文档库 最新最全的文档下载
当前位置:文档库 › 毕业设计(论文)-变压器继电保护的配置及二次回路设计

毕业设计(论文)-变压器继电保护的配置及二次回路设计

毕业设计(论文)-变压器继电保护的配置及二次回路设计
毕业设计(论文)-变压器继电保护的配置及二次回路设计

第一章绪论

1.1 研究背景

电力系统得飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个阶段。

建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了知道作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的缉继电器制造业。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。

自50年代末,晶体管继电保护已在开始研究,60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kv晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kv线路上,结束了500kv线路保护完全依靠从国外进口的时代。

在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用,天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条220kv和500kv线路上运行。

我国从70年代末即已开始计算机继电保护的研究,高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系

统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于1989、1994年通过鉴定,投入运行。南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。天津大学与南京自动化设备厂合作研制的微机相电压补偿方式高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于1993、1996年通过鉴定。至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护的时代。

1.2 研究意义

电力系统由发电厂、变电所、线路和用户组成。变电所是联系发电厂和用户的中间环节,起着变换和分配电能的作用。其中变压器是普遍使用的重要电气设备之一,它的安全运行直接关系到电力系统供电和稳定的运行。特别是大容量变压器,一旦因故障而损坏造成的损失就更大。因此必须针对变压器的故障和异常工作情况,装设动作可靠、性能良好的继电保护装置,因此对电力变压器保护配置的实时性提出了更高的要求。而我就是针对变电所继电保护的配置加以设计的。

随着电力技术的发展,特别是自动化技术的发展,变电所二次部分的设计越来越“自动化”了,传统的手动控制正逐渐在被自动控制所替代,大量的保护装置采用微机型装置,传统的声光信号也逐渐被数字信号所取代,控制屏、信号屏的数量也越来越少了,这样也对二次回路的设计提出了更高的要求。如何用全新的设计理念,新型的设计标准是我们未来研究的方向。

1.3 本文的主要内容

本次毕业设计的内容是变压器继电保护的配置和二次回路的设计,主要包括系统运行方式,各原件参数的计算,电流互感器和电压互感器额定电压的选取方式,短路电流的计算,变压器主变保护的配置及整定等。

第二章系统运行方式的分析2.1 系统主接线图

图2—1 系统主接线图

2.2 运行方式的分析

1. 系统运行方式分为:最大运方I kmax和最小运方I kmin。

最大运方:躲线路末端最大故障电流的运行方式;

最小运方:躲线路末端最小故障电流的运行方式。

2. 本次课程设计的具体方案如下:

最大运方:2000MW、COSφ=0.85、X min=0.8;

最小运方:1600MW、COSφ=0.85、X max=1.0。

3. 发电厂

最大运方:全部运行;

最小运方:停一台机组运行。

4. 变压器接地情况

(1)主变A 三绕组变压器两台;

(2)发电厂两台双绕组变压器;

(3)其他变电所B、C不接地

2.3 中性点的运行方式

一般电压为110KV及以上的电网采用中性点直接接地的方式;电压为6—63KV电网采用中性点非直接接地,其中多数10KV电网中性点不接地,多数35KV电网中性点经消弧线圈接地,大型发电机中性点经高电阻接地。

变压器中性点接地方式的选取:

本次设计的电网为110KV中性点直接接地系统,它决定了主变中性点的接地方式《电力工程电气设计手册》阐述了主变110—500KV侧采用直接接地方式:

