文档库 最新最全的文档下载
当前位置:文档库 › 周期图估计法

周期图估计法

周期图估计法

一种信号功率谱密度估计方法。它的特点是:为得到功率谱估值,先取信号序列的离散傅里叶变换,然后取其幅频特性的平方并除以序列长度N,即

(1)

(2)

由于序列x(n)的离散傅里叶变换X()具有周期性,因而这种功率谱也具有周期性,

常称为周期图。早期的统计学者曾利用这种方法从大量的数据中寻找隐藏的周期性的规律。周期图是信号功率谱的一个有偏估值;而且,当信号序列的长度增大到无穷时,估值的方差不趋于零。因此,随着所取的信号序列长度的不同,所得到的周期图也不同,这种现象称为随机起伏。由于随机起伏大,使用周期图不能得到比较稳定的估值。一些学者对此作了改进。

为了减小随机起伏,M.S.巴特利特提出平均周期图法,即先把信号序列分为若干段,对每段分别计算其周期图,然后取各个周期图的平均作为功率谱的估值。平均周期图可以减小随机起伏,但是,如果信号序列不是足够长,由于每段序列长度变短,功率谱估值对不同频率成分的分辨能力也随之下降。另一种改进方法是将周期图与一个适当的频域窗函数相褶积,从而对周期图产生平滑作用,以减小随机起伏。加窗处理的结果虽然可以使随机起伏减小,但也会使周期图的分辨能力下降。

P.O.韦尔奇提出一种把加窗处理与平均处理结合起来的方法。先把分段的数据乘以窗函数(进行加窗处理),分别计算其周期图,然后进行平均。韦尔奇方法是较常用的一种计算方法。为了得到较好的功率谱估值,加窗和平均处理均应兼顾减小随机起伏和保证有足够的谱分辨率两个方面。

周期图法的优点是能应用离散傅里叶变换的快速算法来进行估值。对利用式(1)、(2)得到的功率谱估值进行傅里叶反变换,可以得到信号的自相关函数估值。这种方法适用于长信号序列的情况,在有足够的序列长度时,应用改进的周期图法,可以得到较好的功率谱估值,因而应用很广。

经典功率谱和Burg法的功率谱估计

现代信号处理作业 实验题目: 设信号)()8.0cos(25.0)47.0cos()35.0cos()(321n v n n n n x ++++++=θπθπθπ,其中321,,θθθ是[]ππ,-内的独立随机变量,v(n)是单位高斯白噪声。 1.利用周期图法对序列进行功率谱估计。数据窗采用汉明窗。 2.利用BT 法对序列进行功率谱估计,自相关函数的最大相关长度为M=64,128,256,512采用BARTLETT 窗。 3.利用Welch 法对序列进行功率谱估计,50%重叠,采用汉明窗,L=256,128,64。 4.利用Burg 法对序列进行AR 模型功率谱估计,阶数分别为10,13. 要求每个实验都取1024个点,fft 作为谱估计,取50个样本序列的算术平均,画出平均的功率谱图。 实验原理: 1)。周期图法: 又称间接法,它把随机信号的N 个观察值x N (n)直接进行傅里叶变换,得到X N (e jw ),然后取其幅值的平方,再除以N ,作为对x (n )真实功率谱的估计。 2^ )(1)(jw e X N w P N per = , 其中∑-=-=1 )()(N n jwn N jw N e n x e X 2)。BT 法: 对于N 个观察值x(0),x(1),。。。,x(N-1),令x N (n)=a(n)x(n)。计算r x (m )为

∑--=-≤+= m N n N N x N m m n x n x N m r 10 1),()(1 )(,计算其傅里叶变换 ∑-=--≤= M M m jwm x BT N M e m r m v w P 1 ,)()()(^ ^ ,作为观察值的功率谱的估计。 其中v(m)是平滑窗。 3)。Welch 法: 假定观察数据是x(n),n=0,1,2...,N-1,现将其分段,每段长度为M,段与段之间的重叠为M-K,第i 个数据段经加窗后可表示为 1,...,1,0 )()()(-=+=M i iK n x n a n x i M 其中K 为一整数,L 为分段数,该数据段的周期图为 2)(1)(^w X MU w P i M i per =,其中∑-=-=1 0)()(M n j w n i M i M e n x w X 。由此得到平均周期图为 ∑-==10 ^_ )(1)(L i i per w P L w P 。其中归一化U 取∑-== 10 2 )(1M n n a M U 。 4)。Burg 法: 在约束条件下,使得)(2 1^^^ b f ρρρ+=极小化,其中,约束条件是它所得到的 各阶模型解要求满足Levison 递归关系。 仿真结果: 1.周期图法

