3溶液③50mL0.01mol/L氯化钡溶液④100mL0.01mol/L盐酸中溶解至溶液饱和。请确定各溶液中Ba2+的浓度由大到小的顺序为() A.①②③④B.③④①② C.④③①②D.②①④③ ⒉已知在25℃时,H2S的电离常数K a1=5.7×10-8、K a1=1.2×10-15,FeS、CuS的溶度积常数(Ksp)分别为6.3×10-18、1.3×10-36。常温时下列说法正确的是()(多选) A.除去工业废水中的Cu2+可以选用FeS作沉淀剂 B.将足量CuSO4溶解在0.1mol/L氢硫酸中,溶液中Cu2+的最大浓度为 1.3×10-35mol/L C.因为H2SO4是强酸,所以反应CuSO4+H2S=CuS↓+H2SO4不能发生 D.FeS+2H+Fe2++H2S的平衡常数K=9.21×104 E.向H2S的饱和溶液中通入少量SO2气体,溶液的酸性增强 ⒊25℃时,pH=9的CH3COONa溶液和pH=9的C溶液中由水电离产生的OH—的物质的量浓度之比为。 ⒋已知常温下K a(HClO2)=1.1×10-2,则反应HClO2+OH-ClO2-+H2O在常温下的平衡常数K= 。 ⒌常温下,K a1(H2CO3)=4.0×10-7,K a2(H2CO3)=5.0×10-11,则0.50mol/L的Na2CO3溶液的pH= 。 ⒍H3AsO3又叫路易斯酸,是一种弱酸,发生酸式电离是通过和水中的氢氧根离子结合实现的,则第一步电离方程式为;若常温时H3AsO3的第一步电离常数K a1=1.0×10-9,则常温下,0.1mol/L的溶液的pH为。 ⒎已知常温下:K sp[Cu(OH)2]=2.2×10-20。常温下,在一定量的氯化铜溶液中逐滴加入氨水至过量,可观察到先产生蓝色沉淀,后蓝色沉淀溶解转化成蓝色溶液。 ①当pH=8时,c(Cu2+)= mol?L-1,表明已完全沉淀(一般地,残留在溶液中的离子浓度小于1×10-5mol?L-1时即可认为沉淀完全)。 ②常温下,发生反应:Cu2+(aq)+4NH3(aq)[Cu(NH3)4]2+(aq) K1=2.0×1013。该反应在不同起始浓度下分别达到平衡,各物质的平衡浓度如下表: Cu2+浓度/ NH3(aq)浓度[Cu(NH3)4]2+浓

完整word版,介电常数与好三因素间的关系

介电常数与耗散因数间的关系 介电常数又称电容率或相对电容率,是表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数。其表示电介质在电场中贮存静电能的相对能力,例如一个电容板中充入介电常数为ε的物质后可使其电容变大ε倍。介电常数愈小绝缘性愈好。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。介电常数还用来表示介质的极化程度,宏观的介电常数的大小,反应了微观的极化现象的强弱。气体电介质的极化现象比较弱,各种气体的相对介电常数都接近1,液体、固体的介电常数则各不相同,而且介电常数还与温度、电源频率有关有些物质介电常数具有复数形式,其实部即为介电常数,虚数部分常称为耗散因数。 通常将耗散因数与介电常数之比称作耗散角正切,其可表示材料与微波的耦合能力,耗散角正切值越大,材料与微波的耦合能力就越强。例如当电磁波穿过电解质时,波的速度被减小,波长也变短了。 介质损耗是指置于交流电场中的介质,以内部发热的形式表现出来的能量损耗。介质损耗角是指对介质施加交流电压时,介质内部流过的电流相量与电压向量之间的夹角的余角。介质损耗角正切是对电介质施加正弦波电压时,外施电压与相同频率的电流之间相角的余角δ的正切值--tgδ. 其物理意义是:每个周期内介质损耗的能量//每个