a.凡是自耦变压器,其中性点须直接接地或经小阻抗接地。

b.凡低压侧有电源的升压方法或降压变电站至少应有一台变压器直接接地。

c.终端变电站的变压器中性点一般不接地。

d.变压器中性点接地点的数量应使电网所有短路点的综合零序电抗与综合正序

电抗之比X

O /X

1

小于3,以使单相接地时健全相上工频过电压不超过阀型避雷器的灭弧电

压,X

O /X

1

序电抗尚应大于1—1.5,以便单相接地短路电流不超过三相短路电流。

e.双母线接地有两台及以上主变压器时,可考虑两台主变压器中性点接地。

第三章各元件主要参数3.1 发电机标幺值的计算

已知:发电厂F机组容量P=50MW

功率因素COSφ=0.8

容量基准值Sd=100MVA

正序电抗Xd〞=0.13=X G〞

故:视在功率 S=P/COSφ

=50/0.8

=62.5MVA

正序电抗的标幺值X=Xd〞·Sd/Sn

=0.13×100/62.5

=0.208

负序电抗的标幺值 X2=X

=0.208

3.2 变压器标幺值的计算

1. 对A变电站的三绕组变压器

已知:额定容量S N=31.5MVA

容量基准值Sd=100MVA

短路电抗U I﹪=10.75

短路电抗U II﹪=0

短路电抗U III﹪=6.25

零序电抗X0=0.8X1

故:正序电抗的标幺值XI=U I﹪/100·Sd/Sn

=10.75/100×100/31.5 =0.341

X II=U II﹪/100·Sd/Sn

=O/100×100/31.5

=0

X III=U III﹪/100·Sd/Sn

=6.25/100×100/31.5 =0.198

零序电抗的标幺值X IO=0.8X I

=0.8×0.341

=0.273

X IIO=0.8X II

=0.8×0

=0

X IIIO=0.8X III

=0.8×0198

=0.158

2. 对B变电站的双绕组变压器

已知:额定容量SN=20MVA

容量基准值Sd=100MVA

短路电抗U K=10﹪

零序电抗X O=0.8X1

故: 正序电抗的标幺值X=U K(﹪)/100·Sd/Sn

=10/100×100/20

=0.5

零序电抗的标幺值 X O=0.8X1

=0.8×0.5

=0.4

3. 对C变电站的双绕组变压器

已知:额定容量SN=30MVA

容量基准值Sd=100MVA

短路电抗U K=10.5﹪

零序电抗X O=0.8X1

故: 正序电抗的标幺值 X=U K(﹪)/100·Sd/Sn

=10.5/100×100/30

=0.35

零序电抗的标幺值 X O=0.8X1

=0.8×0.35

=0.28

4. 对B1、B2、B3双绕组变压器

已知:额定容量SN=60MVA

容量基准值Sd=100MVA

短路电抗U K=11﹪

零序电抗X O=0.8X1

故: 正序电抗的标幺值X=U K(﹪)/100·Sd/Sn

=11/100×100/60

=0.183

零序电抗的标幺值X O=0.8X1

=0.8×0.183

=0.146

3.3 输电线路标幺值的计算

1. XA线路已知:每千米电阻X1=0.4Ω/km

零序电抗X0=3.5X1

线路长度XA=50km

容量基准值Sd=100MVA

电压基准值Ud=115KV

故:正序电抗的标幺值X=X(Ω)·Sd/ Ud2

=0.4×50×100/1152 =0.151

零序电抗的标幺值X0=3.5X1

=3.5×0.151

=0.529

2. XF线路已知:每千米电阻X1=0.4Ω/km

零序电抗X0=3.5X1

线路长度XF=100km

容量基准值Sd=100MVA

电压基准值Ud=115KV

故:正序电抗的标幺值X=X(Ω)·Sd/ Ud2

=0.4×100×100/1152 =0.302

零序电抗的标幺值X0=3.5X1

=3.5×0.302

=1.057

3. AF线路已知:每千米电阻X1=0.4Ω/km

零序电抗X0=3.5X1

线路长度 AF=30km

容量基准值Sd=100MVA

电压基准值Ud=115KV

故:正序电抗的标幺值 X=X(Ω)·Sd/ Ud2

=0.4×30×100/1152 =0.09

零序电抗的标幺值X0=3.5X1

=3.5×0.09

=0.315

4. FB线路已知:每千米电阻X1=0.4Ω/km

零序电抗X0=1.3X1

线路长度FB=45km

容量基准值Sd=100MVA

电压基准值Ud=115KV

故:正序电抗的标幺值X=X(Ω)·Sd/ Ud2

=0.4×45×100/1152 =0.136

零序电抗的标幺值X0=1.3X1

=1.3×0.136

=0.177

5. FC线路已知:每千米电阻X1=0.4Ω/km

零序电抗X0=3.5X1

线路长度FC=35km

容量基准值Sd=100MVA

电压基准值Ud=115KV

故:正序电抗的标幺值X=X(Ω)·Sd/ Ud2

=0.4×35×100/1152 =0.106

零序电抗的标幺值X0=3.5X1

=3.5×0.106

=0.371

第四章电压和电流互感器额定电压的选取方式

选择电流和电压互感器应满足继电保护自动装置和测量仪表的要求

(一)电流互感器:

1.电流互感器的二次额定电流有1A和5A两种,强电系统用5A;

2.当电流互感器用于测量时,其一次额定电流尽量选择得比回路中正常工作电流大1/3左右;

3.35kv及以上配电装置一般采用油侵瓷箱式绝缘结构的独立式电流互感器,常用LCC7系列;

4.电力变压器中性点电流互感器的一次额定电流应大于变压器允许的不平衡电流的选择,一般情况下,可按照变压器额定电流的1/3进行选择;

5.关于准确度

用于电度计量的电流互感器,准确度不应低于0.5级,用于电流电压测量的准确度不应低于1级,非重要回路可使用3级;

用于继电保护的电流互感器,应用D或B级;

(二)电压互感器

1.35kv—110kv配电装置一般采用油浸绝缘结构电磁式电压互感器;

2.电压互感器的额定电压按如下选取:

(1) 单相:a当接于一次线电压上时,一次电压为系统额定电压V x,二次电压

为100v;

b 当接于一次相电压上时,一次电压为V

二次电压为

(2)三相:一次电压为系统额定电压V x,二次电压为100V,第三绕组电压为

100V/3V。

3.关于准确度:

用于电度计量,准确度不应低于0.5级;用于电压测量不应低于1级;用于继电保护时不应低于3级。

(三)本系统中100KV线路的所有电压互感器均采用同一变比

单相:均接于一次线电压上:变比n Y=110×103/100=1100

三相:其变比为110000/100/100/3

第五章短路电流的计算

5.1 短路的类型

短路故障分为对称短路和不对称短路,三相短路是对称性短路,造成的危害最为严重,但发生三相短路的机会较少。其他种类的恶短路都属于不对称短路,其中单相短路发生的机会最多,约占短路总数的70%以上。

5.2 短路电流计算的目的

为了保证电力系统安全运行,在设计选择电气设备时,都要用可能流经该设备的最大短路电流进行热稳定校验和动稳定校验,以保证该设备在运行中能够经受住突发短路引起的发热和电动力的巨大冲击,同时为了尽快切断电源对短路点的供电,继电保护装置将自动的使有关断路器跳闸,继电保护装置的整定和断路器的选择,也需要确定的短路电流数据。