MATLAB仿真实现经典谱估计(采用周期图法)

数字信号处理 课程实验报告 实验指导教师:黄启宏 实验名称 MATLAB 仿真实现经典谱估计(采用周期图法) 专业、班级 电子与通信工程 姓 名 张帅 实验地点 仿古楼301 实验日期 2013.11.17 一、实验内容 采用周期图法(直接法)实现经典谱估计。 二、实验目的 (1)掌握周期图法(直接法)估计出功率谱的步骤和方法; (2)在实验的过程中找到影响经典谱估计的因素; (3)了解周期图法(直接法)估计功率谱的缺陷。 三、实验原理 把随机信号()x n 的N 点观察数据()N x n 视为一能量有限信号,直接取得()N x n 傅里叶变换,得()jw N x e ,然后再取其幅值的平方,并除以N ,作为对()x n 真实的功率谱()jw P e 的估计。即为: ^ 21()|()|PER N P X N ωω= ^ 21()|()|PER N P k X k N = 四、涉及实验的相关情况介绍(包含使用软件或实验设备等情况) 一台安装MATLAB 软件的电脑

五、实验记录 程序、相关的图形、相关数据记录及分析)( %采用直接法(周期图法)估计功率谱; clear Fs = 1000;%采样频率 n = 0:1 /Fs: .3;%产生含有噪声的序列 xn = cos(200*pi*n)+0.1*randn(size(n)); subplot(311);%输出随机信号xn; plot(n,xn);xlabel('时间');ylabel('幅度');title('输入信号x(n)'); axis([0 0.3 -2 2]); grid on; window = boxcar( length( xn) ) ;%矩形窗 nfft = 512; [Pxx f]= periodogram( xn,window,nfft,Fs) ;%直接法 subplot(312) plot( f,10* log10( Pxx) ) ; title('直接法经典谱估计,512点'); xlabel('频率(Hz)'); ylabel('功率谱密度'); grid on; window = boxcar( length( xn) ); nfft = 1024;

季节性时间序列分析方法

季节性时间序列分析方 法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7) 2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847)

对于这样每一个子序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除( 或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W 2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有

季节性时间序列分析方法

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847) 对于这样每一个子序列都可以给它拟合ARIMA模型,同时认为各个序列之间是相互独立的。但是

这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W ΛΛ2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有 t t d a B e B )()(Θ=?φ (2) 式中,t a 为白噪声;n n B B B B ???φ----=Λ22111)(;m m B B B B θθθ----=ΘΛ22111)(。 在(1)式两端同乘d B ?)(φ,可得: t S t d S t D S d S t d S a B B V e B B V X B U B W B U B )()()()()()()()(Θ=?=??=?φφφ (3) 注:(1)这里t D S S X B U ?)(表示不同周期的同一周期点上的相关关系;t d X B ?)(φ则表示同一周期内不同周期点上的相关关系。二者的结合就能同时刻划两个因素的作用,仿佛是显像管中的电子扫

季节性时间序列分析方法

季节性时间序列分析方法 在经济领域中得到的观测数据一般都具有较强的随时间变化的趋势,如果是季度或月度数据又有明显的季节变化规律。因此研究经济时间序列必须考虑其趋势性和季节性的特点,既要考虑趋势变动,又要考虑季节变动,建立季节模型。 第一节 简单的时间序列模型 一、 季节时间序列 序列是季度数据或月度数据(周,日)表现为周期的波动。 二、随机季节模型 例1 假定t x 是一个时间序列,通过一次季节差分后得到的平稳序列,且遵从一阶自回归季节模型,即有 t s s t t t x B x x w )1(-=-=- 1t t s t w w 或 1(1 )s t t B w 将t w =t s x )B (-1代入则有 1(1)(1)s s t t B B x SARIMA(1,1,0) 更一般的情况,随机序列模型的表达式为 11(1 )(1)(1)s s S t t B B x B SARIMA(1,1,1) 第二节 乘积模型 值得注意的是t a 不一定是白噪声序列。因为我们仅仅消除了不同周期相同周期点之间具有的相关部分,相同周期而不同周期点之间的也有一定的相关性。所以,在此情况下,模型有一定的拟合不足,如果假设t 是),(q p ARMA 模型,则1(1)(1)s s t t B B x 式可以改为 1()(1)(1)()s s t t B B B x B 如果序列}{t x 遵从的模型为 ()() ()()s d D s s t t B U B x B V B (3.26) 其中ks k s s s B B B B U ΓΓΓ----= 2211)(