周期内介质存储的能量。 介电损耗角正切常用来表征介质的介电损耗。介电损耗是指电介质在交变电场中,由于消耗部分电能而使电介质本身发热的现象。原因是电介质中含有能导电的载流子,在外加电场作用下,产生导电电流,消耗掉一部分电能,转为热能。任何电介质在电场作用下都有能量损耗,包括由电导引起的损耗和由某些极化过程引起的损耗。 用tgδ作为综合反应介质损耗特性优劣的指标,其是一个仅仅取决于材料本身的损耗特征而与其他因素无关的物理量,tgδ的增大意味着介质绝缘性能变差,实践中通常通过测量tgδ来判断设备绝缘性能的好坏。 由于介电损耗的作用电解质在交变电场作用下将长生热量,这些热会使电介质升温并可能引起热击穿,因此,在绝缘技术中,特别是当绝缘材料用于高电场强度或高频的场合,应尽量采用介质损耗因数,即电介质损耗角正切tgδ较低的材料。但是,电介质损耗也可用作一种电加热手段,即利用高频电场(一般为0.3--300兆赫兹)对介电常数大的材料(如木材、纸张、陶瓷等)进行加热。这种加热由于热量产生在介质内部,比外部加热速度更快、热效率更高,而且热均匀。频率高于300兆赫时,达到微波波段,即为微波加热(家用微波炉即据此原理)。 在绝缘设计时,必须注意材料的tgδ值。若tgδ过大则会引起严重发热,使绝缘材料加速老化,甚至导致热击穿。 一下例举一些材料的ε值:

化学平衡常数真的只与温度有关么

龙源期刊网 https://www.wendangku.net/doc/b85554689.html, 化学平衡常数真的只与温度有关么 作者:闵云泽 来源:《数理化学习·教育理论版》2013年第02期 摘要:阐述化学平衡常数随计算方法的不同而影响因素也不同,说明平衡常数不单单与温度有关系,从而解决了中学化学教师在平衡常数教学中的一大困惑. 关键词:化学平衡常数;温度;量纲 在中学化学平衡常数的教学中,很多教师遇到了这样的困扰. 例1 某温度下,在1 L密闭容器中发生可逆反应N2 (g)+ 3H2 (g)2NH3(g),开始时,充入1 mol N2和3 mol H2,此条件下,N2的转化率为30%,反应到达平衡状态. (1)求反应的平衡常数. (2)保持温度不变,若将平衡时反应混合物的体积缩小1倍或者扩大一倍,平衡将如何移动?平衡常数为多少? 解析:(1)平衡常数K=0.056 L2/mol2;(2)气体体积缩小1倍时,各组分的浓度均增大1倍,此时Qc 经过简单的思考,就会提出疑问:这里的平衡常数真的就等于0.056 L2/mol2,真的就只是与温度有关么? 既然当气体体积缩小1倍时,化学平衡向正反应方向发生了移动,由此可知,在新的条件下,N2的转化率提高了,平衡常数K值必然增大;反之则K值减小.而题目解析中说的由于体系的温度保持不变,平衡常数不发生变化.到底哪个是正确的呢. 笔者查阅众多资料方才明白. 平衡常数有标准平衡常数和非标准平衡常数之分.标准平衡常数是根据标准热力学函数算 得的平衡常数,记作K,又称之为热力学平衡常数;非标准平衡常数是用平衡时生成物对反应物的压力商或浓度商表示的平衡常数(Kp或Kc),也称作是经验平衡常数.中学教材中涉及的平衡常数是经验平衡常数.对于反应物计量系数之和等于生成物计量系数之和的反应,其经验 平衡常数是无量纲的纯数,与压力、浓度所用的单位无关,而且也等于标准平衡常数之值.笔 者认为:在中学化学教材中涉及的例子无一例外地讨论计量数相等的问题,就是基于这一点. 而对于反应物计量系数之和不等于生成物计量系数之和的反应,则其经验平衡常数是有量纲的量,其数值就与压力、浓度所用的单位有关,其计算值也随着压力、浓度等的不同而受到影响.因此例题中后来的平衡常数K若按新平衡时各物质的浓度进行计算,则肯定不为0.056 L2/mol2.

