文档库 最新最全的文档下载
当前位置:文档库 › 数列创新题型突破word版

数列创新题型突破word版

数列创新题型突破word版
数列创新题型突破word版

数列创新题型突破-------五、数阵和数表

所谓数表就是指满足一定的生成规则并按一定的顺序排列成的一个表,数表问题常与数列知识联手,在高考中奏出一曲曲优美的“乐章”,逐渐成为高考命题的热门,本文试就数表问题考查的几种常见类型及变化趋势作一阐述,以馈读者。

一、三角形数表

例1(2008年江苏卷10)将全体正整数排成一个三角形数表:

1 2 3 4 5 6 7 8 9 10

. . . . . . .

按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 . 【评析】:通过列举、分析、归纳、猜想,前n-1行共有1+2+3+…+ n-1个

数,即共有22n n -个,因此第n 行第3个数是全体正整数中第22n n -+3个数,即

262

n n -+ 例2(2008年山东卷19)

将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表: a 1

a 2 a 3

a 4 a 5 a 6

a 7 a 8 a 9 a 10

. . . . . . .

记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1. S n 为数列{b n }的前n 项和,且满足

2

2n

n n n S S b b -=1(n ≥2).

(Ⅰ)证明数列{

n

S 1

}成等差数列,并求数列{b n }的通项公式; (Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数

列,且公比为同一个正数.当91

4

81-=a 时,求上表中第k (k ≥3)行所有项和的和.

(Ⅰ)证明略,??

?

??≥--==2,)1(2

1,1n n n n b n (Ⅱ)析:本题关键在于确定81a 在表中的位置,再由通项公式求出q ,然后求和,设上表中从第三行起,每行的公比都为q ,且q >0.

因为1213

121278,2

?++???+==

所以表中第1行至第12行共含有数列{a n }的前78项, 故 a 81表中第13行第三列,

因此 28113491a b q =?=-, 又132

,1314

b =-?所以 q =2.

记表中第k (k ≥3)行所有项的和为S ,

则(1)2(12)2

(12)1(1)12(1)

k k k k b q S q k k k k --===--+-+(k ≥3).

点拨:研究数表问题,首先要明确数表的构成元素,数表是由什么样的数列或哪些元素构成,即先要寻找数列的递推关系或元素的规律。

二、方形数表

例3(2004年北京春季高考题改编)下表给出一个“等差数表”:

其中每行、每列都是等差数列,a ij 表示位于第i 行第j 列的数.

(1)写出45a 的值; (2)写出a ij 的计算公式;

(3)写出2008这个数在等差数表中所在的一个位置。

【评析】:本题主要考查等差数列的基础知识,考查学生的逻辑思维能力,分析问题和解决问题的能力。

由每行和每列均成等差数列和表格中前两行两列的4个数,可求出第一行和第二行所有的数,再由第5列的前两个数求得第4个数,即45a 。

解:(1)(略解)45a =49

(2)该等差数表的第1行是首项为4,公差为3的等差数列,a 1j =4+3(j-1),

第二行是首项为7,公差为5的等差数列,

a 2j =7+5(j-1),…

第i 行是首项为4+3(i-1),公差为2i+1的等差数列,因此

a ij =4+3(i-1)+(2i+1)(j-1) =2ij+i+j=i(2j+1)+j

(3)要找2008在该等差数表中的位置,也就是要找正整数i,j 使得

2ij+i+j=2008,所以1

22008+-=i i

j ,当i=1时,得j=669

所以,2008在等差数表中的一个位置是第1行第669列。

点拨:对于数表形等差、等比数列的综合问题,行、列关系较为复杂,在解题时一定要多找等量关系,少设变量,尽可能把已知元素的值化归到同行或者同列。

三、回形数表

例4 (2008江苏高考零距离突破二轮复习题) 将自然数排成如下的螺旋状

第一个拐弯处的数是2,第二个拐弯处的数是3,第20个及第25个拐弯处的数分别是

【评析】:由图可知,前n 个拐弯处的数依次是2,3,5,7,10,13,17,21,26,…,①这是一个数列题目,要求找出它的第20项和第25项各是多少,因此要找出这个数列的规则,经观察,该数列的后一项减去一项,得一新数列1,2,2,3,3,4,4,5,5,……②,把数列①的第一项添在数列②的前面得2,1,2,2,3,3,4,4,5,5,……③,观察数列①,③发现原数列①的第n 项n a 就等于数列③的前n 项和,即21=a ,3122=+=a ,722123=+++=a ,…,故第20个拐弯处的数a 20=2+1+2+2+…+10+10=1+2(1+2+…+10)=111 a 25=2+1+2+2+…+12+12+13=170