ms m s s s B B B B V H H H ----= 2211)( p p B B B φφΦ---= 11)( q q B B B θθΘ---= 11)( d d B )1(-=? D s D s B )1(-=? 则称(3.26)为乘积季节模型,记为),,(),,(q d p m D k ARIMA ?。如果将模型的AR 因子合MA 因子分别展开,可以得到类似ARMA ),(q ms p ks ++的模型,不同的是模型的系数在某些阶为零,故),,(),,(q d p m D k ARIMA ?称为疏系数模型。 关于差分阶数和季节差分阶数的选择,是试探性的。可以通过考察样本的自相关函数来确定。一般情况下,如果自相关函数缓慢下降同时在滞后期为周期s 的整倍数时出现峰值,通常说明序列同时有趋势变动和季节变动,应该做差分和季节差分。如果差分后的序列所呈现的自相关函数有较好的截尾或拖尾性,则差分阶数是适宜的。 对于乘积季节模型的阶数识别,基本上可以采用Box-Jenkins 的方法,考察序列的样本自相关函数和偏自相关函数。如果样本的自相关函数和偏自相关函数表现为既不拖尾又不截尾,在滞后期为周期s 的整倍数时出现峰值,则建立乘积季节模型是适应的,同时SAR 算子)(s B U 和SMA 算子)(s B V 的阶数也可以通过自相关函数和偏自相关函数的表现得

铁路客运量预测方法

一、意义 1、设计铁路能力的依据。客运量是选定铁路主要技术标准的依据,而主要技术标准又决定着运输装备的能力,它不应小于调查或预测的客运量,以满足国家要求的运输任务; 2、是评价铁路经济效益的基础。客运量决定铁路的运营收入、运输成本等经济效益指标。客运量大,则收入多、成本低; 3、是影响线路方案取舍的重要因素。铁路选线中,出现大量的线路方案比较。若运量大,则投资大的方案中选,运营支出小。 总之,若调查或预测的客运量偏大,则铁路标准偏高,技术装备能力也偏高,因而投资较大。但运营后发现实际运量偏小,则会造成铁路能力闲置,投资浪费,由于运营收入少,铁路的经济效益必然降低;若调查或预测的客运量偏小,虽初期投资省,但运营后能力很快就会饱和,从而过早的引起铁路改扩建,追加投资增大,也不经济。 二、影响客运量的因素 直通吸引范围:等距离原则划定(“哪边近走哪边”),上下行分别勾画; 地方吸引范围:运价最低(运距最低)原则确定(“哪边花钱少走哪边”)。 随着社会经济的不断发展,客运量也在不断增加,因此,只有把握住影响客运量增长的因素,才能更好地预测出客运量的大小。影响因素主要有: 1、国家的政治、经济形势,国民经济的增长速度与发展战略,运价政策和旅客对运费的承受能力,这些因素,在预测远期运量时需加以考虑; 2、设计线在路网中的地位和作用,以及邻接铁路的布局和能力,都将影响直通客运量; 3、设计线沿线的资源情况,工矿、电力等大型企业的发展规划,农林牧副渔和乡镇企业的发展情况,以及城乡人口、人均收入的增长情况,也将影响地方客运量; 4、设计线沿线的公路、水运等交通状况和发展规划,将影响设计线分担客运量的比重; 5、突发事件的影响:疾病、自然灾害等。 三、客运量预测方法 定性预测方法是主要以预测人员的经验判断为依据而进行的预测。预测者根据自己掌握的实际情况、实践经验、专业水平,对未来货运发展前景的性质、方向和程度做出判断。其特点为:需要的数据少,能考虑无法定量的因素,比较简便可行。 定性预测方法:经济调查法(直接估算法:根据规划线吸引范围内的经济、人口、人均收入等情况,比照邻接铁路每天开行的旅客列车对数,直接估计规划线运营初期每天需要开行的列车对数,远期可按每隔若干年增加一对估算)、德尔菲法(专家调查法)、类推法(时间类推和局部类推)、头脑风暴法等。但这种方法往往在很大程度上取决于参加预测的人员的经验、专业理论水平以及所掌握的实际情况,因此存在片面性,准确性不高的缺点。 定量预测方法则是以历史统计资料和有关信息为依据,运用各种数学方法来预测未来客运市场需求情况,即未来的运量。定量预测方法最大的优点就是客观性,这类方法的预测精度和可靠性在很大程度上取决于数据的准确性和预测方法的科学性。 定量预测方法:时间序列法(移动平均法、指数平滑法、季节指数法、自回归分析、趋势外推法、灰色预测法)、影响因素分析法(回归分析法、系数法:乘车系数和产值系数)、四阶段法(交通生成、交通分布、交通方式划分、交通流分配)。 时间序列分析预测法是一种依据客运量的历史变化趋势,找出其随时间变化的规律,并通过数学模型来表示,然后根据模型来进行预测的方法。这种方法的主要优点是需要数据少、简便,只要所研究的运量时间序列的趋势没有大的波动,预测效果较好。这类方法的缺点是无法反映出运量变化的原因,对于影响运量变化的外部因素变化,如调整经济政策和发展速度而引起的运输需求的变动无法反映。 影响总运输需求的主要因素有很多,但具体的预测目标类型、范围是不同的,必须细致地分析其最