5.3 短路计算的假定条件

短路过程是一种暂态过程,影响电力系统暂态过程的因素很多,若在实际计算中把所有的因素都考虑进来,将是十分复杂也是没有必要的。因此,在满足工程要求的前提下,为了简化计算,通常采取一些合理的假设,采用近似的方法对短路电流进行计算。

基本假设条件如下:

1. 在短路过程中,所有发电机电势的大小及相位均相同,即在发电机之间没有电流交换,发电机供出的电流全部是流向短路点的,而所有负荷支路则认为都已断开。

2. 不计磁路饱和,这样系统中各元件的感抗便都是恒定的,线性的,可以运用叠加原理。

3. 不计变压器励磁电流。

4. 系统中所有元器件只计算电抗,但在计算短路电流非周期分量衰减时间常数,或者计算电压为1000V以下低压系统短路电流时,则需计算元件的电阻。

5. 短路全是金属性短路,即不计短路点过度电阻的影响。

6. 三相系统是对称的,对于不对称电路,可采用对称分量法,将每序对称网络简化成单相电路进行计算。

以上假设,使短路电流计算结果稍偏大一些,但最大误差一般不超过10%~15%,这对于工程设计所要求的准确度来说是允许的。

5.4 系统正序等值序网图

5-1 系统正序等值序网图

5.5 短路电流的计算

假设x母线发生故障,

1. 正序网络如下图所示:

图5-2 图5-3

图5-4 根据图 5-1可知图 5-2中:

X4=0.183+0.208=0.391

根据图 5-2可知:

X4大=0.391//0.391=0.1955

X4小=0.1955//0.391=0.13

X5=X1+X3=0.159+0.09=0.241

根据图 5-3可知:

X6大=X2//X5+X4大=0.134+0.1955=0.33

X6小=X2//X5+X4小=0.134+0.13=0.264 正序网络的最大电抗为:

X max=X6大//X7=0.33+1.0=0.248

正序网络的最小电抗为:

X min=X6小//X7=0.264+0.8=0.198

2. 零序网络如下图所示:

图5-5

图5-6 图5-7

图5-8

X8=X2×X4//X2+X3+X4

=0.529×0.315//0.529+0.315+1.057 =0.08

X9=X3×X4//X2+X3+X4

=0.315×1.057//0.529+0.315+1.057 =0.175

X10=X2×X3//X2+X3+X4

=0.529×1.057//0.529+0.315+1.057 =0.294

X11=X6×X7//X6+X7

=0.146×0.146//0.146+0.146

=0.073

X12=X1+X10

=0.35+0.294

=0.644

X13=X5+X8

=0.088+0.158

=0.246

X14=X9+X11

=0.175+0.073

=0.248

X15=X13//X14

=0.246//0.248

=0.123

零序网络电抗X0

X0=X12//X15

=0.644//0.123

=0.103

3. 当K处发生三相短路时:K(3)

a. 在最大运行方式下:

流过故障点的短路电流:

错误!未找到引用源。=1/X max

=1/0.198

=5.051

化为有名值:

错误!未找到引用源。=5.051×0.502

=2.535KA

流过A母线的最大三相短路电流为:错误!未找到引用源。=1/0.264

=3.788

化为有名值:

错误!未找到引用源。=3.788×0.502

=1.092KA

b. 在最小运行方式下:

流过故障点的短路电流:

错误!未找到引用源。=1/X min

=1/0.248

= 4.032

化为有名值:

错误!未找到引用源。=4.302×0.502

=2.024KA

流过A母线的最小三相短路电流为:错误!未找到引用源。1/0.33

=3.03

化为有名值:

错误!未找到引用源。=3.03×0.502

=1.521KA

4. 当K处发生两相短路时:K(2)

a.在最大运行方式下:

流过故障点的短路电流:

1/2X max

错误!未找到引用源。

×(1/0.198)

错误!未找到引用源。=4.374×0.502

=2.196KA

流过A母线短路电流:

错误!未找到引用源。

×(1/0.264)

=3.28

化为有名值:

错误!未找到引用源。=3.28×0.502

=1.647KA

b. 在最小运行方式下:

流过故障点的短路电流:

1/2X min

错误!未找到引用源。

×(1/0.248)

错误!未找到引用源。=3.492×0.502

=1.753KA

流过A母线短路电流:

错误!未找到引用源。

×(1/0.33)

=2.624

化为有名值:

错误!未找到引用源。=2.624×0.502

=1.317KA

5. 当K处发生单相接地短路时:K(1)

a.在最大运行方式下:

流过故障点的最大零序电流:

错误!未找到引用源。=1/(2Xmax+X0)

=1/(2×0.198+0.096)

=2.033

化为有名值:

错误!未找到引用源。=2.033×0.502

=1.021KA

流过线路AF的分支零序电流:

错误!未找到引用源。=1/(2Xmax+X0)×0.096/0.114

=2.0330.096/0.114

=1.712

化为有名值:

错误!未找到引用源。=1.712×0.502

=0.859KA

b.在最小运行方式下:

流过故障点的最小零序电流:

错误!未找到引用源。=1/(2X min+X0)

=1/(2×0.248+0.096)

=1.689

化为有名值:

错误!未找到引用源。=1.689×0.502

=0.848KA

流过线路AF的分支零序电流:

错误!未找到引用源。=1/(2Xmin+X0)

=1.689×0.096/0.114

=1.422

化为有名值:

错误!未找到引用源。=1.422×0.502

=0.714KA

6. 当K处发生两相接地短路时:K(1.1)

a.在最大运行方式下:

流过故障点的最大零序电流:

错误!未找到引用源。=1/(2Xmin+2X0)

=1/(0.198+2×0.096)

=2.564

化为有名值:

错误!未找到引用源。=2.564×0.502

=1.287KA

流过线路AF的分支零序电流:

错误!未找到引用源。=1/(2Xmin+2X0)×0.096/0.114 =2.564×0.096/0.114

=2.159

化为有名值:

错误!未找到引用源。=2.159×0.502

=1.084KA

b.在最小运行方式下:

流过故障点的最小零序电流

错误!未找到引用源。=1/(2Xmin2X0)

=1/(0.284+2×0.096)

=2.273

化为有名值:

错误!未找到引用源。=2.273×0.502

=1.141KA

流过线路AF的最小零序电流:

错误!未找到引用源。=1/(2Xmin2X0)×0.096/0.114

=2.273×0.096/0.114

=1.914

化为有名值:

错误!未找到引用源。=1.914×0.502

=0.961KA

第六章变压器主变保护的设计与整定计算6.1 电力变压器的保护规程

按技术规程的规定电力变压器继电保护装置的配置原则一般为:

1. 针对变压器内部的各种短路及油面下降应装设瓦斯瞬时动作于信号,重瓦斯瞬时动作于断开各侧断路器。

2. 应装设反应变压器绕组和引出线的多相短路及绕组匝间短路的纵联差动保护或电流速断保护作为主保护,瞬时动作于断开各侧断路器。

3. 对由外部相间短路引起的变压器过电流,根据变压器容量和运行情况的不同以及对变压器灵敏的要求不同,可采用过电流保护、复合电压起动的过电流保护、负序电流和单相式电压起动的过电流保护或阻抗保护作为后备保护,带时限动作于跳闸。

4. 对110kV及以上中性点直接接地的电力网,应根据变压器中性点接地运行的具体情况和变压器的绝缘情况装设零序电流保护和零序电压保护,带时限动作于跳闸。

5. 为防御长时间的过负荷对设备的损坏,应根据可能的过负荷情况装设过负荷保护,带时限动作于信号。

6. 对变压器温度升高和冷却系统的故障,应按变压器标准的规定,装设作用于信号或动作于跳闸的装置。

6.2 变电所主变保护的整定计算

1. 瓦斯保护:

保护能反应油浸式变压器油箱内的各种故障是变压器内部故障的保护之一,变压器油箱内发生短路故障时,短路电流及故障点电弧会使变压器油和绝缘材料受热分解,产生气体。气体的多少和故障的性质及严重程度有关。

2. 瓦斯保护的整定:

(1)瓦斯继电器的气体容积整定为250cm2。轻瓦斯保护瞬时动作于信号。

(2)重瓦斯保护动作值的大小用油流速度来表示,为了防止穿越性故障时瓦斯保护误动作,油流速度整定为1m/s。重瓦斯保护动作于跳开变压器两侧断路器。

3. 纵差动保护:

(1) 是变压器的主保护之一。反应变压器油箱内或其引出线的短路故障。

(2) 变压器纵差动保护在正常和外部故障时,理想情况下流入差动继电器的电流等于零。但实际由于变压器的励磁电流、接线方式和电流互感器误差等因素的影响,继电器中有不平衡电流流过。因此,变压器差动保护需要解决的主要问题之一是采取各种措施避越不平衡电流的影响。在满足选择性的条件下,还要保证在内部故障时有足够的灵敏系数和速动性。

4. 纵差动保护的整定计算:

换热器设计开题报告

毕业设计开题报告 论文题目: 抽余液塔底换热器设计 学院化工装备学院 专业:过程装备与控制工程 学生姓名:邓华 指导教师:翟英明(高级工程师) 开题时间:2015年3月16日 一、选题目的 1、通过毕业设计,练习综合运用课程和实践的基本知识,进行融会贯通的独立思考。 2、在规定的时间内完成指定的设计任务,从而得到化工换热器设计的主要程序和方法。 3、培养分析和解决工程实际问题的能力。 4、树立正确的设计思想,培养实事求是,严肃认真,高度负责的工作作风。 5、通过此次设计任务,学会换热器的结构及强度设计计算及制造、检修和维护方法。 二、选题意义 在不同温度的流体间传递热能的装置称为热交换器,简称换热器。在换热器中至少要有两种温度不同的流体,一种流体温度高,放热;另一种流体温度低,吸热。换热器是实现传热过程的基本设备。而此设备是比较典型的传热设备。 二十世纪20年代出现板式换热器,并应用于食品工业。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。 化工、石油等行业中广泛使用各种换热器,它们是化工,石油,动力,食品及其它许多工业部门的通用设备,在工业设备价值及作用方面占有十分重要的地位。随着工业的迅速发展,能源消耗量不断增加,能源紧张已成为一个世界性问题。为缓和能源紧张的状况,世界各国竞相采取节能措施,大力发展节能技术,已成为当前工业生产和人民生活中一个重要课题。换热器在节能技术改造中具有很重要的作用,表现在两方面:一方面是在生产工艺流程中使用着大量的换热器,提高这些换热器效率,显然可以减少能源的消耗;另一方面,用换热器来回收工业余热,可以显著地提高设备的热效率。 三、国内现状 目前,我国换热器产业的市场规模大概为700亿人民币,主要集中于石油、化工、冶金、电力、船舶、集中供暖、制冷空调、机械、食品、制药等领域。其中,石油化工领域仍然是换热器产业最大的市场。基于石油、化工、电力、冶金、船舶、机械、食品、制药等行业对换热器稳定的需求增长,我国换热器产业在未来一段时期内将保持稳定增长。2010年至2020年期间,我国换热器产业将保持年均10~15%左右的速度增长。到2015年,我国换热器产