四大平衡常数的相互关系及判定

高中化学四大平衡常数的相互关系及判定 杨小过 电解质溶液中的电离常数、水的离子积常数、水解常数及溶度积常数是在化学平衡常数基础上的延深和拓展,它是定量研究平衡移动的重要手段。在复习时就要以化学平衡原理为指导,以判断平衡移动的方向为线索,以勒夏特列原理和相关守恒定律为计算依据,以各平衡常数之间的联系为突破口,联系元素及化合物知识,串点成线,结线成网,形成完整的认识结构体系. 1.四大平衡常数的比较 HA H++A-,电离 常数K a=c(H+)·c(A-) c(HA) BOH B++OH-, 电离常数K b= c(B+)·c(OH-) c(BOH) A-+H2O OH- +HA,水解常数K h= c(OH-)·c(HA) c(A-) M A的饱和溶液:K 2.四大平衡常数间的关系 (1)CH3COONa、CH3COOH溶液中,K a、K h、K W的关系是K W=K a·K h。 (2)NH4Cl、NH3·H2O溶液中,K b、K h、K W的关系是K W=K b·K h。 (3)M(OH)n悬浊液中K sp、K W、pH间的关系是 K sp=c(M n+)·c n(OH-)=c(OH-) n·c n(OH-)= c n+1(OH-) n= 1 n? ? ? ? K W 10-pH n+1。

3.四大平衡常数的应用 (1)判断平衡移动方向 (2)如将NH 3·H 2O 溶液加水稀释,c (OH - )减小,由于电离常数为c (NH + 4)·c (OH - ) c (NH 3·H 2O ) ,此值不 变,故c (NH + 4) c (NH 3·H 2O ) 的值增大。 (3)利用K sp 计算沉淀转化时的平衡常数 如:AgCl +I - AgI +Cl - [已知:K sp (AgCl)=1.8×10 -10 、K sp (AgI)=8.5×10 -17 ]反应的平 衡常数K =c (Cl - )c (I -)=c (Ag + )·c (Cl - )c (Ag +)·c (I -)=K sp (AgCl )K sp (AgI )=1.8×10- 10 8.5×10-17≈2.12×106 。

水的离子积

水的离子积 水的离子积之一 水或水溶液中,H+浓度跟OH-浓度的乘积是一个常数,叫水的离子积,用符号K w表示。水的离子积受温度影响,温度升高K w增大,常温时水的离子积为1×10-14,数学表达式为: K w=[H+]·[OH-]=1×10-14 水的离子积之二 水是一种极弱的电解质,产生微弱的电离: 2H2O H3O++OH- 可简写成 H2O H++OH- 其电离平衡式 式中K——水的电离平衡常数。因电离极少,水的浓度[H2O]可视为常数。上式中[H+][OH-]亦可视为常数,令它为K w,则: K[H2O]=[H+][OH-]=K w K w称为水的离子积。 因一般蒸馏水中溶有空气中的CO2等物质,其电导率值约为10-2~10-3 S·m-1。F.W.G.柯尔劳施在25℃时测定极纯的水的电导率,得 k=0.055×10-4 S·m-1 又1 mol纯水的体积为1.802×10-5 m3,则水的摩尔电导率为 Λ=k/c=k·V =0.055×10-4×1.802×10-5 =9.9×10-11 S·m2·moL-1

由表查得水完全电离时的摩尔电导率为 Λ°=λ°H++λ°OH-=5.48×10-2S·m2·moL-1 于是25℃时水的电离度为 又1L水的质量可近似为1000g,水的摩尔质量为18.02g,1L水中水的物质的量浓度为1000/18.02=55.5mol·L-1 则 [H+]=[OH-]=Cα=55.5×1.8×10-9 =1.0×10-7mol·L-1 故 K w=[H+][OH-]=1.0×10-14mol2·L-2 水的离子积只受温度的影响,温度升高,K w值增大(见下表)。 水的离子积通常采用K w=1.0×10-14mol2·L-2,因而在纯水中 [H+]=[OH-]=1.0×10-7mol·L-1。 对稀的碱或酸溶液,水的离子积仍然适用,即在碱溶液或酸溶液中[H+]和[OH-]之间的关系也是[H+][OH-]=1.0×10-14。因碱或酸在水中离解时,同时产生与其相应的共轭酸或共轭碱,即碱与共轭酸或酸与共轭碱同时存在。 酸与碱既然是共轭的,它们的离解常数K a与K b之间必然有一定的联系。NH3——NH4+之间存在如下关系:

PCB介电常数常识

1、我们常用的PCB介质是FR4材料的,相对空气的介电常数是4.2-4.7。这个介电常数是会随温度变化的,在0-70度的温度范围内,其最大变化范围可以达到20%。介电常数的变化会导致线路延时10%的变化,温度越高,延时越大。介电常数还会随信号频率变化,频率越高介电常数越小。100M以下可以用4.5计算板间电容以及延时。 2、一般的FR4材料的PCB板中内层信号的传输速度为180ps/inch(1inch=1000mil=2.54cm)。表层一般要视情况而定,一般介于140与170之间。 3、实际的电容可以简单等效为L、R、C串联,电容有一个谐振点,在高频时(超过这个谐振点)会呈现感性,电容的容值和工艺不同则这个谐振点不同,而且不同厂家生产的也会有很大差异。这个谐振点主要取决于等效串联电感。现在的比如一个100nF的贴片电容等效串联电感大概在0.5nH左右,ESR(等效串联电阻)值为0.1欧,那么在24M 左右时滤波效果最好,对交流阻抗为0.1欧。而一个1nF的贴片电容等效电感也为0.5nH(不同容值差异不太大),E SR为0.01欧,会在200M左右有最好的滤波效果。为达好较好的滤波效果,我们使用不同容值的电容搭配组合。但是,由于等效串联电感与电容的作用,会在24M与200M之间有一个谐振点,在这个谐振点上有最大阻抗,比单个电容的阻抗还要大。这是我们不希望得到的结果。(在24M到200M这一段,小电容呈容性,大电容已经呈感性。两个电容并联已经相当于LC并联。两个电容的ESR值之和为这个LC回路的串阻。LC并联的话如果串阻为0,那么在谐振点上会有一个无穷大的阻抗,在这个点上有最差的滤波效果。这个串阻反倒会抑制这种并联谐振现象,从而降低LC谐振器在谐振点的阻抗)。为减轻这个影响,可以酌情使用ESR大些的电容。ESR相当于谐振网络里的串阻,可以降低Q值,从而使频率特性平坦一些。增大ESR会使整体阻抗趋于一致。低于24M的频段和高于200M的频段上,阻抗会增加,而在24M与200M频段内,阻抗会降低。所以也要综合考虑板子开关噪声的频带。国外的一些设计有的板子在大小电容并联的时候在小电容(680pF)上串几欧的电阻,很可能是出于这种考虑。(从上面的参数看,1nF的电容Q值是100nF电容Q值的10倍。由于手头没有来自厂商的具体等效串感和ESR的值,所以上面例子的参数是根据以往看到的资料推测的。但是偏差应该不会太大。以往多处看到的资料都是1nF和100nF的瓷片电容的谐振频率分别为100M和10M,考虑贴片电容的L要小得多,而又没有找到可靠的值,为讲着方便就按0.5nH计算。如果大家有具体可靠的值的话,还希望能发上来^_^) 介电常数(Dk, ε,Er)决定了电信号在该介质中传播的速度。电信号传播的速度与介电常数平方根成反比。介电常数越低,信号传送速度越快。我们作个形象的比喻,就好想你在海滩上跑步,水深淹没了你的脚踝,水的粘度就是介电常数,水越粘,代表介电常数越高,你跑的也越慢。 介电常数并不是非常容易测量或定义,它不仅与介质的本身特性有关,还与测试方法,测试频率,测试前以及测试中的材料状态有关。介电常数也会随温度的变化而变化,有些特别的材料在开发中就考虑到温度的因素.湿度也是影响介电常数的一个重要因素,因为水的介电常数是70,很少的水分,会引起显著的变化. 以下是一些典型材料的介电常数(在1Mhz下):

