文档库 最新最全的文档下载
当前位置:文档库 › 齿轮结构设计和校核

齿轮结构设计和校核

齿轮结构设计和校核
齿轮结构设计和校核

直齿锥齿轮传动是以大端参数为标准值的。在强度计算时,则以齿宽中点处的当量齿轮作为计算的依据。对轴交角∑=90°的直齿锥齿轮传动,其齿数比u、锥距R(图<直齿锥齿轮传动的几何参数>)、分度圆直d1,d2、平均分度圆直径d m1,d m2、当量齿轮的分度圆直径d v1,d v2之间的关系分别为:

令φR=b/R,称为锥齿轮传动的齿宽系数,通常取φR=0.25-0.35,最常用的值为φ

=1/3。于是

R

由右图可

找出当量

直齿圆柱

齿轮得分

度圆半径

r

与平均

v

分度圆直

径d m的关

系式为

直齿锥齿轮传动的几何参数

现以m m表示当量直齿圆柱齿轮的模数,亦即锥齿轮平均分度圆上轮齿的模数(简称平均模数),则当量齿数z v为

显然,为使锥齿轮不至发生根切,应使当量齿数不小于直齿圆柱齿轮的根切齿数。另外,由式(d) 极易得出平均模数m m和大端模数m的关系为

一、直齿圆锥齿轮的背锥及当量齿数

为了便于设计和加工,需要用平面曲线来近似球面曲线,如下图。

OAB为分度圆锥,和为轮齿在球面上的齿顶高和齿根

高,过点A作直线AO1⊥AO,与圆锥齿轮轴线交于点O1,设想以OO1为轴线,

O 1A为母线作一圆锥O

1

AB,称为直齿圆锥齿轮的背锥。由图可见A、B 附近

背锥面与球面非常接近。因此,可以用背锥上的齿形近似地代替直齿圆锥齿轮大端球面上的齿形。从而实现了平面近似球面。

将背锥展成扇形齿轮,它的参数

等于圆锥齿轮大端的参数,齿数就是圆锥齿

轮的实际齿数。将扇形齿轮补足,则齿数

增加为。这个补足后的直齿圆柱齿轮称为

当量齿轮,齿数称为当量齿数。其中

当量齿数的用途:

1.仿形法加工直齿圆锥齿轮

时,选择铣刀的号码。

2.计算圆锥齿轮的齿根弯曲

疲劳强度时查取齿形系数。

标准直齿圆锥齿轮不发生根切的最

少齿数与当量齿轮不发生根切的最少齿

数的关系:

二、直齿圆锥齿轮的几何尺寸

标准直齿圆锥齿轮机构的几何尺寸计算公式

名称代

计算公式

小齿轮大齿轮

分度

齿顶

齿根

分度

齿

齿

齿

(收缩顶隙传动)顶

齿

齿

齿

收缩顶隙传动顶

角等顶隙传动

齿

齿

齿

齿

齿

结构设计校核方法

【结构设计校核方法】 【校对原则】 ※ 能按建筑设计意图将结构骨架搭建起来 ※ 在搭建过程中注意不与建筑、设备发生冲突,做到不错不漏,不碰不缺 ※ 注意结构自身合理性,不合理的要与建筑协商解决 ※ 将设计意图表示完全,表达清楚 ※ 一套图的设计参数是否统一 【校对顺序】 图面――模板――配筋――说明,检查完一项打一个勾。 【图面校对】 ○是否有异常文字和标注(文字为?号,大小不统一,标注与实际长度不符或非整数); ○是否有多余文字、尺寸线和多余轴线; ○轴线、梁线等线型是否正确,线宽是否合适; ○文字是否被重叠,被覆盖; ○墙、柱、后浇带等是否有漏、多余填充或错误填充;不同类型是否用了相同的填充式样; ○出图比例是否异常,所注比例是否正确; ○图签中图名、图号、工程名称、出图时间是否正确。 ○文字表达是否通顺 【平面模板图校对】 ①轴线 ○轴号、尺寸是否有误、是否与建筑图对应 ○总尺寸是不是分尺寸之和 ○角度是否够精度,斜交轴网以长轴两端定位,避免以起点和角度定轴线 ○有没有未定位的轴线,有没有多余轴号 ○圆弧轴线有没有注明半径,圆心有没有定位 ②轮廓与标高 ○结构轮廓与建筑是否一致 ○结构平面各部分的标高是否标明,是否与建筑相应位置符合,注意建筑覆土范围、各层卫生间、室外露台,屋顶花园,台阶位置、电梯底坑、水池的吸水槽、公共厨房与肉菜市场等 需垫高的场所 ○结构变标高位置及反梁是否为实线,有没有实线与虚线相交的地方 ○天面、地下室平面是否为结构找坡,若建筑找坡是否考虑找坡荷载 ○与邻接区域的梁、板连接关系与分缝是否正确。 ○建筑、设备在板上开的洞有没有遗漏

③柱、墙位 ○下层墙柱有没有用虚粗线表示,是否画了不该升上的墙柱,是否画了梁上柱○墙柱是否与建筑一致,在位置和尺寸上是否有影响建筑使用 ○建筑、设备在混凝土墙上开的洞有没有漏 ○注意墙、柱顶标高是否满足建筑标高,是否满足梁板的搭接要求 ④梁 ○房屋周圈梁是否等高,注意其与建筑周圈墙的关系 ○逐条检查梁的定位、编号、尺寸和跨数以及梁顶标高与板面标高关系是否正确 ○梁高宽是否异常。如悬挑梁高小于跨度的1/6,一般梁高小于跨度的1/15,梁尺寸过大影 响建筑开门窗或楼梯间等。 ○有没有高梁搭在矮梁上 ○有没有梁位置不妥,如跨过厅房等。梁布置是否影响了建筑美观○梁平齐的优先顺序:厅、主房、客房、楼梯通道、厨厕、储物间等。 ⑤楼电梯 ○有没有注上编号 ○电梯底坑标高有无遗漏,机房部位是否封板,机房顶部是否加吊钩 ○楼梯柱是否已表示且定位 ○楼梯起步位置有没有表示 ⑥开洞与井沟 ○风井,水电井、烟道是否遗漏 ○洞的定位、大小与洞边加强处理(洞边长大于12倍板厚的需加梁) ○集水井、沟、天面排水沟是否遗漏,定位与大小是否与建筑一致 ⑦大样、构造柱 ○外飘窗台,女儿墙,立面要求的构造柱、墙,雨蓬等是否与主体结构有效连接(以主体结 构为支座)在平面上的投影是否正确。 ○其定位、尺寸是否完整 ○大样详图在平面上是否有表示,是否与编号对应,标高、定位轴线与平面是否对应 ⑧大样引出号 注意剖切方向和索引图号。索引位置是否正确。相应大样是否存在 ⑨后浇带 后浇带间距是否大于55米,是否定位,是否穿过框架梁等重要结构及受力较大部位。地下 室平面与侧墙后浇带定位是否一致 ⑩模板图说明 ○楼层基本标高是否明确,混凝土强度等级抗渗等级 ○特殊楼板厚有没有说明