解法2:设第i 个拐弯处的数为a i ,显然a 1=2,a 2i =a 2i-1+I, a 2i+1= a 2i +(i+1)

∵20=2×10 25=2×12+1∴a 20=1+2(1+2+…+10)=11 a 25=1+2(1+2+…+12)+13=170

解法1到解法2由具体到抽象,体现出思维不断优化的过程。

点拨:解决数表问题,需细心研究其元素的排列的规律,即构成数列的元素,或数列的项是按照何种规则排列而成的,有时即使找到排列的规则,但如果不能对所发现的规律所蕴含的信息进行整理再加工,解题同样会误入歧途。

四、数表与排列组合的有机结合

例5、(2005年上海春季高考)用n 个不同的实数

n

a a a ,,,21 可得到n !个

不同的排列,每个排列为一行,写成一个n !行的数表,对第i 行in

i i a a a ,,,21 ,

in

n i i i i na a a a b )1(32321-++-+-= (!,,2,1n i =)

例如1,2,3可得数表如图

1

232131323

12

231321

,由于此数表中每一列数之和均为12,所以2412312212621-=?-?+-=+++b b b 。那么在用1,2,3,4,5形成的数表

中,=+++12021b b b

【评析】:此题题目新颖有趣,思维要求较高,它给出计算数表中各数的某种组合的新思路,同时又具备高等数学的背景,渗透高等数学背景是高考命题的一大趋势,值得引起重视。

解:在用1,2,3,4,5所形成的数表中,起始数字为1的共有A 44行,类似,起始数字为2,3,4,5的行都有A 44个,于是数表中各数之和为(1+2+3+4+5) A 44=360.

∴3605360436033602360)1(12021?-?+?-?+?-=+++b b b =360)54321(?-+-+-=1080-

总之,适应新课程的需要,高考命题会出现一些新情况、新定义、新背景的问题,数表作为近年来数学命题的一个新亮点,为在今后高考中再次出现增添了无限的魅力空间。

数列创新题型突破-------六、数列应用题

数列作为特殊的函数,在高中数学中占有相当重要的位置,涉及实际应用的问题广泛而多样,如:增长率、银行信贷等.解答这一类问题,要充分应用观察、归纳、猜想的手段,注意其间的递推关系,建立出等差、等比、或递推数列的模型.

建立数列的递推关系来解题将有可能成为高考命题革新的一个方向.

1.某县位于沙漠边缘,当地居民与风沙进行着艰苦的斗争,到2000年底全县的绿地已占全县总面积的30%.从2001年起,市政府决定加大植树造林、开辟绿地的力度,则每年有16%的原沙漠地带变成了绿地,但同时,原有绿地的4%又被侵蚀,变成了沙漠.

(Ⅰ)在这种政策之下,是否有可能在将来的某一年,全县绿地面积超过80%? (Ⅱ)至少在多少年底,该县的绿地面积才能超过全县总面积的60%? 讲解:本题为实际问题,首先应该读懂题意,搞清研究对象,然后把它转化为数学问题.不难看出,这是一道数列型应用问题.因此,我们可以设:

全县面积为1,记2000年底的全县绿地面积占总面积的百分比为0a ,经过n 年后全县绿地面积占总面积的百分比为n a ,则我们所要回答的问题就是:

(Ⅰ)是否存在自然数n ,使得n a >80% ? (Ⅱ)求使得n a >60%成立的最小的自然数n .

为了解决这些问题,我们可以根据题意,列出数列{}n a 的相邻项之间的函数关系,然后由此递推公式出发,设法求出这个数列的通项公式.