时间序列季节性分析spss

表1 为某公司连续144个月的月度销售量记录,变量为sales。试用专家模型、ARIMA模型和季节性分解模型分析此数据。

选定样本期间为1978年9月至1990年5月。按时间顺序分别设为1至141。 一、画出趋势图,粗略判断一下数据的变动特点。 具体操作为:依次单击菜单“Analyz e→Forecasting→Sequence Chart”,打开“Sequence Chart”对话框,在打开的对话框中将sales选入“Variables”列表框,时间变量date 选入“Time Axis Labels”,单击“OK”按钮,则生成如图2 所示的sales序列。 图1 “Sequence Chart”对话框

从趋势图可以明显看出,时间序列的特点为:呈线性趋势、有季节性变动,但季节波动随着趋势增加而加大。 二、模型的估计 (一)、季节性分解模型 根据时间序列特点,我们选择带线性趋势的季节性乘法模型作为预测模型。 1、定义日期 具体操作为:依次单击菜单“Data→Define Date”,打开“Define Date”对话框,在“Cases Are”列表框选择“Years,months”的日期格式,在对话框的右侧定义数据的起始年份、月份。定义完毕后,单击“OK”按钮,在数据集中生成日期变量。 图3 “Define Date”对话框 2、季节分解 具体操作为:“Analyze→Forecasting→Seasonal Decomposition”打开“Seasonal Decomposition”对话框,将待分析的序列变量名选入“Variable”列表框。在“Model Type”选择组中选择“Multiplicative”模型;在“Moving Average Weight”选择组

具有季节性特点的时间序列的预测

3.2 具有季节性特点的时间序列的预测 这里提到的季节,可以是自然季节,也可以是某种产品的销售季节等。显然,在现实的经济活动中,表现为季节性的时间序列是非常多的。比如,空调、取暖设备、季节性服装的生产与销售所产生的数据等。对于季节性时间序列的预测,要从数学上完全拟合其变化曲线是非常困难的。但预测的目的是为了找到时间序列的变化趋势,尽可能地做到精确。从这个意义上来讲,可以有多种方法,下面介绍其中一种,即所谓季节系数法。季节系数法的具体计算步骤如下: 1.收集m 年的每年各季度或者各月份(每年n 个季度)的时间序列样本数据ij x 。 2.计算每年所有的季度或所有月份的算术平均值x ,即: mn k x k x m i n j ij ==∑∑==, 111 3.计算同季度或同月份数据的算术平均值n j x x m i ij j ,,2,1,1 . == ∑= 4.计算季节系数或月份系数x x j j /.=β。其中n j ,,2,1 =为季度或者月份的序号。 5.预测计算。当时间序列是按季度列出时,先求出预测年份(下一年)的年加权平均: m m m m w w w y w y w y w y ++++= +2122111 式中,∑== n j ij i x y 1 为i 年份的年合计数:i w 为i 年份权数,按自然数列取值。再计算预 测年份的季度平均值4:111+++=m m m y y y 。最后,预测年份第i 季度的预测值为: i m i m y y β?=++1,1 季节系数法的Matlab 程序如下。 funjie.m %简单季节系数法,文件名funjie.m function JiJie=funjie(x) %输入m 年,每年n 个季节的历史数据 [m,n]=size(x); BarX=mean(mean(x)) %计算所有数据的算术平均值 BarXj=mean(x) %计算同季节的算术平均值 Betaj=BarXj./BarX %计算季节系数 y1=[1:m]; y=y1*sum(x,2)/sum(y1) %计算预测下一年的年加权平均值 y2=y/n %计算预测年份的季节平均值 y3=y2*Betaj %预测年份的季节预测值 end 【例3-11】某商店某类商品1999-2003年各季度的销售额如表3-6所示。试预测2004