齿轮结构设计和校核

直齿锥齿轮传动是以大端参数为标准值的。在强度计算时,则以齿宽中 点处的当量齿轮作为计算的依据。对轴交角 刀=90。的直齿锥齿轮传动,其齿数 比u 、锥距&图<直齿锥齿轮传动的几何参数 >)、分度圆直d i , d 2、平均分度圆直 径d mi, d m2当量齿轮的分度圆直径d vi , d v2之间的关系分别为: Zj "亠 =■? 现以g 表示当量直齿圆柱齿轮的模数,亦即锥齿轮平均分度圆上轮齿 的模数(简称平均模数),则当量齿数 z v 为 (a) 丘二胆*勇诃娠屁丙pl 2 2 1 _________________ R (b) V 2 2 _ dm2 _ R - ~ = ~R - 令? R =b/R,称为锥齿轮传动的齿宽系数,通常取 ? R =0.25-0.35,最常用的值为 ~c = ? R =1/3 由右图可 找出当量 直齿圆柱 齿轮得分 度圆半径 r v 与平均 分度圆直 径d m 的关 系式为 AjIL 2cos8 --(e) 直齿锥齿轮传动的几何参数

(0 显然,为使锥齿轮不至发生根切,应使当量齿数不小于直齿圆柱齿轮 的根切齿数。另外,由式(d)极易得出平均模数mm和大端模数m的关系为 111^=111(1-0.5^)------------------------------------ (h) 、直齿圆锥齿轮的背锥及当量齿数 为了便于设计和加工,需要用平面曲线来近似球面曲线,如下图 OAB为分度圆锥,和为轮齿在球面上的齿顶高和齿根高,过点A作直线AO丄AO与圆锥齿轮轴线交于点O,设想以OO为轴线,OA为母线作一圆锥OAB,称为直齿圆锥齿轮的背锥。由图可见A、B附近背锥面与球面非常接近。因此,可以用背锥上的齿形近似地代替直齿圆锥齿轮大端球面上的齿形。从而实现了平面近似球面。

船体强度与结构设计复习材料

船体强度与结构设计复习材料 绪论 1.船体强度:是研究船体结构安全性的科学。 2.结构设计的基本任务:选择合适的结构材料和结构型式,决定全部构建的尺寸和连接方式,在保证具有充足的强度和安全性等要求下,使结构具有最佳的技术经济性能。 3.全船设计过程:分为初步设计、详细设计、生产设计三个阶段。 4.结构设计应考虑的方面:①安全性;②营运适合性;③船舶的整体配合性;④耐久性;⑤工艺性;⑥经济性。 5.极限状态:是指在一个或几个载荷的作用下,一个结构或一个构件已失去了它应起的各种作用中任何一种作用的状态。 引起船体梁总纵弯曲的外力计算 船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁。 总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。 总纵强度:船体梁抵抗总纵弯曲的能力。 引起船体梁总纵弯曲的主要外力:重力与浮力。 船体梁所受到的剪力和弯矩的计算步骤: ①计算重量分布曲线平p(x); ②计算静水浮力曲线bs(x); ③计算静水载荷曲线qs(x)=p(x)-bs(x); ④计算静水剪力及弯矩:对③积分、二重积分; ⑤计算静波浪剪力及弯矩: ⑥计算总纵剪力及弯矩:④+⑤。 重量的分类: ①按变动情况来分:不变重量(空船重量)、变动重量(装载重量); ②按分布情况来分:总体性重量(沿船体梁全场分布)、局部性重量(沿船长某一区段分布)。静力等效原则: ①保持重量的大小不变;②保持重心的纵向坐标不变; ③近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。 浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线。 载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。载荷、剪力和弯矩之间的关系: ①零载荷点与剪力的极值相对应、零剪力点与弯矩的极值相对应; ②载荷在船中前后大致相等,故剪力曲线大致是反对成的,零点靠近船中,在首尾端约船长的1/4处具有最大正、负值; ③两端的剪力为零,弯矩曲线在两端的斜率为零(与坐标轴相切)。 计算状态:指在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态,一般包括满载、压载、空载等和按装载方案可能出现的最为不利以及其它正常营运时可能出现的更为不利的装载状态。 挠度及货物分布对静水弯矩的影响: ①挠度:船体挠度对静水弯矩的影响是有利的;

V带轮结构设计张紧装置校核计算

1 V带轮结构设计和张紧装置 一、V带轮设计 1、V带轮设计的要求 质量小、结构工艺性好、无过大的铸造内应力;质量分布均匀,转速高时要经过动平衡;轮槽工作面要精细加工(表面粗糙度一般应为3.2),以减小带的磨损;各槽的尺寸和角度应保持一定的精度,以使载荷分布较为均匀。 2、带轮的材料 带轮的材料主要采用铸铁,常用材料的牌号为HT150或HT200;转速较高时宜采用铸钢(或用钢板冲压后焊接而成);小功率时可用铸铝或塑料。 3、结构形式 铸铁制V带轮的典型结构形式有三种: (a)实心式(b)腹板式(c)轮辐式 图5-11 带轮的结构形式 (1)实心式:带轮基准直径小于3d(d为轴的直径)时; (2)腹板式:带轮基准直径小于300~350mm时;