由题可知:0330%10

a ==

, ()()254

541%16%411+

=

-+-=+n n n n a a a a 所以,当1n ≥时,25

4

541+=-n n a a ,两式作差得:

()1154

-+-=-n n n n a a a a

又100004

44115

2525

5

10

a a a a a ??-=+-=-= ???

所以,数列{}1n n a a --是以101

10

a a -=

为首项,以54为公比的

等比数列.

所以,()()()112100n n n n n a a a a a a a a ---=-+-+

+-+

14(1())

3414105()41052515

n n

-=+=-?- 由上式可知:对于任意N n ∈,均有5

4

(Ⅱ)令53>

n a ,得42()55

n <, 由指数函数的性质可知:()4

()5n g n =随n 的增大而单调递减,因此,我们只需从0

n =开始验证,直到找到第一个使得42

()55

n <的自然数n 即为所求.

验证可知:当0,1,2,3,4n =时,均有42()55n >,而当5n =时,42

()0.3276855

n =<,

由指数函数的单调性可知:当5n ≥时,均有42

()55

n <.

所以,从2000年底开始,5年后,即2005年底,全县绿地面积才开始超过总面积的60%.

点评:(Ⅱ)中,也可通过估值的方法来确定n 的值. 2. 某铁路指挥部接到预报,24小时后将有一场超历史记录的大暴雨,为确保万无一失,指挥部决定在24小时内筑一道归时堤坝以防山洪淹没正在紧张施工的遂道工程。经测算,其工程量除现有施工人员连续奋战外,还需要20辆翻斗车同时作业24小时。但是,除了有一辆车可以立即投入施工外,其余车辆需要从各处紧急抽调,每隔20分钟有一辆车到达并投入施工,而指挥部最多可组织25辆车。问24小时内能否完成防洪堤坝工程?并说明理由.

讲解: 引入字母, 构建等差数列和不等式模型.

由20辆车同时工作24小时可完成全部工程可知,每辆车,每小时的工作效率为

480

1,设从第一辆车投入施工算起,各车的工作时间为a 1,a 2,…, a 25小时,依题意它们组成公差3

1

-=d (小时)的等差数列,且

48025)(21,1480480480,2425125211≥?+≥+++≤a a a a a a 即则有

,化简可得5

192821≥-a .

解得245

123,5

1231<≥由于a .

可见a 1的工作时间可以满足要求,即工程可以在24小时内完成.

3. 某学校为了教职工的住房问题,计划征用一块土地盖一幢总建筑面积为A(m 2

)的宿舍

楼.已知土地的征用费为2388元/m 2

,且每层的建筑面积相同,土地的征用面积为第一层的

2.5倍.经工程技术人员核算,第一、二层的建筑费用相同都为445元/m 2

,以后每增高一层,

其建筑费用就增加30元/m 2

.试设计这幢宿舍楼的楼高层数,使总费用最少,并求出其最少费用.(总费用为建筑费用和征地费用之和).

讲解: 想想看, 需要引入哪些字母? 怎样建构数学模型?

设楼高为n 层,总费用为y 元,则征地面积为25.2m n

A ,征地费用为n

A 5970元,楼层建筑

费用为[445+445+(445+30)+(445+30×2)+…+445+30×(n -2)] A n

n n A )40030

15(++=元,从而

A A n

n A n A nA n A y 1000)4006000

15(40030155970≥++=+++=

(元) 当且仅当n

n 600015= , n=20(层)时,总费用y 最少.

故当这幢宿舍楼的楼高层数为20层时, 最少总费用为1000A 元.

5.某人计划年初向银行贷款10万元用于买房.他选择10年期贷款,偿还贷款的方式为:分10次等额归还,每年一次,并从借后次年年初开始归还,若10年期贷款的年利率为4%,且每年利息均按复利计算(即本年的利息计入次年的本金生息),问每年应还多少元(精确到1元)?

讲解:作为解决这个问题的第一步,我们首先需要明确的是:如果不考虑其它因素,同等款额的钱在不同时期的价值是不同的.比如说:现在的10元钱,其价值应该大于1年后的10元钱.原因在于:现在的10元钱,在1年的时间内要产生利息.