季节指数水平法分析

解题步骤分析: (1)作原始数据的散点图 data cj; input x@@; t=intnx('month','01jan2000'd,_n_-1);format t yyq12.; cards; 2080 2032 1598 2394 1880 2240 2440 2760 2264 2160 2500 2420 2180 2222 2340 2840 2500 2580 2420 2620 2700 2500 2340 2760 2376 2040 1840 2516 2440 2800 2296 2834.8 2800 2242.6 2803 2620 2420 1856 1754.8 2178 1580 2194 2416 2643.6 2882.8 1975.4 2644.8 2380 2004 1569.6 2458 2156 2408 2118 2895.9 2652 2578 2126 2798 2550.8 2920 1880 1988.3 2857.69 1454.8 2642 2395.5 2931.5 2216 2465.5 2564 2031.5 ; proc gplot;plot x*t=1;symbol1i=joint v=dot; run; 得到如下图形: (2)分析图形变动的特点,判断应该采用什么方法进行分析: 由上述散点图可以看出,该药品的用量在不同的月份其用量的波动很明显,出

现明显的旺、淡之分,但是没有明显的长期趋势,是非平稳的时间序列且应该利用季节变动分析方法中的季节指数水平法进行分析。 (3)分别计算月份均数、月份指数: data cj; input a b c d e f g h i j k l@@; m=(a+b+c+d+e+f+g+h+i+j+k+l)/12; a1=a/m;b1=b/m;c1=c/m;d1=d/m;e1=e/m;f1=f/m; g1=g/m;h1=h/m;i1=i/m;j1=j/m;k1=k/m;l1=l/m; cards; 2080 2032 1598 2394 1880 2240 2440 2760 2264 2160 2500 2420 2180 2222 2340 2840 2500 2580 2420 2620 2700 2500 2340 2760 2376 2040 1840 2516 2440 2800 2296 2834.8 2800 2242.6 2803 2620 2420 1856 1754.8 2178 1580 2194 2416 2643.6 2882.8 1975.4 2644.8 2380 2004 1569.6 2458 2156 2408 2118 2895.9 2652 2578 2126 2798 2550.8 proc means;proc print; run; 得到的结果如下: 其中各月份的指数相加正好等于12,故不需要再调整。 (4)计算预测趋势值,一般采用最近年份的平均值=(2004 1569.6 2458 2156 2408 2118 2895.9 2652 2578 2126 2798 2550.8)/12=2362.23 data cj; input a@@; cards;

季节性预测法

季节性预测法 所属分类:商业术语商业词语 添加摘要 目录[隐藏] 1 【摘要】 2 【关键词】 3 【Abstract】 4 【Keywords】 5 1引言 6 3应用实例 季节性预测法-【摘要】 目的:探讨季节性疾病的建模预测问题。方法:多段函数残差辨识的灰色建模方法。结果:经后验差比值和小误差概率检验知该模型预测精度为第一级“好”。结论:实例证明该模型有计算简便、对资料要求不严、适应范围较宽、残差信息利用率及拟合预测精度较高等特点,可用于季节性疾病发病时间序列的建模预测。 季节性预测法-【关键词】 多段函数残差辨识残差信息季节性序列建模预测TheApplicationoftothePartionalFunctionIdentificationGrayMethodinthepredictionoftheseasonald isease Yukaiwen(TheMachengCentersforDiseaseControlandPrevention,HubeiProvince438300,China) 季节性预测法-【Abstract】 Objective:toexplorethemodelingandpredicatingprobleminseasonaldistributioncharacteristicdisea se Method:applytothePartionalFunctionIdentification′sgraymodelingmethodResults:theforecastprecisionisthefirst-grade“good ”byposteriorerrorratioandsmallerrorprobabilitytestknowledgethat,Conclusion:Theexampleprovedt hismodelhasthecomputationtobesimple,islaxtothematerialrequest,theadaptationscopeiswide,the highutilizationrateofresidualinformationandthefittingprecisionishigheretc,canbeusedforthemodel ingforecastintheseasonaltime-seriesoftheinfectiondisease. 季节性预测法-【Keywords】partionalfunctionidentificationresidualinformationseasonalseriesmodelingforecast 季节性预测法-1引言 受流行因素的影响,大多数疾病的发病时间序列都呈现出季节性与周期性特征。对这类资料进行定量分析,如用线性回归模型、随机时间序列模型和单区间GM(1,1)模型进行预测,则模型都仅考虑了序列的增长趋势性,而忽视了疾病发生时间序列的季节性与周期性特征,这显然不是我们期望的,而另外一些模型如比例波动模型、ANN模型等也仅考虑了疾病的季节性特点,却忽视了序列的趋势性特征。这同样使我们很难得到理想的预测结果。针对这