(3)轮辐式:带轮基准直径大于300~350mm时。 带轮的结构设计主要是根据带轮的基准直径选择结构形式,并根据带的型号及根数确定轮缘宽度,根据带的型号确定轮槽尺寸(表5-9)。 表5-9 V带轮的轮槽尺寸

二、V带传动的张紧装置 各种材质的V带都不是完全的弹性体,在预紧力的作用下,经过一定时间的运转后,就会由于塑性变形而松弛,使初拉力降低。为了保证带传动的能力,应定期检查初拉力的数值。如发现不足时,必须重新张紧,才能正常工作。常见的张紧装置有以下几种: 1、定期张紧装置 图5-12 定期张紧 采用定期改变中心距的方法来调节带的预紧力,使带重新张紧。 2、自动张紧装置 图5-13 自动张紧

将装有带轮的电动机安装在浮动的摆架上,利用带轮的自重,使带轮随同电动机绕固定轴摆动,以自动保持张紧力。 3、采用张紧轮的装置 图5-13 张紧轮张紧 当中心距不能调节时,可采用张紧轮将带张紧。张紧轮一般应放在松边内侧,使带只受单向弯曲,同时张紧轮还应尽量靠近大轮,以免过份影响小带轮的包角。若张紧轮置于松边外侧,则应尽量靠近小带轮。张紧轮的轮槽尺寸与带轮的相同,且直径小于小带轮的直径。 二、普通V带传动设计 1、确定设计功率 = 式中:K A为工况系数(表5-6); P为所需传递的功率。 表5-6 工况系数K A

《结构的强度和稳定性》教学设计

《技术与设计2》第一章第三节《结构的强度和稳定性》教学设计 《结构的强度和稳定性》教学设计 一、教材分析: 本节是“地质”出版的教材《技术与设计2》中第一章第三节《结构的强度和稳定性》。共需2课时完成。本课为第1课时的学习。该章的总体设计思路是:认识结构——探析结构——设计结构——欣赏结构。“结构”与“设计”是该章的两个核心概念,结构的强度和稳定性则是结构设计中需要考虑的重要因素之一,是对结构及受力认识的基础上作进一步深入的学习。 二、教学目标: 知识与技能: 1、理解力、强度、应力的概念,能进行简单的应力计算,掌握应力和强度的关系。 2、通过实验,明确强度与材料、强度与物体的形状及连接方式的关系。培养学生合作交流能力,对身边事物的观察能力。 3、理解稳定性的概念,及影响稳定性的因素。 过程与方法:通过观察生活和技术实验等方法使学生懂得应用相关的理论知识。 情感态度价值观:让学生亲身体验注重交流,通过分析讨论得到结论,培养学生的观察分析能力,合作交流能力。 三、教学重点与难点: 重点:影响结构强度和稳定性的主要因素。 难点:应力的计算,强度与应力的关系,结构设计需要在容许应力围之。 四、学情分析: 总体来说学生对通用技术这门课程比较感兴趣。他们的思维、生活经验已有一定基础,并在前面章节的学习中已经初步掌握了结构的一些相关知识,在此基础上帮助学生从其生活世界中选择通俗感兴趣的主题和容,对结构问题进行进一步探讨,上升到理论的高度。 五、教学策略:

本课采用在教学中充分利用实验、讨论、小组合作的教学方法。多举生活中的案例,进行师生互动探讨,帮助学生加深对知识的理解。 六、教学安排 1课时 七、教学过程: (一)复习回顾,导入新课 教师引导学生回顾结构的概念,指出事物的性质:强度和稳定性 (二)知识构建 1、强度 对于结构变形,只给以“结实”“不结实”来评说是不够准确的,而对于结构的受力与变形应该有更科学的描述。通常,物体结构抵抗变形的能力,都以强度来表示,我们用应力来衡量强度。 (1)力:外力使构件发生变形的同时,构件的部分子之间随之产生一种抵抗变形的抵抗力,称为力。 (2)应力:作用在单位面积上的力。 【学生活动一】 (3)拓展:探讨强度和应力的关系 示例:粗绳和细绳,两种相比粗绳更结实,牢固,换句话说是抗拉强度更大。绳子所受拉力一定,即构件受到的外力一定,而粗的横截面积大,所以应力小,此时变形小,而抗变形的能力大,即强度大。 结论:应力小,强度大应力大,强度小 【学生活动二】 (4)结合课本分小组探究影响结构强度的因素,同时完成26页问题,答在学案上。 结构的强度,一般取决于它对力和压力两方面的反应能力,具体取决于以下因素: 形状、材料(不同的材料有承受不同应力极限的能力) 材料的连接方式(不同的连接方式,受力传递方式和效果不一样) 师生探讨:如何改进物体结构的强度?

轴结构设计和强度校核

一、轴的分类 按承受的载荷不同, 轴可分为: 转轴——工作时既承受弯矩又承受扭矩的轴。如减速器中的轴。虚拟现实。 心轴——工作时仅承受弯矩的轴。按工作时轴是否转动,心轴又可分为: 转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。 固定心轴——工作时轴承受弯矩,且轴固定。如自行车轴。虚拟现实。 传动轴——工作时仅承受扭矩的轴。如汽车变速箱至后桥的传动轴。 固定心轴转动心轴

转轴 传动轴 二、轴的材料 轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。 由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。 合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。 必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。

各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。 高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。 轴的常用材料及其主要力学性能见表。

直齿圆柱齿轮的结构设计

目录 摘要 (2) 一引言 (3) 二齿轮的设计计算 (4) 2.1 选择材料、热处理方法及精度等级 (4) 2.2 齿面接触疲劳强度设计齿轮 (4) 2.3主要参数选取及几何尺寸计算 (5) 2.4 .齿轮结构设计 (5) 三绘制齿轮图、零件图、三维造型 (7) 四结束语 (8) 五参考文献 (9)