在此基础上,这个问题,有两种思考的方法:

法1.如果注意到按照贷款的规定,在贷款全部还清时,10万元贷款的价值,与这个人还款的价值总额应该相等.则我们可以考虑把所有的款项都转化到同一时间(即贷款全部付清时)去计算.

10万元,在10年后(即贷款全部付清时)的价值为()10

51014%+元.

设每年还款x 元.则第1次偿还的x 元,在贷款全部付清时的价值为()9

14%x +; 第2次偿还的x 元,在贷款全部付清时的价值为()8

14%x +; ……;

第10次偿还的x 元,在贷款全部付清时的价值为x 元.于是: 105×(1+4%)10= x(1+4%)9+x(1+4%)8+x(1+4%)7+…+x

由等比数列求和公式可得:105

10

1.04-1

10 1.04=

1.04-1

x ??.其中

所以,510 1.48020.04

=123300.4802

x ??≈

法2.从另一个角度思考,我们可以分步计算.考虑这个人在每年还款后还欠银行多少钱.

仍然设每年还款x 元.则第一年还款后,欠银行的余额为:()5

1014%x ??+-??元;

如果设第k 年还款后,欠银行的余额为k a 元,则()114%k k a a x -=+-. 不难得出:10a =105×(1+4%)10-x(1+4%)9-x(1+4%)8-x(1+4%)7-…-x 另一方面,按道理,第10次还款后,这个人已经把贷款全部还清了,故有100a =.由此布列方程,得到同样的结果.

点评:存、贷款问题为典型的数列应用题,解决问题的关键在于:1.分清单利、复利(即等差与等比);2.寻找好的切入点(如本题的两种不同的思考方法),恰当转化.3.一般来说,数列型应用题的特点是:与n 有关.

6. 某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?

讲解 设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,……,每年新增汽车x 万辆,则 301=b ,x b b n n +=+94.01

所以,当2≥n 时,x b b n n +=-194.0,两式相减得:()1194.0-+-=-n n n n b b b b (1)显然,若012=-b b , 则011==-=--+ n n n n b b b b , 即301===b b n , 此时.8.194.03030=?-=x

(2)若012≠-b b ,则数列{}n n b b -+1为以8.106.0112-=-=-x b x b b 为首项,以

94.0为公比的等比数列,所以,()8.194.01-?=-+x b b n n n .

(i )若012<-b b ,则对于任意正整数n ,均有01<-+n n b b , 所以,3011=<<<+b b b n n ,此时,.8.194.03030=?-

(ii )当万8.1>x 时,012>-b b ,则对于任意正整数n ,均有01>-+n n b b ,所以,

3011=>>>+b b b n n ,

由()8.194.01-?=-+x b b n

n n ,得

()()()()()

30

94

.0194.01112112211+---=

+-++-+-=----n n n n n n b b b b b b b b b b

)()()()

30

94

.0194.011121122

+---=

+-++--n n b b b b b ()()3006

.094.018.11+--=-n x ,

要使对于任意正整数n ,均有60≤n b 恒成立,

()()603006

.094.018.11≤+---n x 对于任意正整数n 恒成立,解这个关于x 的一元一次不等式 , 得

8.194

.018

.1+-≤

n

x , 上式恒成立的条件为:上的最小值

在N n n

x ∈???

??+-≤8.194.018.1,由于关于n 的函数()8.194.018

.1+-=

n

n f 单调递减,所以,6.3≤x .

本题是2002年全国高考题,上面的解法不同于参考答案,其关键是化归为含参数的不等式恒成立问题,其分离变量后又转化为函数的最值问题.

7.现有流量均为3002/m s 的两条河流A 、B 会合于某处后,不断混合,它们的含沙量分别为23/kg m 和0.23

/kg m .假设从汇合处开始,沿岸设有若干个观测点,两股水流在流经相邻两个观测点的过程中,其混合效果相当于两股水流在1秒钟内交换1003m 的水量,即从A 股流入B 股1003

m 水,经混合后,又从B 股流入A 股1003

m 水并混合.问:从第几个观测点开始,两股河水的含沙量之差小于0.013

/kg m (不考虑泥沙沉淀)?