变压器故障检测系统毕业论文

变压器故障检测系统 摘要 大型电力变压器是电力系统中重要的和昂贵的设备之一,其运行状态直接影响系统的安全性。目前,电力系统的检修体制正由定期检修向状态检修转变,而状态检修是以了解设备的运行状态为基础的。要了解设备状态,就需要对设备信息进行分析诊断。本文的工作就是在这一背景下开展的,其意义在于为电力变压器的检修提供技术支持。本文是从变压器的故障原因、类型以及分析入手,介绍了现今国外主要研究的基于变压器油中气体的故障诊断方法。 在系统的硬件部分,本文以ATmega8单片机为核心,将采集来的电压、电流、温度和气体等模拟量信号经过A/D转换器转换为数字量信号后送入单片机系统中进行处理,通过处理的结果来判断变压器是否含有故障以及故障的类型等。同时本系统也设置了电流保护、差动保护和气体保护等继电保护来防止因短路故障或不正常运行状态照成变压器的损坏,提高供电可靠性。在系统的软件部分,本文运用C语言编写软件程序,使之能够识别并处理从传感器传来的电信号,然后通过人机交互界面显示出来,近而使人能够很轻易判断故障类型。 关键词:变压器故障油气体分析单片机继电保护

Transformer malfunction detection system Abstract In the electrical power system, the large-scale power transformer is one of the important and expensive equipment, it’s running status direct influence system security. At present, the electrical power system overhaul system is transforming by the preventive maintenance to the condition overhaul, but the condition overhaul is take understands the equipment the running status as the foundation.Must understand the equipment condition, needs to carry on the analysis diagnosis to the equipment information. This article work is develops under this background, its significance lies in for the power transformer condition overhaul provides the technical support.This article is from the transformer breakdown reason, the type and the analysis obtains, introduced the nowadays domestic and foreign main research based on the transformer oil in the gas breakdown diagnosis method. Are partial in the system hardware, this article take the ATmega8 MCU as a core, use the gather simulation signal likes voltage, electric current, temperature, gas and so on, to transform after ADC for the digital quantity, and then signal sends in the MCU system to process,

变压器保护毕业设计论文

摘要 变压器作为联系不同电压等级网络的设备,是电力系统中非常重要的元件。变压器的安全运行关系到整个电力系统供电的可靠性。随着变压器电压等级和容量的提高,变压器本身也越来越贵重。因此变压器保护显得尤为重要,如何能够快速准确的切除变压器故障,使损失降低到最小,同时又要保证有足够的可靠性,就成了变压器保护的主要问题。 本文就此问题对当前变压器出现的各种故障及相应的保护原理进行了简要分析,并在此基础上对变压器保护装置进行了简单设计。该设计的硬件部分以ATmega16为系统的核心,通过对温度、电压及电流进行数据采集并送入信号处理电路,从而准确地得到控制系统可以识别的数字信号。 该设计的软件部分介绍了三种A VR单片机的应用软件,并对系统的主要流程作出了说明,讲述了单片机如何对处理得到的数字信号进行监视、判断处理,及时对各种保护装置发出声光报警或跳闸信号,进而更好地提高变压器运行的安全性和可靠性,确实做好变压器保护工作。 关键字:变压器保护微机保护单片机差动保护

Applications of Single chip in Transformer Protection Abstract As the equipment contacts various voltage grade networks, the transformer is one of the important elements in the electrical power system. The transformer running whether in security has relation to the reliability of whole electrical power system. With transformer voltage grade and capacity increase year after year, the transformer more and more expensive. Thus transformer protects bulk more important. In order to reduce the losses to the minimum and ensure there is sufficient reliability, how to clear the transformer faults quickly and accurately becomes the main problem of transformer protection. On this issue, the paper gives a brief analysis to the faults of transformer and the corresponding protection principle. And on the basis of this, carry out a simple design of transformer protective device. The design of hardware takes ATmega16 as the core, collecting the temperature, voltage and current and sending to signal processing circuit to obtain the digital signal that control system can identify accurately. The design of software introduces three kinds of application software and shows the main flow chart of the system, explains how the SCM to monitor and judge the digital signals had handled, send sound and light alarm or tripping signal to the protective device promptly, which serves to improve the operation of the transformer safely and reliability better, really do a good job on transformer protection. Keywords:transformer protection microcomputer-based protection SCM differential protection