摘要 齿轮是广泛应用于机械设备中的传动零件。它的主要作用是传递运动、改变方向和转速。根据齿轮的工况,合理的设计齿轮的结构,使得齿轮传动平稳有足够的强度。通过强度计算、材料的选择、热处理方法精度选择、几何尺寸计算。考虑齿面接触疲劳强度和齿根曲面疲劳强度得出齿轮的结构。 关键词:齿轮传动、齿轮精度、热处理、疲劳强度

一引言 随着我过工业的发展,齿轮是现代机械中应用最广泛的一种机械传动零件。它的结构设计随着工业的需要而改变。齿轮的结构设计与齿轮的几何尺寸、毛坯、材料、加工方法、使用要求及经济性等因素有关。进行齿轮的结构设计时,必须综合地考虑上述各方面的因素。通常是先按齿轮的直径大小,选定合适的结构形式,然后再根据荐用的经验数据,进行结构设计。 随着科技技术的不断进步,生产都向着自动化、专业化和大批量化的方向发展。这就要求企业的生产在体现人性化的基础上降低工人的生产强度和提高工人的生产效率,降低企业的生产成本。现代的生产和应用设备多数都采用机电一体化、数字控制技术和自动化的控制模式。在这种要求下齿轮零件越发体现出其广阔的应用领域和市场前景。特别是近年来与微电子、计算机技术相结合后,使齿轮零件进入了一个新的发展阶段。在齿轮零部件是最重要部分,因需求的增加,所以生产也步入大批量化和自动化。 为适应机械设备对齿轮加工的要求,对齿轮加工要求和技术领域的拓展还需要不断的更新与改进。

结构设计及强度校核

专业综合训练任务书: 49.9米150吨冷藏船结构设计及总纵强度计算 一、综合训练目的 1、通过综合训练,进一步巩固所学基础知识,培养学生分析解决实际工程问题的能力,掌握静水力曲线的计算与绘制方法。 2、通过综合训练,培养学生耐心细致的工作作风和重视实践的思想。 3、为后续课程的学习和走上工作岗位打下良好的基础。 二、综合训练任务 1.150吨冷藏船结构设计,提供主要构件的计算书。 2.参考该船图纸和相关静水力资料、邦戎曲线图,按照《钢质内河船舶建造规范》的要求进行总纵 强度计算,提供总纵强度计算书。 3.参考资料: 1)中国船级社. 钢质海船入级与建造规范 2009 2)王杰德等. 船体强度与结构设计北京:国防工业出版社,1995 3)聂武等. 船舶计算结构力学哈尔滨:哈尔滨工程大学出版社,2000 三、要求: 1、专业综合训练学分重,应予以足够重视; 2、计算书格式要符合要求; 如船体结构设计计算书应包括:(a)对设计船特征(船型、主尺度、结构形式等)的概述,设计所根据的规范版本的说明等;(b)应按船底、船侧、甲板的次序,分别写出确定每一构件尺寸的具体过程,并明确标出所选用的尺寸。(c)计算书应简明、清晰、便于检查。 3、强度计算: a)按第一、二章的要求和相关表格做,如静水平衡计算,静水弯矩计算等; b)波浪弯矩等可按规范估算; c)相关表格用计算器计算,表格绘制于“课程设计”本上 注意:请班长到教材室领取课程设计的本子和资料袋(档案袋),各位同学认真填写资料袋封面。 4、专业综合训练总结:300~500字。 四、组织方式和辅导计划: 1、参考资料: a)船体强度与结构设计教材 b)某船的构件设计书 c)某船的总纵强度计算书 d)《钢质内河船舶建造规范》,最好2009版 2、辅导答疑地点:等学校安排。 五、考核方式和成绩评定: 1、平时考核成绩:参考个人进度。 2、须经老师验收合格,故应提前一周交资料,不合格的则需回去修改。 3、第18周星期三下午4:00前必须交资料,资料目录见第2页。 4、一旦发现打印、复印、数据格式完全相同等抄袭现象,均按规定以不及格计。 5、成绩由指导教师根据学生完成质量以及学生的工作态度与表现综合评定,分为优、良、中、及格、 不及格五个等级。 六、设计进度安排: 1、有详细辅导计划,但具体进度可根据个人情况可以自己定。 附录:档案袋内资料前2页如下

轴的设计与校核

2.1.1 概述 轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。1. 轴的分类 根据工作过程中轴的中心线形状的不同,轴可以分为:直轴和曲轴。根据工作过程中的承载不同,可以将轴分为: ?传动轴:指主要受扭矩作用的轴,如汽车的传动轴。 ?心轴:指主要受弯矩作用的轴。心轴可以是转动的,也可以是不转动的。 ?转轴:指既受扭矩,又受弯矩作用的轴。转轴是机器中最常见的轴。 根据轴的外形,可以将直轴分为光轴和阶梯轴;根据轴内部状况,又 可以将直轴分为实心轴和空。 2. 轴的设计 ⑴ 轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。

⑵ 轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。 3. 轴的材料 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括:?碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。常用牌号有:30、35、40、45、50。采用优质碳钢时,一般应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 ?合金钢:对于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,可以选用合金纲。合金钢具有更好的机械性能和热处理性能,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。 ?铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。 2.1.2 轴的结构设计

齿轮结构设计

齿轮结构设计 齿轮结构设计主要确定齿轮的轮缘、轮毂及腹板(轮辐)的结构形式和尺寸大小。结构设计通常要考虑齿轮的几何尺寸、材料、使用要求、工艺性及经济性等因素,确定适合的结构型式,再按设计手册荐用的经验数据确定结构尺寸。齿轮结构形式有以下四种: 1.齿轮轴 当齿轮的齿根圆到键槽底面的距离e很小,如圆柱齿轮e≤2.5mn(下图一a),圆锥齿轮的小端e≤1.6m(下图一b),为了保证轮毂键槽足够的强度,应将齿轮与轴作成一体,形成齿轮轴,如下图二所示。 齿轮轴 2. 实心齿轮 当齿顶圆直径da≤200mm或高速传动且要求低噪声时,可采用上图一的实心结构。实心齿轮和齿轮轴可以用热轧型材或锻造毛坯加工。 3. 辐板式齿轮 对于齿顶圆直径da≤500mm时,可采用辐板式结构,以减轻重量、节约材料。通常多选用锻造毛坯,也可用铸造毛坯及焊接结构。有时为了节省材料或解决工艺问题等,而采用组合装配式结构,如过盈组合和螺栓联结组合。 腹板式齿轮(锻造)