讲解:本题的不等关系为“两股河水的含沙量之差小于0.013

/kg m ”.但直接建构这

样的不等关系较为困难.为表达方便,我们分别用,n n a b 来表示河水在流经第n 个观测点时,A 水流和B 水流的含沙量.

则1a =23

/kg m ,1b =0.23

/kg m ,且 ()()

11111003001002001312

, 1003004410020033n n n n n n n n n n a b b a b a b a b a ++++++=

=+=+++=.

(*)

由于题目中的问题是针对两股河水的含沙量之差,所以,我们不妨直接考虑数列

{}n n a b -.

由(*)可得:

()()111111222131

3333442n n n n n n n n n n n n a b b a b a b a a b a b +++++??????-=+-=-=-+=- ? ??????

???)()1111112221313333442n n n n n n n n n n n n a b b a b a b a a b a b +++++??????-=+-=-=-+=- ? ?????????

所以,数列{}n n a b -是以11 1.8a b -=为首项,以

1

2

为公比的等比数列.

所以,1

11.82n n n a b -??

-=? ?

??

由题,令n n a b -< 0.01,得1

11

2180

n -??

<

?

??

.所以,2lg1801log 180lg 2n ->

=. 由7821802<<得27log 1808<<,所以,8n >.

即从第9个观测点开始,两股水流的含沙量之差小于0.013

/kg m .

点评:本题为数列、不等式型综合应用问题,难点在于对题意的理解.

8.为促进个人住房商品化的进程,我国1999年元月公布了个人住房公积金贷款利率和

汪先生家要购买一套商品房,计划贷款25万元,其中公积金贷款10万元,分十二年还清;商业贷款15万元,分十五年还清.每种贷款分别按月等额还款,问: (1)汪先生家每月应还款多少元?

(2)在第十二年底汪先生家还清了公积金贷款,如果他想把余下的商业贷款也一次性还清;那么他家在这个月的还款总数是多少?

(参考数据:1.004455144=1.8966,1.005025144=2.0581,1.005025180

=2.4651) 讲解 设月利率为r ,每月还款数为a 元,总贷款数为A 元,还款期限为n 月 第1月末欠款数 A (1+r )-a 第2月末欠款数

[A (1+r )-a ](1+r )-a = A (1+r )2

-a (1+r )-a 第3月末欠款数

[A (1+r )2

-a (1+r )-a ](1+r )-a

=A (1+r )3-a (1+r )2-a (1+r )-a ……

第n 月末欠款数 0)1()1()1()1(21=-+--+-+-+--a r a r a r a r A n n n 得:

1

)1()1(-+?

+=n n r r

r A a

对于12年期的10万元贷款,n =144,r =4.455‰∴37.9421

004455.1004455

.0004455.1100000144

144=-??=a 对于15年期的15万元贷款,n =180,r =5.025‰ ∴22.12681

005025.1005025.0005025.1150000180180=-??=a

由此可知,汪先生家前12年每月还款942.37+1268.22=2210.59元,后3年每月还款1268.22元.

(2)至12年末,汪先生家按计划还款以后还欠商业贷款

a r a r a r a r A X -+--+-+-+=)1()1()1()1(142143144 其中A =150000,a =1268.22,r =5.025‰

∴X =41669.53

再加上当月的计划还款数2210.59元,当月共还款43880.12元.

需要提及的是,本题的计算如果不许用计算器,就要用到二项展开式进行估算,这在2002年全国高考第(12)题中得到考查.

(本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

数列全部题型归纳(非常全面-经典!)(新)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且23 1n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a += -,* N n ∈.

求证:11n a ?? ??-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2)8 n n a S +=则,数列n a 3 4)1a +求数列a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(1 1≥-+=-n n n a a n n ,求此数列的通项公式 (3) 1a = (4 (四)一次函数的递推形式 1. 若数列{}n a 满足111 1,12 n n a a a -==+(2)n ≥,数列n a

2 .若数列{}n a 满足111 1,22 n n n a a a -==+ (2)n ≥,数列n a (1 (2 (六)求周期 16 (1) 121,41n n n a a a a ++==-,求数列2004a

数列必会常见题型归纳

数列必会基础题型 题型一:求值类的计算题(多关于等差等比数列) A )根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和. 4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37, 中间两数之和为36,求这四个数. 5在等差数列{a n }中, (1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8. 6、有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 7、已知△ABC 中,三内角A 、B 、C 的度数成等差数列,边a 、b 、c 依次成等比数列.求证:△ABC 是等边三角形. B )根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、 {}n a 的前n 项和,327++=n n T S n n ,则=5 5b a . 3、设n S 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) 4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n n a b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .. 6、已知等比数列{a n }中,a 1·a 9=64,a 3+a 7=20,则a 11= .