220KV电网继电保护设计毕业设计说明书

毕业设计(论文)220KV电网继电保护设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

引言 本文研究的是关于220KV电网继电保护。通过本次设计掌握和巩固电力系统继电保护的相关专业理论知识,熟悉电力系统继电保护的设计步骤和设计技能,根据技术规范,选择和论证继电保护的配置选型的正确性并培养自己在实践工程中的应用能力、创新能力和独立工作能力。 本次设计是根据内蒙古工业大学电力学院本科生毕业要求而进行的毕业设计。此次设计的主要内容是220KV电网继电保护的配置和整定,设计内容包括:计算系统中各元件参数;确定输电线路上TA,TV变比的选择及变压器中性点接地的选择;绘制电力系统等值阻抗图,确定系统运行方式并进行短路计算;确定电力系统继电保护的主保护和后备保护的选择及整定计算:主保护采用两套独立的、厂家不同的、能保护线路全长的保护装置(第一套CSC-103B光纤纵差保护;第二套PSL-603(G)分相电流差动保护),后备保护采用相间距离保护和接地零序电流保护;输电线路的自动重合闸采用单相自动重合闸方式。 由于各种继电保护适应电力系统运行变化的能力都是有限的,因而,对于继电保护整定方案的配合不同会有不同的保护效果,如何确定一个最佳的整定方案,将是从事继电保护工作的工程技术人员的研究课题。总之,继电保护既有自身的整定技巧问题,又有继电保护配置与选型的问题,还有电力系统的结构和运行问题。尤其,对于本文中220KV高压线路分相电流差动保护投运前的现场试验,一直是困扰技术人员的一个问题,由于线路两端距离的限制,现场试验不能像试验室那样方便。另外,光纤保护在长距离和超高压输电线路上的应用还有一定的局限性,在施工和管理应用上仍存在不足,但是从长远看,随着光纤网络的逐步完善、施工工艺和保护产品技术的不断提高,光纤保护将占据线路保护的主导地位。

换热器毕业设计论文.doc

第1章 浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗,在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,即壳侧两程,管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构,然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数、压强校核、壳程压降、管程压降的计算;设计的后半部分则是关于结构和强度的设计。主要是根据已经选定的换热器型式进行设备内各零部件(如壳体、折流板、管箱固定管板、分程隔板、拉杆、进出口管、浮头箱、浮头、支座、法兰、补强圈)的设计。 换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。目前在发达的工业国家热回收率已达96%。换热设备在现代装置中约占设备总重30%左右,其中管壳式换热器仍然占绝对的优势,约70%。其余30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备。其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。浮头式换热器是管壳式换热器系列中的一种。换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。壳体一般为圆筒形,也可为方形。管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大

变电所设计毕业论文

前言 在这次设计的选题上我是根据自己现在所实习的岗位来确定的,题目是《110KV降压变电站的部分设计》,而且我认为这次选题也是很好的结合了我在学校所学的工厂供电这门课程,让实践和理论知识相结合。 学习了工厂供电,为了更好的掌握这门功课,切实保证工厂生产的正常工作需要,我们进行了这次设计.要完成这次设计就必须了解工厂供电的基本知识.包括供电系统的一般原则,内容和程序.须要进行负荷计算,无功补偿以及继电保护。 首先介绍工厂供电设计的基本知识,包括供电设计的内容和程序,供电设计依据的主要技术基础,供电设计常用的电气图形符号和文字符号.接着依次讲述负荷计算和无功补偿,变配电所主接线方案的设计,短路计算及一次设备选择,继电保护及二次回路的选择,变配电所的布置与结构设计,供配电线路的设计计算,防雷保护和接地装置的设计。本次设计最重要的设计原则和方法,我们认为,就是在设计中一定要遵循国家的最新标准和设计规范.因此设计中着力介绍与工厂供电设计有关的最新标准和设计规范的规定和要求.限于我们的水平,加之时间非常的紧促,因此设计书中可能有错漏和不妥之处,是很难避免的,请老师批评指正。 毕业设计(论文)任务书 题目110kV降压变电站电气一次部分设计 一、毕业设计(论文)内容 本所位于某市区。向市区工业、生活等用户供电,属新建变电所。 电压等级: 110kV:近期2回,远景发展2回; 10kV:近期12回,远景发展2回。 电力系统接线简图、负荷资料及所址条件见附件。 二、毕业设计(论文)应达到的主要指标 1、变电所总体分析; 2、负荷分析计算与主变压器选择; 3、电气主接线设计; 4、短路电流计算及电气设备选择; 5、配电装置及电气总平面布置设计。 三、设计(论文)成品要求 1.毕业设计说明书(论文)1份; 2.图纸:1套(电气主接线)。