腹板式锥齿轮 双腹板焊接齿轮 过盈、螺栓联接组合 4. 轮辐式齿轮 对于齿轮直径时,采用轮辐式结构。受锻造设备的限制,轮辐式齿轮多为铸造齿轮。轮辐剖面形状可以采用椭圆形(轻载)、十字形(中载)、及工字形(重载)等。

轮辐式齿轮(锻造)轮结构设计主要确定齿轮的轮缘、轮毂及腹板(轮辐)的结构形式和尺寸大小。结构设计通常要考虑齿轮的几何尺寸、材料、使用要求、工艺性及经济性等因素,确定适合的结构型式,再按设计手册荐用的经验数据确定结构尺寸。齿轮结构形式有以下四种: 1. 齿轮轴 当齿轮的齿根圆到键槽底面的距离e很小,如圆柱齿轮e≤2.5mn(下图一a),圆锥齿轮的小端e≤1.6m(下图一b),为了保证轮毂键槽足够的强度,应将齿轮与轴作成一体,形成齿轮轴,如下图二所示。 齿轮轴 2. 实心齿轮 当齿顶圆直径da≤200mm或高速传动且要求低噪声时,可采用上图一的实心结构。实心齿轮和齿轮轴可以用热轧型材或锻造毛坯加工。 3. 辐板式齿轮 对于齿顶圆直径da≤500mm时,可采用辐板式结构,以减轻重量、节约材料。通常多选用锻造毛坯,也可用铸造毛坯及焊接结构。有时为了节省材料或解决工艺问题等,而采用组合装配式结构,如过盈组合和螺栓联结组合。 腹板式齿轮(锻造)

《结构的强度和稳定性》教学设计电子教案

《结构的强度和稳定性》教学设计

《技术与设计2》第一章第三节《结构的强度和稳定性》教学设计 《结构的强度和稳定性》教学设计 一、教材分析: 本节是“地质出版社”出版的教材《技术与设计2》中第一章第三节《结构的强度和稳定性》。共需2课时完成。本课为第1课时的学习。该章的总体设计思路是:认识结构——探析结构——设计结构——欣赏结构。“结构”与“设计”是该章的两个核心概念,结构的强度和稳定性则是结构设计中需要考虑的重要因素之一,是对结构及受力认识的基础上作进一步深入的学习。 二、教学目标: 知识与技能: 1、理解内力、强度、应力的概念,能进行简单的应力计算,掌握应力和强度的关系。 2、通过实验,明确强度与材料、强度与物体的形状及连接方式的关系。培养学生合作交流能力,对身边事物的观察能力。 3、理解稳定性的概念,及影响稳定性的因素。 过程与方法:通过观察生活和技术实验等方法使学生懂得应用相关的理论知识。 情感态度价值观:让学生亲身体验注重交流,通过分析讨论得到结论,培养学生的观察分析能力,合作交流能力。 三、教学重点与难点: 重点:影响结构强度和稳定性的主要因素。

难点:应力的计算,强度与应力的关系,结构设计需要在容许应力范围之内。 四、学情分析: 总体来说学生对通用技术这门课程比较感兴趣。他们的思维、生活经验已有一定基础,并在前面章节的学习中已经初步掌握了结构的一些相关知识,在此基础上帮助学生从其生活世界中选择通俗感兴趣的主题和内容,对结构问题进行进一步探讨,上升到理论的高度。 五、教学策略: 本课采用在教学中充分利用实验、讨论、小组合作的教学方法。多举生活中的案例,进行师生互动探讨,帮助学生加深对知识的理解。 六、教学安排 1课时 七、教学过程: (一)复习回顾,导入新课 教师引导学生回顾结构的概念,指出事物的性质:强度和稳定性 (二)知识构建 1、强度 对于结构变形,只给以“结实”“不结实”来评说是不够准确的,而对于结构的受力与变形应该有更科学的描述。通常,物体结构抵抗变形的能力,都以强度来表示,我们用应力来衡量强度。 (1)内力:外力使构件发生变形的同时,构件的内部分子之间随之产生一种抵抗变形的抵抗力,称为内力。

发动机结构与设计各类计算与校核结构设计

发动机结构与设计各类计算与校核结构设计 一、摩托车发动机结构与设计 (一)、发动机机体 1.气缸体 气缸体的作用除形成气缸工作容积外,还用作活塞运动导向,其圆柱形空腔称为气缸。 由于气缸壁表面经常与高温高压燃气接触,活塞在汽缸内作高速运动(最高速度可达100km/s )并施加侧压力,以及气缸壁与活塞环几活塞外圆表面之间反复摩擦,而其润滑条件由较差,所以气缸体必须耐高温、耐高压、耐腐蚀,还应具有足够的刚度和强度。 气缸体的材料一般用优质灰铸铁,为了提高气缸的耐磨性,可以在铸铁中加入少量的合金元素,如镍、铬、钼、磷、硼等。 汽缸内壁按二级精度珩磨加工,其工作表面有较高的关洁度,并且形状和尺寸精度也都比较高。 为了保证气缸壁表面能在高温下正常工作,必须对汽缸体和气缸盖随时加以冷却。发动机有风冷和水冷两种。用风冷却时,在汽缸体和气缸盖外表面铸有许多散热片,易增大冷却面积,保证散热充分。用水冷却时在汽缸体内制有水套。 1.1 气缸直径 气缸直径是指气缸内径,与活塞相配合,是发动机的重要参数,许多主要的尺寸如曲柄销直径、气门直径、活塞结构参数等,都要根据气缸直径来选取。 参数设计: 气缸直径已标准化,其直径值按一个优先系列合一个常用系列来选取。根据有关资料可确定气缸的直径D. 1.2 气缸工作容积、燃烧室容积和气缸总容积 上止点和下止点之间的气缸容积,称为气缸工作容积(也称为总排量)(图1)。气缸工作容积与气缸直径的平方、活塞冲程的大小成正比。气缸直径越大、工作容积越大、发动机的功率也就相应地增大。 气缸工作容积的计算公式为 N S D V n ??=42 π 式中: V n ——气缸工作容积(ml); D —— 气缸直径(mm ); S —— 活塞行程(mm;) N —— 气缸数目。 参数设计: 因设计要求的是单缸发动机的排气量V n 为100ml ,那么其活塞行程为: 2 4n S V d π= 同时活塞行程S =2r ;r 为曲轴半径 那么:2S r = 1.3压缩比 图1 气缸燃烧室容积和工作室容积 (a )燃烧室容积 (b )工作室容积