数列常见题型总结经典(超级经典)

数列常见题型总结经典(超 级经典) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-11n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.

例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明2 13-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

高考数学常见题型汇总(经典资料)

一、函数 1、求定义域(使函数有意义) 分母 ≠0 偶次根号≥0 对数log a x x>0,a>0且a ≠1 三角形中 060,最小角<60 2、求值域 判别式法 V ≥0 不等式法 222321111 33y x x x x x x x x =+ =++≥??= 导数法 特殊函数法 换元法 题型: 题型一: 1y x x =+ 法一: 111 (,222同号)或y x x x x x x y y =+ =+≥∴≥≤- 法二:图像法(对(0) b y ax ab x =+>有效 2 -2 -1 1

题型二: ()1 (1,9) y x x x =-∈ ()/ 2(1)(9)110 1 80,,0,9导数法:函数单调递增 即y x y x x y f f y =+>∴=-?? ∴∈∈ ? ?? 题型三: 2sin 1 1sin 1sin ,1, 2112化简变形又sin 解不等式,求出,就是要求的答案y y y y y y θθ θθ-= ++=≤-+∴ ≤- 题型四: 22 2 2sin 11cos 2sin 1(1cos ),2sin cos 114sin()1,sin()41sin()11 4化简变形得即又由知解不等式,求出,就是要求的答案 y y y y y y x y x y y x y y θθ θθθθθθθ-= +-=+-=++++=++= +++≤≤+ 题型五

222233 3(3),(3)30(3)430化简变形得由判别式解出x x y x x x y x x y x y y y y += -+=-+-+==--?≥V 反函数 1、反函数的定义域是原函数的值域 2、反函数的值域是原函数的定义域 3、原函数的图像与原函数关于直线y=x 对称 题型 1 ()(2)32,2322,2已知求解:直接令,解出就是答案 x x f f x x x x --=+-=+ 周期性 ()()()(2)()()(2)0 0(2,函数 -)式相减) 是一个周期是2t 的周期函数 x x t x t x t x x x t f f f f f f f +++++=+== 对称

数列常见题型分析与方法总结

数列常见题型分析与做法 一、等差、等比数列的概念与性质 1、已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比,求n a ; (I )依题意032),(32244342=+--+=a a a a a a a 即 03213131=+-∴q a q a q a 2 1101322 = =?=+-∴q q q q 或2 11= ∴≠q q 1)2 1 (64-?=n n a 故 二、求数列的通项 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+2 11,求n a 答案:n n a n 12 3112 1- = - += ∴ 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 1 1+= +,求n a 答案:n a n 32= ∴ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元 法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 提示:)3(231+=++n n a a 答案:321-=+n n a . 类型4 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:这种类型一般利用???≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例:已知数列{}n a 前n 项和2 2 14---=n n n a S . (1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2 2 14-- -=n n n a S 得:1 112 14-++- -=n n n a S 于是) 2 12 1( )(1 2 11--++- +-=-n n n n n n a a S S 所以1 112 1 -+++ -=n n n n a a a n n n a a 2 12 11+ = ?+.

数列全部题型归纳(非常全面-经典!)讲解学习

数列全部题型归纳(非常全面-经典!)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a +=-,*N n ∈.