水的离子积常数,PH,POH的理解和应用

水的离子积的应用 一、K W 与温度的关系 【例1】水的电离过程可表示为H 2O H + + OH -,在不同温度下其电离平衡常数分别 为Kw (25℃)=1.0×10 -14 、Kw (35℃)=2.1×10-14 。则下列叙述正确的是 ( ) A .c (H + )随着温度升高而降低 B .在35℃时,c (H + )>c (OH - ) C .水的电离度: α(25℃)>α(35℃) D .水的电离过程是吸热的 【解析】由题给信息可以看出,温度升高,Kw 增大。25℃时,c (H + )=c (OH - )=1.0×10-7 1L mol -?, 35℃时,c (H + )=c (OH - )=1.45×10 -7 1L mol -?。温度升高,c (H +) 和c (OH -)都增大,但仍然相等,同时 水的电离程度也增大。所以,温度升高,电离平衡向正反应方向移动,水的电离过程吸热。 【答案】D 二、Kw 的大小比较 【例2】实验表明,液态时,纯硫酸的导电性强于纯水。已知液态电解质都能像水那样自身电离而建立电离平衡(如H 2O+H 2O H 3O ++OH - ),且在一定温度下都有各自的离子积常数。则在25℃时,纯硫酸的 离子积常数K 和水的离子积常数Kw 的关系为 ( ) A .K > Kw B .K =Kw C .K < Kw D .无法比较 【解析】将纯硫酸的电离类比水的电离是解答此题的关键。纯硫酸的电离平衡可写成 H 2SO 4 + H 2SO 4 H 3SO 4+ + HSO 4 - ,则其离子积K = c(H 3SO 4+)×c(HSO 4 - ) 。根据题意,纯硫酸的 导电性强于纯水,故纯硫酸中离子的浓度大于纯水中离子的浓度,所以K > Kw 。 【答案】A 三、有关Kw 的知识拓展 【例3】乙醇、液氨、水都可以发生自偶电离,如O H O H 22+ -++OH O H 3, 33NH NH + - ++24NH NH ,则下列叙述不正确的是( ) A .乙醇的电离方程式:OH CH CH 23+OH CH CH 23 25252OH H C O H C +- + B .若液氨的离子积常数为28 10 1.0-?,则液氨浓度为114 L mol 10 1.0--?? C .若可用与pH 相当的定义来规定pOH 、4pNH 、2pNH 等,则乙醇中与pH 相当的为 )OH H (C c lg 252+- D .若乙醇的离子积30 5225210 1.0)O H c(C )OH H (C -- +?=?=c K ,则此时的15O H pC 52=

介电常数

介电常数 介质在外加电场时会产生感应电荷而削弱电场,介质中电场与原外加电场(真空中)的比值即为相对介电常数(permittivity,不规范称dielectric constant),又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。如果有高介电常数的材料放在电场中,电场的强度会在电介质内有可观的下降,理想导体内部由于静电屏蔽场强总为零,故其介电常数为无穷。 介电常数(又称电容率),以ε表示,ε=εr*ε0,ε0为真空绝对介电常数,ε0=8.85*10^(-12)F/m。需要强调的是,一种材料的介电常数值与测试的频率密切相关。 一个电容板中充入介电常数为ε的物质后电容变大εr倍。电介质有使空间比起实际尺寸变得更大或更小的属性。例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。 当电磁波穿过电介质,波的速度被减小,有更短的波长。 根据物质的介电常数可以判别高分子材料的极性大小。通常,介电常数大于3.6的物质为极性物质;介电常数在2.8~3.6范围内的物质为弱极性物质;介电常数小于2.8为非极性物质。 测量方法 相对介电常数εr可以用静电场用如下方式测量:首先在两块极板之间为真空的时候测试电容器的电容C0。然后,用同样的电容极板间距离但在极板间加入电介质后测得电容Cx。然后相对介电常数可以用下式计算 εr=Cx/C0 在标准大气压下,不含二氧化碳的干燥空气的相对电容率εr=1.00053.因此,用这种电极构形在空气中的电容Ca来代替C0来测量相对电容率εr时,也有足够的准确度。(参考GB/T 1409-2006) 对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。 "介电常数" 在工具书中的解释: 1.又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。对于介电材料,相对介电常数愈小绝缘性愈好。空气和CS2的ε值分别为1.0006和 2.6左右,而水的ε值特别大,10℃时为8 3.83,与温度有关。 2.介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。介电常数用ε表示,一些常用溶剂的介电常数见下表: "介电常数" 在学术文献中的解释: 1.介电常数是指物质保持电荷的能力,损耗因数是指由于物质的分散程度使能量损失的大小。理想的物质的两项参数值较小 文献来源介电常数与频率变化的关系2.其介质常数具有复数形式,实数部分称为介电常数,虚数部分称为损耗因子.通常用损耗正切值(损耗因子与介电常数之比)来表示材料与微波的耦合能力,损耗正切值越大,材料与微波的耦合能力就越强