齿轮结构及设计工艺技术

齿轮机构及其设计 1. 工业的象征; 2. 历史悠久; 3. 研究(广泛)深入,分工细致。 二、齿轮的类型 1.平行轴:a.直齿圆柱齿轮:外啮合/内啮合 b.斜齿圆柱齿轮:外啮合/内啮合 c.人字齿轮 2.相交轴:a.直齿圆锥齿轮 b.曲齿圆锥齿轮 3.交错轴:a.螺旋齿轮(交错轴斜齿轮) b.蜗杆蜗轮 c.准双曲面齿轮 4.齿轮齿条:a.直齿 b.斜齿 c.螺旋齿 三、本章要求

1.齿形 ---- 掌握渐开线齿廓啮合特性。 2.几何尺寸 ----会计算渐开线齿轮传动的几何尺寸。. 四、本章特点 1.名词术语多、概念多、公式多。 2.注意归纳、掌握规律、化为少。

§5-2 齿廓啮合差不多定律 一、齿廓啮合的差不多定律 1.节圆 已知:两啮合中心距a=O 1O 2 传动比 2 112ωω= i a . 节点---两个齿轮的相对速度瞬心。 由于 v v p p 21= 故有 p p o o 2211ωω= 得 121221i p o p o ==ωω ① 由图知 a p p o o =+21 ② 解上两式子i o a p 1211+= 12 221i a p i o += [讨论]

假如i 12为变量,则p o 1亦为变量,p 点为动点,它在动平面上画出的曲线为非圆曲线。 假如i 12为常量,则p o 1亦为定值,p 点为定点,按在动平面上画出的轨迹为圆。 b .节圆---当 c i =12时,以 p o 1 、p o 2为半径的两个圆。 ① 节圆半径只决定与a 与12i 。 ② 节圆是一对相互啮合齿轮上作相切纯滚动的圆。 ③ 一对齿轮相啮合时才有节圆。(单个齿轮无节圆) 2.齿廓的几何要求 a. 设两齿廓在任意一点k 接触。主动轮1推动从动轮2转动。 b .两齿轮在k 点的线速度分不为K O K O v v k k 2211,⊥⊥ 。 c .沿公法线n-n 方向v v kn kn 21=,即1122cos cos k k k k v v αα= d .也确实是222111cos cos k k K O K O αωαω'= e .作辅助线 f .设n-n 线与连心线交于Q 点,则有Q N O 11?与Q N O 22?相似。

齿轮结构设计和校核

直齿锥齿轮传动是以大端参数为标准值的。在强度计算时,则以齿宽中 点处的当量齿 轮作为计算的依据。对轴交角 刀=90。的直齿锥齿轮传动,其齿数 比u 、锥距R (图<直齿锥齿轮传动的几何参数 >)、分度圆直d i , d 2、平均分度圆直 径d m1 d m2当量齿轮的分度圆直径d v1, d v2之间的关系分别为: —=cotO| =tan5j di 2 ' 2 】2 也亠= R-0.5b 亠05丄 _______________________________ 右 dj R R 令? R =b/R,称为锥齿轮传动的齿宽系数,通常取 ? R =0.25-0.35,最常用的值为 于是《^二即-0?5備 ------------------------------- (d ) 由右图可 找出当量 直齿圆柱 齿轮得分 度圆半径 r v 与平均 分度圆直 径d m 的关 系式为 q= d 脏 V 2cos6 现以m m 表示当量直齿圆柱齿轮的模数,亦即锥齿轮平均分度圆上轮齿 的模数(简称平均模数),则当量齿数 Z v 为 (h) R =1/3 O V) R 2 巧 i ■ A & ... = 直齿锥齿轮传动的几何参数

山 2片 Z J =—=—=—--- m 肌 cos5 U =匹=乞.沁 V c Z 屮] Z] COSO 士 显然,为使锥齿轮不至发生根切,应使当量齿数不小于直齿圆柱齿轮 的根切齿数。另外,由式(d )极易得出平均模数m 和大端模数m 的关系为 叫二呗―05 虬) -------------------------------------- (11) 、直齿圆锥齿轮的背锥及当量齿数 为了便于设计和加工,需要用平面曲线来近似球面曲线,如下图。 OAB 为分度圆锥,总』和用为轮齿在球面上的齿顶高和齿根高, 过点A 作直线AO 丄AO 与圆锥齿轮轴线交于点 O ,设想以OO 为轴线,OA 为母线作一圆锥OAB,称为直齿圆锥齿轮的背锥。由图可见A B 附近背锥 面与球面非常接近。因此,可以用背锥上的齿形近似地代替直齿圆锥齿轮大 端球面上的齿形。从而实现了平面近似球面。 (g)

船舶强度与结构设计的复习题

复习题 第一章(重点复习局部载荷分配、静水剪力弯矩的计算绘制) 1、局部载荷是如何分配的? (2理论站法、3理论站法以及首尾理论站外的局部重力分布计算) P P P =+21 a P L P P ?=?+)(2 121 由此可得: ?? ? ?? ?? ?-=?+=)5.0()5.0(21L a P P L a P P 分布在两个理论站距内的重力 2、浮力曲线是如何绘制的? 浮力曲线通常按邦戎曲线求得,下图表示某计算状态下水线为W-L 时,通常 根据邦戎曲线来绘制浮力曲线。为此,首先应进行静水平衡浮态计算,以确定船舶在静水中的艏、艉吃水。