求证:11n a ????-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2) 8n n a S +=则,数列n a 3)若数列{}n a 的前n 项和n S 满足,111 ,0,4n n n n a S S a a -=-≠=则,数列 n a 4)12323...(1)(2)n a a a na n n n +++=++ 求数列n a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式 (3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式. (4)若数列{}n a 的前n 项和n S 满足,211,2 n n S n a a ==则,数列n a (四)一次函数的递推形式 1. 若数列{}n a 满足1111,12 n n a a a -== +(2)n ≥,数列n a

数列高考常见题型分类汇总情况

数列通项与求和 一、数列的通项 方法总结: 对于数列的通项的变形,除了常见的求通项的方法,还有一些是需要找规律的,算周期或者根据图形进行推理。其余形式我们一般遵循以下几个原则: ①对于同时出现n a ,n ,n S 的式子,首先要对等式进行化简。常用的化简方法是因式分解,或者同除一个式子,同加,同减,取倒数等,如果出现分式,将分式化简成整式; ②利用1--=n n n S S a 关系消掉n S (或者n a ),得到关于n a 和n 的等式,然后用传统的求通项方法求出通项; ③根据问题在等式中构造相应的形式,使其变为我们熟悉的等差数列或等比数列; ④对于出现2n a 或2 n S (或更高次时)应考虑因式分解,最常见的为二次函数十字相乘法,提取公因式法;遇到1+?n n a a 时还会两边同除1+?n n a a . 1. 规律性形式求通项 1-1.数列{a n }满足a n+1=,若a 1=,则a 2016的值是( ) A . B . C . D . 1-2.分形几何学是美籍法国数学家伯努瓦?B ?曼德尔布罗特(Benoit B .Mandelbrot )在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路.下图按照的分形规律生长成一个树形图,则第12行的实心圆点的个数是( ) A .55 B .89 C .144 D .233 1-3.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为(n ≥2),每个数是它下一行左右相邻两数的和,如,,

,…,则第10行第4个数(从左往右数)为( ) A . B . C . D . 2.出现n a ,n ,n S 的式子 1-4.正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+= (1)求数列{a n }的通项公式a n ; (2)令()2221n n a n n b ++= ,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T <. 1-5.设数列{}n a 的前n 项和为n S .已知11a =, 2121233 n n S a n n n +=---,*n ∈N . (1) 求2a 的值; (2) 求数列{}n a 的通项公式.

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常 数) 例1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{}n a 满足11 2n n a a +=,而12a =,求 n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112 a = ,12 141 n n a a n +=+ -,求n a . 解:由已知可知 )12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有 132n n a a -=+,求n a . 解法一:由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1∵a n+1=3a n +2∴3a n +2-a n =4·3n-1 即a n =2·3n-1-1 解法二:上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得:∴an=2·3n-1-1 (4)递推式为a n+1=pa n +qn (p ,q 为常数) )(3 2 11-+-=-n n n n b b b b 由上题的解法, 得:n n b )3 2(23-=∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化 为前面的类型。 求n a 。 (6)递推式为S n 与a n 的关系式 系;(2)试用n 表示a n 。 ∴)2121( )(1 2 11 --++- +-=-n n n n n n a a S S ∴1 11 2 1 -+++ -=n n n n a a a ∴ n n n a a 2 1 211+= + 上式两边同乘以2n+1得2n+1a n+1=2n a n +2则{2n a n }是公差为2的等差数列。 ∴2n a n =2+(n-1)·2=2n 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

数列常见题型总结经典

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n项和法(知n S 求n a )?? ?-=-11 n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和2 12n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122 -=,求数列|}{|n a 的前n项和n T 练习: 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。答案:???=-12 2n n a )2() 1(≥=n n 2、若数列}{n a 的前n 项和32 3-=n n a S ,求该数列的通项公式。答案:n n a 32?= 3、设数列}{n a 的前n项和为n S ,数列}{n S 的前n 项和为n T ,满足2 2n S T n n -=, 求数列}{n a 的通项公式. 4.n S 为{n a }的前n 项和,n S =3(n a -1),求n a (n ∈N +) 5、设数列{}n a 满足2 *12333()3 n n a a a a n N +++= ∈n-1 …+3,求数列{}n a 的通项公式(作差法) 2。形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+。 (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 1 3-=n n a 例2.已知数列{}n a 的首项为1,且* 12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 例3.已知数列}{n a 满足31=a ,)2() 1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式。 3。形如 )(1 n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =1 1-?n q a 。 (2)当f(n )为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式.答案:12+=n a n 练习: 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。答案:)1(2 +=n n a n 2、求数列)2(1 232,111 ≥+-==-n a n n a a n n 的通项公式。 4。形如s ra pa a n n n += --11 型(取倒数法) 例1. 已知数列{}n a 中,21=a ,)2(1 211 ≥+=--n a a a n n n ,求通项公式n a