电离平衡常数和水的离子积

电离平衡常数和水的离子积 1.已知某温度下,K a(HCN)=6.2×10-10 mol·L-1、K a(HF)=6.8×10-4 mol·L-1、K a(CH3COOH)=1.8×10-5 mol·L-1、K a(HNO2)=4.6×10-4 mol·L-1。物质的量浓度都为0.1 mol·L-1的下列溶液中,pH最小的是 A.HCN溶液B.HF溶液C.CH3COOH溶液D.HNO2溶液 2.能影响水的电离平衡,并使溶液中的c(H+)>c(OH-)的操作是 A.向水中投入一小块金属钠B.将水加热煮沸 C.向水中通入二氧化碳气体D.向水中加食盐晶体 3.[双选题]下列对氨水溶液中存在的电离平衡NH 3 ·H2O NH+4+OH-叙述正确的是A.加水后,溶液中n(OH-)增大 B.加入少量浓盐酸,溶液中c(OH-)增大 C.加入少量浓NaOH溶液,电离平衡正向移动 D.加入少量NH4Cl固体,溶液中c(NH+4)增大 4.相同温度下,100 mL 0.01 mol·L-1的醋酸溶液与10 mL 0.1 mol·L-1的醋酸溶液相比较,下列数值前者大于后者的是 A.中和时所需NaOH的量B.c(H+) C.c(OH-) D.c(CH3COOH) 5.电离度是描述弱电解质电离程度的物理量,电离度=(已电离的电解 质的物质的量/原来总的物质的量)×100%。现取20 mL c(H+)=1×10-3 mol/L的CH3COOH溶液,加入0.2 mol·L-1的氨水,测得溶液导电性 变化如图所示,则加入氨水前CH3COOH的电离度为 A.0.5% B.1.5% C.0.1% D.1% 6.[双选题]在100 mL 0.1 mol/L的CH3COOH溶液中,欲使CH3COOH的电离程度增大,H+浓度减小,可采用的方法是 A.加热B.加少量CaCO3 C.加入少量0.5 mol/L的硫酸D.加入少量1 mol/L的NaOH溶液7.将浓度为0.1 mol·L-1HF溶液加水不断稀释,下列各量始终保持增大的是 A.c(H+) B.K a(HF) C.c(F-) c(H+) D. c(H+) c(HF) 8.常温下,某溶液中由水电离的c(H+)=1×10-13mol·L-1,该溶液可能是 ①二氧化硫水溶液②氯化铵水溶液③硝酸钠水溶液④氢氧化钠水溶液 A.①④B.①②C.②③D.③④ 9.室温时,某溶液中由水电离生成的H+和OH-物质的量浓度的乘积为1×10-24,则在该溶液中一定不能大量共存的离子组是 A.Al3+、Na+、NO-3、Cl-B.K+、Na+、Cl-、CO2-3 C.NH+4、Na+、Cl-、SO2-4D.NH+4、K+、SiO2-3、NO-2 10.25℃时,水的电离达到平衡:H2O++OH-ΔH>0,下列叙述正确的是A.向水中加入稀氨水,平衡逆向移动,c(OH-)降低