帮戎曲线确定浮力曲线 3、M、N曲线有何特点? (1) M曲线:由于船体两端是完全自由的,因此艏、艉端点处的弯矩应为零,亦即弯矩曲线在端点处是封闭的。此外,由于两端的剪力为零,即弯矩曲线在两端的斜率为零,所以弯矩曲线在两端与纵坐标轴相切。 (2) N曲线:由于船体两端是完全自由的,因此艏、艉端点处的剪力应为零,亦即剪力曲线在端点处是封闭的。在大多数情况下,载荷在船舯前和舯后大致上是差不多的,所以剪力曲线大致是反对称的,零点在靠近船舯的某处,而在离艏、艉端约船长的1/4处具有最大正值或负值。 5、计算波的参数是如何确定的? 计算波为坦谷波,计算波长等于船长,波峰在船舯和波谷在船舯。 采用的军标GJB64.1A中波高h按下列公式确定: 当λ≥120m时, 当60m≤λ≤120m时,当λ≤60m时, 20 λ = h(m) 2 30 + = λ h(m) 1 20 + = λ h(m) 6、船由静水到波浪中,其状态是如何调整的? 船舶由静水进入波浪,其浮态会发生变化。若以静水线作为坦谷波的轴线,当船舯位于波谷时,由于坦谷波在波轴线以上的剖面积比在轴线以下的剖面积小,同时船体中部又较两端丰满,所以船在此位置时的浮力要比在静水中小, 因而不能处于平衡,船舶将下沉ξ值;而当船舯在波峰时,一般船舶要上浮一些。 另外,由于船体艏、艉线型不对称,船舶还将发生纵倾变化。 7、麦卡尔假设的含义。 麦卡尔方法是利用邦戎曲线来调整船舶在波浪上的平衡位置。因此,在计算 时,要求船舶在水线附近为直壁式,同时船舶无横倾发生。根据实践经验,麦 卡尔法适用于大型运输船舶。 第二章 (重点复习计算剖面的惯性矩、最小剖面模数是如何的计算、折减系数、极限弯矩的计算)1、危险剖面的确定。 危险剖面: 可能出现最大弯曲应力的剖面,由总纵弯曲力矩曲线可知,最大弯矩一般在 船中0.4倍船长范围的,所以计算剖面一般应是此范围内的最弱剖面—既有最大

布袋除尘器结构设计及强度计算(精)

?布袋除尘器结构设计及强度计算 2009-9-28 2:05:30 ?前言 低压脉冲布袋除尘器广泛应用于电厂脱硫除尘及一般钢厂除尘中(应用于钢厂及电厂的主要区别是除尘器外表是否需要保温、烟气对钢板的腐蚀程度及滤料的选择等),脱硫后的烟尘经过该除尘器后,其排放到大气中的浓度基本控制在20~30mg/m3,低于国家环保部门规定的50mg/m3。 低压脉冲布袋除尘器的工作原理:含尘气体由导流管进入各单元,大颗粒粉尘经分离后直接落入灰斗、其余粉尘随气流进入中箱体过滤区,过滤后的洁净气体透过滤袋经上箱体、排风管排出。随着过滤工况的进行,当滤袋表面积尘达到一定量时,由清灰控制装置(差压或定时、手动控制)按设定程序打开电磁脉冲阀喷吹,抖落滤袋上的粉尘。落入灰斗中的粉尘借助输灰系统排出。 低压脉冲除尘器的主要结构组成如下:底柱组件、滑块组件、顶柱组件、灰斗组件(含三通及风量调节阀,如果有的话)、进风装置、中箱体、上箱体、喷吹系统、离线装置、内旁路装置(外旁路,可供选择)、平台扶梯、防雨棚、气路配管及控制元件等组成。其结构简图如下: 除尘器的设计过程中,应当对除尘器的载荷(包括静载、动载、风载、雪载及地震载荷等,单位KN)、除尘器承受的设计负压(单位Pa)、板件材料的屈服极限及抗拉伸极限等(单位

MPa),要有一定程度的了解。必要时,结构设计人员可以查阅相关的机械设计手册,以加深自己对这方面的理解。 如下的设计过程仅供除尘设备制造厂家及相关设计 单位参考。 1.除尘器载荷的确定: 1.1静载的确定:G静载=∑Gi(i=1~5) 式中,G1本体钢结构部分的重量,G2滤袋总重,G3袋笼总重,G4滤袋表面积灰5mm的重量,G5灰斗允许积灰重量。按本公司多年来的设计经验,静载荷在除尘器基础上的分布,一般是,最外面一圈基础柱桩的载荷为总静载分布在所有柱桩上的平均值Gp的110%。次外圈一圈柱桩的载荷为Gp的120~200%,以此类推,直到最内圈载荷。内圈载荷高于外圈载荷,但内外圈载荷最大差别不得超过300KN。这样设计载荷的目的是保证本体结构系统的地基稳定性。关于载荷部分的详细分配及计算过程可以参考《建筑荷载设计规范》手册。 1.2动载的确定 按楼面及屋面活荷载取标准值2.5KN/m2(检修平台按4KN/m2)来计算。 除尘器总动载荷:F=KA0A1+KA1A2,KA1检修平台活荷载取标准值,A1除尘器平面投影面积,A2平台扶梯平面投影面积。 设计时,单个承载点荷载值是平均值的100~120%左右。具体分布时,可以是平台扶梯结构多的部分取偏大值,结构少的部分取较小