时间序列季节性分析spss教学资料

时间序列季节性分析 s p s s

表1 为某公司连续144个月的月度销售量记录,变量为sales。试用专家模型、ARIMA模型和季节性分解模型分析此数据。

01/01/1982 183 01/01/1986 318 01/01/1990 472 02/01/1982 218 02/01/1986 374 02/01/1990 535 03/01/1982 230 03/01/1986 413 03/01/1990 622 04/01/1982 242 04/01/1986 405 04/01/1990 606 05/01/1982 209 05/01/1986 355 05/01/1990 508 06/01/1982 191 06/01/1986 306 06/01/1990 461 07/01/1982 172 07/01/1986 271 07/01/1990 390 08/01/1982 194 08/01/1986 306 08/01/1990 432 选定样本期间为1978年9月至1990年5月。按时间顺序分别设为1至141。 一、画出趋势图,粗略判断一下数据的变动特点。 具体操作为:依次单击菜单“Analyz e→Forecasting→Sequence Chart”,打开“Sequence Chart”对话框,在打开的对话框中将sales选入“Variables”列表框,时间变量date 选入“Time Axis Labels”,单击“OK”按钮,则生成如图2 所示的sales序列。 图1 “Sequence Chart”对话框

季节性时间序列分析方法

第七章季节性时刻序列分析方法 由于季节性时刻序列在经济生活中大量存在,故将季节时刻序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时刻序列模型、乘积季节模型、季节型时刻序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时刻序列的变化包含专门多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。关于这各时刻数列我们能够讲,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更紧密。 一、季节性时刻序列 1.含义:在一个序列中,若通过S个时刻间隔后呈现出相似性,我们讲该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时刻序列,那个地点S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往能够从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时刻序

列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理方法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847) 关于如此每一个子序列都能够给它拟合ARIMA模型,同时认为各个序列之间是相互独立的。然而这种做法不可取,缘故有二:(1)S个子序列事实上并不相互独立,硬性划分如此的子序列不能反映序列{} x的总体特 t 征;(2)子序列的划分要求原序列的样本足够大。 启发意义:假如把每一时刻的观看值与上年同期相应的观看值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,确实是