阻抗中有关介电常数的探究2011

阻抗中有关介电常数的探究 最近我们厂的阻抗板连续被投诉了两单。客户发现我们板子的介电常数两个批次不一样,而且不稳定。于是我们不得不重新重视我们厂对于介电常数的界定 业界习惯把FR4的介电常数界定在4.2-4.3之间,但具体是多少,很少有人能说出个所以然来。这次我们的课题中就包括了对我们厂FR4板材的介电常数的推算。具体办法就是,采集物理实验室的阻抗测试报告的数据。由测试结果反推出板材的介电常数。 介电常数跟很多因素有关,包括温度,湿度,板材本身的属性,测试时所用的信号频率等等。影响板材介电常数最大的两个因数除了板材本身的属性外就是测试频率了。一般来讲,测试频率越高,介电常数就越低,当频率大于3G时,f的变化就很小了,基本趋向于稳定了。 要想彻底弄懂介电常数就必须了解阻抗测试仪的测试原理,但目前我手头上有关这方面的资料很少,希望各位大虾们能跟进共享。 好了先写到这里吧,我要去上班了。后续的试验过程我会陆续发出,希望我们能共同把这个课题做好! 1、我们常用的PCB介质是FR4材料的,相对空气的介电常数是4.2-4.7。这个介电常数是会随温度变化的,在0-70度的温度范围内,其最大变化范围可以达到20%。介电常数的变化会导致线路延时10%的变化,温度越高,延时越大。介电常数还会随信号频率变化,频率越高介电常数越小。100M以下可以用4.5计算板间电容以及延时。 2、一般的FR4材料的PCB板中内层信号的传输速度为180ps/inch(1inch=1000mil=2.54cm)。表层一般要视情况而定,一般介于140与170之间。 3、实际的电容可以简单等效为L、R、C串联,电容有一个谐振点,在高频时(超过这个谐振点)会呈现感性,电容的容值和工艺不同则这个谐振点不同,而且不同厂家生产的也会有很大差异。这个谐振点主要取决于等效串联电感。现在的比如一个100nF的贴片电容等效串联电感大概在0.5nH左右,ESR(等效串联电阻)值为0.1欧,那么在24M左右时滤波效果最好,对交流阻抗为0.1欧。而一个1nF的贴片电容等效电感也为0.5nH(不同容值差异不太大),ESR为0.01欧,会在200M左右有最好的滤波效果。为达好较好的滤波效果,我们使用不同容值的电容搭配组合。但是,由于等效串联电感与电容的作用,会在24M与200M之间有一个谐振点,在这个谐振点上有最大阻抗,比单个电容的阻抗还要大。这是我们不希望得到的结果。(在24M到200M这一段,小电容呈容性,大电容已经呈感性。两个电容并联已经相当于LC并联。两个电容的ESR值之和为这个LC回路的串阻。LC并联的话如果串阻为0,那么在谐振点上会有一个无穷大的阻抗,在这个点上有最差的滤波效果。这个串阻反倒会抑制这种并联谐振现象,从而降低LC谐振器在谐振点的阻抗)。为减轻这个影响,可以酌情使用ESR大些的电容。ESR相当于谐振网络里的串阻,可以降低Q值,从而使频率特性平坦一些。增大ESR会使整体阻抗趋于一致。低于24M的频段和高于200M的频段上,阻抗会增加,而在24M与200M频段内,阻抗会降低。所以也要综合考虑板子开关噪声的频带。国外的一些设计有的板子在大小电容并联的时候在小电容(680pF)上串几欧的电阻,很可能是出于这种考虑。(从上面的参数看,1nF的电容Q值是100nF电容Q值的10倍。由于手头没有来自厂商的具体等效串感和ESR的值,所以上面例子的参数是根据以往看到的资料推测的。但是偏差应该不会太大。以往多处看到的资料都是1nF和100nF的瓷片电容的谐振频率分别为100M和10M,考虑贴片电容的L要小得多,而又没有找到可靠的值,为讲着方便就按0.5nH计算。如果大家有具体可靠的值的话,还希望能发上来^_^) 介电常数(Dk, ε,Er)决定了电信号在该介质中传播的速度。电信号传播的速度与介电常数平方根成反比。介电常数越低,信号传送速度越快。我们作个形象的比喻,就好想你在海滩上跑步,水深淹没了你的脚踝,水的粘度就是介电常数,水越粘,代表介电常数越高,你跑的也越慢。 介电常数并不是非常容易测量或定义,它不仅与介质的本身特性有关,还与测试方法,测试频率,测试前以及测试中的材料状态有关。介电常数也会随温度的变化而变化,有些特别的材料在开发中就考虑到温度的因素.湿度也是影响介电常数的一个重要因素,因为水的介电常数是70,很少的水分,会引起显著的变化. 以下是一些典型材料的介电常数(在1Mhz下):

相关文档
相关文档 最新文档