数列常见题型总结经典(超级经典)

题型一数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-1 1n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 1、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例1.已知数列{a n }满足)2(3 ,1111≥+==--n a a a n n n ,证明2 13-=n n a 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a n n =+型(累乘法)

(1)当f(n)为常数,即:q a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111,1-+= =n n a n n a a )2(≥n ,求数列的通项公式。 在数列}{n a 中1111,1-+-= =n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1 232,111≥+-==-n a n n a a n n 的通项公式。 4.形如s ra pa a n n n += --11型(取倒数法) 例1.已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a 练习:1、若数列}{n a 中,11=a ,1 31+=+n n n a a a ,求通项公式n a . 若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a . 5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列) (1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列; (3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求. 方法如下:设)(1A a c A a n n +=++,利用待定系数法求出A 已知数列}{n a 中,,2121,211+= =+n n a a a 求通项n a . 练习:1、若数列}{n a 中,21=a ,121-=+n n a a ,求通项公式n a 。

高考数列专题复习(精典版知识点+大题分类+选择题+答案详解)

文科数列专题复习 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。(a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较 等差数列 等比数列 定义 常数)为(}{1d a a P A a n n n =-??+ 常数) 为(}{1q a a P G a n n n =? ?+ 通项公 式 n a =1a +(n-1)d=k a +(n-k )d=dn+1a -d k n k n n q a q a a --==11 求和公 式 n d a n d d n n na a a n s n n )2(22) 1(2)(1211-+=-+=+= ??? ??≠--=--==)1(11)1()1(111 q q q a a q q a q na s n n n 中项 公式 A= 2 b a + 推广:2n a =m n m n a a +-+ ab G =2。 推广:m n m n n a a a +-?=2 性质 1 若m+n=p+q 则 q p n m a a a a +=+ 若m+n=p+q ,则q p n m a a a a =。 2 若}{n k 成A.P (其中N k n ∈)则}{n k a 也为A.P 。 若}{n k 成等比数列 (其中N k n ∈),则}{n k a 成等比数列。 3 .n n n n n s s s s s 232,,-- 成等差数列。 n n n n n s s s s s 232,,--成等比数列。

(经典)高中数学最全数列总结及题型精选

高中数学:数列及最全总结和题型精选 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈? +=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始 依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1(1)(2) n n n S n a S S n -=?=? -?≥ 二、等差数列 (一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥ 例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-; 说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,12497116 a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 3.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”) (三)、等差中项的概念:

高中数列常见题型总结经典

高中数列常见题型总结 经典 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和323-=n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 13-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1 232,111≥+-==-n a n n a a n n 的通项公式。 题型二 根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、{}n b 的前n 项和, 327++=n n T S n n ,则=55b a . 3、设n S 是等差数列{}n a 的前n 项和,若==5 935,95S S a a 则( ) 4、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。 5、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3 . 6、在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( )

高中数学复习系列---数列常见题型总结

数列 题型一:求值类的计算题(多关于等差等比数列) A)根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和. 4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数. B )根据数列的性质求解 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=5 5b a . 3、设n S 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) 4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若 231n n S n T n =+,则n n a b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S . 6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。 7、已知数列{}n a 是等差数列,若 471017a a a ++=,45612131477a a a a a a +++ +++=且 13k a =,则k =_________。 8、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3 . 9、在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( ) 10、在等比数列中,已知910(0)a a a a +=≠,1920a a b +=,则99100a a += . 11、已知{}n a 为等差数列,20,86015==a a ,则=75a . 12.在等差数列中,若 84816 1 ,.3S S S S =求= . 题型二:求数列通项公式: A) 给出前几项,求通项公式 1,0,1,0,…… ,,21,15,10,6,3,1 3,-33,333,-3333,33333…… B)给出前n 项和求通项公式

数列题型及解题方法归纳总结99067

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a = (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…

相关文档
相关文档 最新文档