功率谱密度机器实现

1. 基本方法 周期图法是直接将信号的采样数据x(n)进行Fourier变换求取功率谱密度估计的方法。假定有限长随机信号序列为x(n)。它的Fourier变换和功率谱密度估计存在下面的关系: 式中,N为随机信号序列x(n)的长度。在离散的频率点f=kΔf,有: 其中,FFT[x(n)]为对序列x(n)的Fourier变换,由于FFT[x(n)]的周期为N,求得的功率谱估计以N为周期,因此这种方法称为周期图法。下面用例子说明如何采用这种方法进行功率谱 用有限长样本序列的Fourier变换来表示随机序列的功率谱,只是一种估计或近似,不可避免存在误差。为了减少误差,使功率谱估计更加平滑,可采用分段平均周期图法(Bartlett法)、加窗平均周期图法(Welch 法)等方法加以改进。 2. 分段平均周期图法(Bartlett法) 将信号序列x(n),n=0,1,…,N-1,分成互不重叠的P个小段,每小段由m个采样值,则P*m=N。对每个小段信号序列进行功率谱估计,然后再取平均作为整个序列x(n)的功率谱估计。 平均周期图法还可以对信号x(n)进行重叠分段,如按2:1重叠分段,即前一段信号和后一段信号有一半是重叠的。对每一小段信号序列进行功率谱估计,然后再取平均值作为整个序列x(n)的功率谱估计。这两种方法都称为平均周期图法,一般后者比前者好。程序运行结果为图9-5,上图采用不重叠分段法的功率谱估计,下图为2:1重叠分段的功率谱估计,可见后者估计曲线较为平滑。与上例比较,平均周期图法功率谱估计具有明显效果(涨落曲线靠近0dB)。 3.加窗平均周期图法 加窗平均周期图法是对分段平均周期图法的改进。在信号序列x(n)分段后,用非矩形窗口对每一小段信号序列进行预处理,再采用前述分段平均周期图法进行整个信号序列x(n)的功率谱估计。由窗函数的基本知识(第7章)可知,采用合适的非矩形窗口对信号进行处理可减小“频谱泄露”,同时可增加频峰的宽度,从而提高频谱分辨率。 其中上图采用无重叠数据分段的加窗平均周期图法进行功率谱估计,而下图采用重叠数据分段的加窗平均周期图法进行功率谱估计,显然后者是更佳的,信号谱峰加宽,而噪声谱均在0dB附近,更为平坦(注意采用无重叠数据分段噪声的最大的下降分贝数大于5dB,而重叠数据分段周期图法噪声的最大下降分贝数小于5dB)。 4. Welch法估计及其MATLAB函数 Welch功率谱密度就是用改进的平均周期图法来求取随机信号的功率谱密度估计的。Welch 法采用信号重叠分段、加窗函数和FFT算法等计算一个信号序列的自功率谱估计(PSD如上例中的下半部分的求法)和两个信号序列的互功率谱估计(CSD)。 MATLAB信号处理工具箱函数提供了专门的函数PSD和CSD自动实现Welch法估计,而不需要自己编程。 (1)函数psd利用Welch法估计一个信号自功率谱密度,函数调用格式为: [Pxx[,f]]=psd(x[,Nfft,Fs,window,Noverlap,’dflag’]) 式中,x为信号序列;Nfft为采用的FFT长度。这一值决定了功率谱估计速度,当Nfft采用2的幂时,程序采用快速算法;Fs为采样频率;Window定义窗函数和x分段序列的长度。窗函数长度必须小于或等于Nfft,否则会给出错误信息;Noverlap为分段序列重叠的采样

功率谱估计方法的比较

功率谱估计方法的比较 摘要: 本文归纳了信号处理中关键的一种分析方法, 即谱估计方法。概述了频谱估计中的周期图法、修正的协方差法和伯格递推法的原理,并且对此三种方法通过仿真做出了对比。 关键词:功率谱估计;AR 模型;参数 引言: 谱估计是指用已观测到的一定数量的样本数据估计一个平稳随机信号的谱。由于谱中包含了信号的很多频率信息,所以分析谱、对谱进行估计是信号处理的重要内容。谱估计技术发展 渊源很长,它的应用领域十分广泛,遍及雷达、声纳、通信、地质勘探、天文、生物医学工程等众多领域,其内容、方法都在不断更新,是一个具有强大生命力的研究领域。谱估计的理论和方法是伴随着随机信号统计量及其谱的发展而发展起来的,最早的谱估计方法是建 立在基于二阶统计量, 即自相关函数的功率谱估计的方法上。功率谱估计的方法经历了经典谱估计法和现代谱估计法两个研究历程,在过去及现在相当长一段时间里,功率谱估计一直占据着谱估计理论里的核心位置。经典谱估计也成为线性谱估计,包括BT 法、周期图法。现代谱估计法也称为非线性普估计,包括自相关法、修正的协方差法、伯格(Burg )递推法、特征分解法等等。 原理: 经典谱估计方法计算简单,其主要特点是谱估计与任何模型参数无关,是一类非参数化的方法。它的主要问题是:由于假定信号的自相关函数在数据的观测区间以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。在一般情况下,经典法的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。现代谱估计方法使用参数化的模型,他们统称为参数化功率谱估计,由于这类方法能够给出比经典法高得多的频率分辨率,故又称为高分辨率方法。下面分别介绍周期图法、修正的协方差法和伯格递推法。修正的协方差法和伯格递推法采用的模型均为AR 模型。 (1)周期图法 周期图法是先估计自相关函数, 然后进行傅里叶变换得到功率谱。假设随机信号x(n)只观测到一段样本数据,n=0, 1, 2, …, N -1。根据这一段样本数据估计自相关函数,如公式(1) 对(1)式进行傅里叶变换得到(2)式。 ??? ? ????+=∑-=∞ →2 j j e )(121lim )e (N N n n N xx n x N E P ωω ∑--=+= 1||0 *) ()(1 )(?m N n xx m n x n x N m r