【毕业设计】基于PLC的变频调速电梯控制系统设计与实现

1. 基于C8051F单片机直流电动机反馈控制系统的设计与研究 2. 基于单片机的嵌入式Web服务器的研究 3. MOTOROLA单片机MC68HC(8)05PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响研究 4. 基于模糊控制的电阻钎焊单片机温度控制系统的研制 5. 基于MCS-51系列单片机的通用控制模块的研究 6. 基于单片机实现的供暖系统最佳启停自校正(STR)调节器 7. 单片机控制的二级倒立摆系统的研究 8. 基于增强型51系列单片机的TCP/IP协议栈的实现 9. 基于单片机的蓄电池自动监测系统 10. 基于32位嵌入式单片机系统的图像采集与处理技术的研究 11. 基于单片机的作物营养诊断专家系统的研究 12. 基于单片机的交流伺服电机运动控制系统研究与开发 13. 基于单片机的泵管内壁硬度测试仪的研制 14. 基于单片机的自动找平控制系统研究 15. 基于C8051F040单片机的嵌入式系统开发 16. 基于单片机的液压动力系统状态监测仪开发 17. 模糊Smith智能控制方法的研究及其单片机实现 18. 一种基于单片机的轴快流CO〈,2〉激光器的手持控制面板的研制 19. 基于双单片机冲床数控系统的研究 20. 基于CYGNAL单片机的在线间歇式浊度仪的研制 21. 基于单片机的喷油泵试验台控制器的研制 22. 基于单片机的软起动器的研究和设计 23. 基于单片机控制的高速快走丝电火花线切割机床短循环走丝方式研究 24. 基于单片机的机电产品控制系统开发 25. 基于PIC单片机的智能手机充电器 26. 基于单片机的实时内核设计及其应用研究 27. 基于单片机的远程抄表系统的设计与研究 28. 基于单片机的烟气二氧化硫浓度检测仪的研制 29. 基于微型光谱仪的单片机系统 30. 单片机系统软件构件开发的技术研究 31. 基于单片机的液体点滴速度自动检测仪的研制 32. 基于单片机系统的多功能温度测量仪的研制 33. 基于PIC单片机的电能采集终端的设计和应用 34. 基于单片机的光纤光栅解调仪的研制 35. 气压式线性摩擦焊机单片机控制系统的研制 36. 基于单片机的数字磁通门传感器 37. 基于单片机的旋转变压器-数字转换器的研究 38. 基于单片机的光纤Bragg光栅解调系统的研究 39. 单片机控制的便携式多功能乳腺治疗仪的研制 40. 基于C8051F020单片机的多生理信号检测仪 41. 基于单片机的电机运动控制系统设计 42. Pico专用单片机核的可测性设计研究 43. 基于MCS-51单片机的热量计 44. 基于双单片机的智能遥测微型气象站 45. MCS-51单片机构建机器人的实践研究 46. 基于单片机的轮轨力检测 47. 基于单片机的GPS定位仪的研究与实现 48. 基于单片机的电液伺服控制系统 49. 用于单片机系统的MMC卡文件系统研制 50. 基于单片机的时控和计数系统性能优化的研究 51. 基于单片机和CPLD的粗光栅位移测量系统研究 52. 单片机控制的后备式方波UPS 53. 提升高职学生单片机应用能力的探究 54. 基于单片机控制的自动低频减载装置研究 55. 基于单片机控制的水下焊接电源的研究 56. 基于单片机的多通道数据采集系统 57. 基于uPSD3234单片机的氚表面污染测量仪的研制 58. 基于单片机的红外测油仪的研究 59. 96系列单片机仿真器研究与设计 60. 基于单片机的单晶金刚石刀具刃磨设备的数控改造 61. 基于单片机的温度智能控制系统的设计与实现 62. 基于MSP430单片机的电梯门机控制器的研制 63. 基于单片机的气体测漏仪的研究 64. 基于三菱M16C/6N系列单片机的CAN/USB协议转换器 65. 基于单片机和DSP的变压器油色谱在线监测技术研究 66. 基于单片机的膛壁温度报警系统设计 67. 基于AVR单片机的低压无功补偿控制器的设计 68. 基于单片机船舶电力推进电机监测系统 69. 基于单片机网络的振动信号的采集系统 70. 基于单片机的大容量数据存储技术的应用研究 71. 基于单片机的叠图机研究与教学方法实践 72. 基于单片机嵌入式Web服务器技术的研究及实现 73. 基于AT89S52单片机的通用数据采集系统 74. 基于单片机的多道脉冲幅度分析仪研究 75. 机器人旋转电弧传感角焊缝跟踪单片机控制系统 76. 基于单片机的控制系统在PLC虚拟教学实验中的应用研究 77. 基于单片机系统的网络通信研究与应用 78. 基于PIC16F877单片机的莫尔斯码自动译码系统设计与研究 79. 基于单片机的模糊控制器在工业电阻炉上的应用研究 80. 基于双单片机冲床数控系统的研究与开发 81. 基于Cygnal单片机的μC/OS-Ⅱ的研究 82. 基于单片机的一体化智能差示扫描量热仪系统研究 83. 基于TCP/IP协议的单片机与Internet互联的研究与实现 84. 变频调速液压电梯单片机控制器的研究 85. 基于单片机γ-免疫计数器自动换样功能的研究与实现 86. 基于单片机的倒立摆控制系统设计与实现 87. 单片机嵌入式以太网防盗报警系统 88. 基于51单片机的嵌入式Internet系统的设计与实现 89. 单片机监测系统在挤压机上的应用 90. MSP430单片机在智能水表系统上的研究与应用 91. 基于单片机的嵌入式系统中TCP/IP协议栈的实现与应用 92. 单片机在高楼恒压供水系统中的应用 93. 基于ATmega16单片机的流量控制器的开发 94. 基于MSP430单片机的远程抄表系统及智能网络水表的设计 95. 基于MSP430单片机具有数据存储与回放功能的嵌入式电子血压计的设计 96. 基于单片机的氨分解率检测系统的研究与开发 97. 锅炉的单片机控制系统 98. 基于单片机控制的电磁振动式播种控制系统的设计 99. 基于单片机技术的WDR-01型聚氨酯导热系数测试仪的研制 100. 一种RISC结构8位单片机的设计与实现 101. 基于单片机的公寓用电智能管理系统设计 102. 基于单片机的温度测控系统在温室大棚中的设计与实现 103. 基于MSP430单片机的数字化超声电源的研制 104. 基于ADμC841单片机的防爆软起动综合控制器的研究 105. 基于单片机控制的井下低爆综合保护系统的设计 106. 基于单片机的空调器故障诊断系统的设计研究 107. 单片机实现的寻呼机编码器 108. 单片机实现的鲁棒MRACS及其在液压系统中的应用研究 109. 自适应控制的单片机实现方法及基上隅角瓦斯积聚处理中的应用研究 110. 基于单片机的锅炉智能控制器的设计与研究 111. 超精密机床床身隔振的单片机主动控制 112. P IC单片机在空调中的应用 113. 单片机控制力矩加载控制系统的研究 项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功! 项目论证,项目可行性研究报告,可行性研究报告,项目推广,项目研究报告,项目设计,项目建议书,项目可研报告,本文档支持完整下载,支持任意编辑!选择我们,选择成功! 单片机论文,毕业设计,毕业论文,单片机设计,硕士论文,研究生论文,单片机研究论文,单片机设计论文,优秀毕业论文,毕业论文设计,毕业过关论文,毕业设计,毕业设计说明,毕业论文,单片机论文,基于单片机论文,毕业论文终稿,毕业论文初稿,本文档支持完整下载,支持任意编辑!本文档全网独一无二,放心使用,下载这篇文档,定会成功! 目录 摘要 ....................................................................................................................... I Abstract ................................................................................................................ II 第1章绪论 (1) 1.1课题的研究背景 (1) 1.2电梯的国内外发展状况 (2) 1.3PLC在电梯控制中的应用以及发展前景 (3)