结构设计原理计算方法

结构设计原理案例计算步骤 一、单筋矩形截面受弯构件正截面承载力计算 计算公式: ——水平力平衡 ()——所有力对受拉钢筋合力作用点取矩() ()——所有力对受压区砼合力作用点取矩()使用条件: 注:/,&& 计算方法: ㈠截面设计yy 1、已知弯矩组合设计值,钢筋、混凝土强度等级及截面尺寸b、h,计算。 ①由已知查表得:、、、; ②假设; ③根据假设计算; ④计算(力矩平衡公式:); ⑤判断适用条件:(若,则为超筋梁,应修改截面尺寸或提 高砼等级或改为双筋截面); ⑥计算钢筋面积(力平衡公式:); ⑦选择钢筋,并布置钢筋(若 ,则按一排布置); 侧外 ⑧根据以上计算确定(若与假定值接近,则计算,否则以的确定值作 为假定值从③开始重新计算); ⑨以的确定值计算; ⑩验证配筋率是否满足要求(,)。 2、已知弯矩组合设计值,材料规格,设计截面尺寸、和钢筋截面面积。 ①有已知条件查表得:、、、; ②假设,先确定; ③假设配筋率(矩形梁,板); ④计算(,若,则取); ⑤计算(令,代入); ⑥计算(,&&取其整、模数化); ⑦确定(依构造要求,调整); ⑧之后按“1”的计算步骤计算。 ㈡承载力复核 已知截面尺寸b、,钢筋截面面积,材料规格,弯矩组合设计值,

所要求的是截面所能承受的最大弯矩,并判断是否安全。 ①由已知查表得:、、、; ②确定; ③计算; ④计算(应用力平衡公式:,若,则需调整。令, 计算出,再代回校核); ⑤适用条件判断(,,); ⑥计算最大弯矩(若,则按式计算最大弯矩) ⑦判断结构安全性(若,则结构安全,但若破坏则破坏受压区,所以应以受压区控制设计;若,则说明结构不安全,需进行调整——修改尺寸或提高砼等级或改为双筋截面)。 二、双筋矩形截面梁承载力计算 计算公式: , ,()+() 适用条件: (1) (2) 注:对适用条件的讨论 ①当&&时,则应增大截面尺寸或提高砼等级或增加的用量(即 将当作未知数重新计算一个较大的);当时,算得的即为安全要 求的最小值,且可以有效地发挥砼的抗压强度,比较经济; ②当&&时,表明受压区钢筋之布置靠近中性轴,梁破坏时应变较 小,抗压钢筋达不到其设计值,处理方法: a.《公桥规》规定:假定受压区混凝土压应力的合力作用点与受压区钢筋合力作用 点重合,并对其取矩,即 令2,并 () 计算出; b.再按不考虑受压区钢筋的存在(即令),按单筋截面梁计算出。 将a、b中计算出的进行比较,若是截面设计计算则取其较小值,若是承载能力复核则取其较大值。 计算方法: ㈠截面设计 1.已知截面尺寸b、h,钢筋、混凝土的强度等级,桥梁结构重要性系数,弯矩组合 设计值,计算和。 步骤: ①根据已知查表得:、、、、; ②假设、(一般按双排布置取假设值); ③计算;

齿轮与轴系零件结构设计

机械设计大作业题目齿轮及轴系零件设计 机械工程及自动化学院 机械设计制造及其自动化专业 08 年级 1 班设计者志强 指导教师亮 完成日期 2010年11月24日

一.目的 1、掌握齿轮及轴系零件结构设计的方法 2、培养独立设计能力 3、学会查阅有关手册及设计资料 二.题目及方案 1、题目:齿轮及轴系零件设计 2、设计方案: 项目 输出轴转 速(r/min)输出轴功 率(kW) 大齿轮齿 数Z2 大齿轮模 数m n 大齿轮螺 旋角β (左旋) 大齿轮宽 度B 小齿轮齿 数Z1 设计方案155 4.5 107 3 9°22 80 23 三.结构简图:

(五)初步设计轴的结构 1)为了满足半联轴器的轴向定位要求,I-II 轴段右端需制出一轴肩,由密封圈处轴径标准值系列:25,28,30,32,35,38,40,42,45,48,50,55,60??????可得: 取 d 45mm II III -= 2)II-III 轴段右端的轴肩为非定位轴肩,由轴承标准系列综合考虑, 取50mm III IV d -= 由于两个轴承成对,故尺寸相同, 所以d 50III IV VII VIII d mm --== 因为轴承宽度B=20mm, 所以,VII-VIII L =20mm 3)半联轴器与轴配合的毂孔长度1L 112mm =,为保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故I-II L 长度应比1L 略短一些, 取I-II L 110mm = 4)由齿轮孔轴径及III-IV 轴段右端轴肩考虑,该轴肩为非定位轴肩, 各轴段长度和半径: d 45mm II III -= 50mm III IV d -= d 50III IV VII VIII d mm --== VII-VIII L =20mm I-II L 110mm = IV-V =52d mm 60mm V VI d -=

轴的强度校核方法

轴的强度校核方法 摘要 轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。轴的设计时应考虑多方面因素和要求,其中主要问题是轴的选材、结构、强度和刚度。其中对于轴的强度校核尤为重要,通过校核来确定轴的设计是否能达到使用要求,最终实现产品的完整设计。 本文根据轴的受载及应力情况采取相应的计算方法,对于1、仅受扭矩的轴2、仅受弯矩的轴3、既承受弯矩又承受扭矩的轴三种受载情况的轴的强度校核进行了具体分析,并对如何精确计算轴的安全系数做了具体的简绍。 校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。 轴的强度校核方法可分为四种: 1)按扭矩估算 2)按弯矩估算 3)按弯扭合成力矩近视计算 4)精确计算(安全系数校核) 关键词:安全系数;弯矩;扭矩

目录 第一章引言--------------------------------------- 1 1.1轴的特点---------------------------------------------1 1.2轴的种类---------------------------------------------1 1.3轴的设计重点-----------------------------------------1 第二章轴的强度校核方法----------------------------4 2.1强度校核的定义-------------------------------------4 2.2轴的强度校核计算-----------------------------------4 2.3几种常用的计算方-----------------------------------5 2. 3.1按扭转强度条件计算-------------------------------5 2.3.2按弯曲强度条件计算-------------------------------6 2.3.3按弯扭合成强度条件计算---------------------------7 2.3.4精确计算(安全系数校核计算)----------------------9 2.4 提高轴的疲劳强度和刚度的措施---------------------12 第三章总结------------------------------------------13参考文献--------------------------------------------14

相关文档