周期图法估计功率谱

随机信号谱估计方法的Matlab实现 摘要: 功率谱估计是随机信号分析中的一个重要内容。从介绍功率谱的估计原理入手分析经典谱估计和现代谱估计两类估计方法的原理、各自特点及在Matlab中的实现方法。经典功率谱估计的方差大、谱分辨率差,分辨率反比于有效信号的长度,但现代谱估计的分辨率不受此限制。给出了功率谱估计的应用。 关键词:功率谱估计;周期图法;AR参数法; 1 引言 在一般工程实际中,随机信号通常是无限长的,例如,传感器的温漂,不可能得到无限长时间的无限个观察结果来获得完全准确的温漂情况,即随机信号总体的情况,一般只能在有限的时间内得到有限个结果,即有限个样本,根据经验来近似地估计总体的分布。有时,甚至不需要知道随机信号总体地分布,而只需要知道其数字特征,如均值、方差、均方值、相关函数、功率谱的比较精确的情况即估计值。功率谱估计(PSD)是用有限长的数据估计信号的功率谱,它对于认识一个随机信号或其他应用方面都是重要的,是数字信号处理的重要研究内容之一。功率谱估计可以分为经典谱估计(非参数估计)和现代谱估计(参数估计)。 2 .平均周期图法和平滑平均周期图法 对于周期图的功率谱估计, 当数据长度N 太大时, 谱曲线起伏 加剧, 若N 太小, 谱的分辨率又不好,因此需要改进。两种改进的估

计法是平均周期图法和平滑平均周期图法。 (1)Bartlett 法: Bartlett 平均周期图的方法是将N 点的有限长序列x(n)分段求周期图再平均。 Matlab 代码示例1: fs=600; n=0:1/fs:1; xn=cos(2*pi*20*n)+3*cos(2*pi*90*n)+randn(size(n)); nfft=512; window=hamming(nfft); %矩形窗 noverlap=0;%数据无重叠 p=0.9;%置信概率 [Pxx,Pxxc]=psd(xn,nfft,fs,window,noverlap,p); index=0:round(nfft/2- 1); k=index*fs/nfft; plot_Pxx=10*log10(Pxx(index+1)); plot_Pxxc=10*log10(Pxxc(index+1)); figure(1) plot(k,plot_Pxx); figure(2) plot(k,[plot_Pxx plot_Pxx- plot_Pxxc

周期图估计法

一种信号功率谱密度估计方法。它的特点是:为得到功率谱估值,先取信号序列的离散傅里叶变换,然后取其幅频特性的平方并除以序列长度N,即 (1) (2) 由于序列x(n)的离散傅里叶变换X()具有周期性,因而这种功率谱也具有周期性, 常称为周期图。早期的统计学者曾利用这种方法从大量的数据中寻找隐藏的周期性的规律。周期图是信号功率谱的一个有偏估值;而且,当信号序列的长度增大到无穷时,估值的方差不趋于零。因此,随着所取的信号序列长度的不同,所得到的周期图也不同,这种现象称为随机起伏。由于随机起伏大,使用周期图不能得到比较稳定的估值。一些学者对此作了改进。 为了减小随机起伏,M.S.巴特利特提出平均周期图法,即先把信号序列分为若干段,对每段分别计算其周期图,然后取各个周期图的平均作为功率谱的估值。平均周期图可以减小随机起伏,但是,如果信号序列不是足够长,由于每段序列长度变短,功率谱估值对不同频率成分的分辨能力也随之下降。另一种改进方法是将周期图与一个适当的频域窗函数相褶积,从而对周期图产生平滑作用,以减小随机起伏。加窗处理的结果虽然可以使随机起伏减小,但也会使周期图的分辨能力下降。 P.O.韦尔奇提出一种把加窗处理与平均处理结合起来的方法。先把分段的数据乘以窗函数(进行加窗处理),分别计算其周期图,然后进行平均。韦尔奇方法是较常用的一种计算方法。为了得到较好的功率谱估值,加窗和平均处理均应兼顾减小随机起伏和保证有足够的谱分辨率两个方面。 周期图法的优点是能应用离散傅里叶变换的快速算法来进行估值。对利用式(1)、(2)得到的功率谱估值进行傅里叶反变换,可以得到信号的自相关函数估值。这种方法适用于长信号序列的情况,在有足够的序列长度时,应用改进的周期图法,可以得到较好的功率谱估值,因而应用很广。

相关文档
相关文档 最新文档