电力系统继电保护与自动化毕业设计题目

电力系统继电保护与自动化毕业设计题目 变电站电气主系统毕业设计题目1 一、题目 XZ市郊110kV变电站设计 二、原始资料 (一) 变电站性质及规模 本变电站位于XZ市郊区,向市区工业、生活及近郊区乡镇工业与农业用户供电,为新建变电站。 电压等级:110/10kV 线路回数:110kV近期2回,远景发展1回; 10kV近期12回,远景发展2回。 (二) 电力系统接线简图 电力系统接线简图如图1-1所示。 图1-1 电力系统接线简图 注:①图中系统容量、系统阻抗均为最大运行方式的数据。 ②系统最小运行方式时,S1=1300MVA,XS1=0.65;SⅡ=150MVA,XSⅡ=0.8。 (三) 负荷资料负荷资料如表1-1所示。 (四) 所址地理位置及环境条件 1.所址地理位置图(如图1-2所示)。 2.地形、地质、水文、气象等条件 站址地区海拔高度500m,地势平坦,地震烈度6度。年最高气温+40℃,年最低气温-20℃,最热月平均最高温度+32℃,最大复冰厚度10mm,最大风速为25m/s,土壤热阻率ρt=100℃·cm/W,土壤温度20℃,地下水位较低,水质良好,无腐蚀性。

电压等级负荷名称 最大负荷MW穿越功率MW负荷组成%自然 力率 Tmax (h) 线长 (km)近期远期近期远期一级二级三级 110kV 市系1线152060市系2线152025备用20 10kV 棉纺厂12 2.50.7555002棉纺厂22 2.50.7555002印染厂1 1.520.785000 2.5印染厂2 1.520.785000 2.5毛纺厂220.755000 1.5针织厂1 1.50.7545001柴油机厂1 1.520.840002柴油机厂2 1.520.840002橡胶厂1 1.50.7245002市区1 1.520.825001市区2 1.520.825001食品厂 1.2 1.50.840000.5备用1 1.50.78 备用2 1.5 .所址地理位置图(如图1-2所示)。 图1-2 所址地理位置图 - 1 - / 7

变压器毕业设计

编6 关于配电变压器常见问题对策研究 分院名称: 专业: 班级: 学生姓名: 校内指导教师: 企业指导教师:

目录 摘要 (4) 一、绪论 (4) 1、电压互感器的分类 (4) 2、电压互感器预防性试验项目 (4) 二、电磁型电压互感器的预防性试验 (4) (一)绝缘电阻试验 (5) 1、绝缘电阻的试验目的 (5) 2、绝缘电阻的试验设备 (5) 3、绝缘电阻的试验方法 (5) 4、绝缘电阻的试验结果 (6) 5、绝缘电阻的试验结果分析 (6) (二)介质损失角正切值测量 (6) 1、介质损失角正切值测量的试验目的 (6) 2、介质损失角正切值测量的试验设备 (6) 3、介质损失角正切值测量的试验方法及试验结果 (6) 4、介质损失角正切值测量的试验结果分析 (7) (三)直流电阻试验 (9) 1、直流电阻试验的试验目的 (9) 2、直流电阻试验的试验设备 (9) 3、直流电阻试验的试验方法及试验结果 (9) 4、直流电阻试验结果分析 (10) (四)伏安特性试验 (10) 1、伏安特性试验的试验目的 (10) 2、伏安特性试验的试验设备 (10) 3、伏安特性试验的试验方法 (10) 4、伏安特性试验的试验结果 (10) 5、伏安特性试验的试验结果分析 (10) (五) 极性和变比试验 (11) 1、极性和变比试验的试验目的 (11)

2、极性和变比试验的试验设备 (11) 3、极性和变比试验的试验方法 (11) 4、极性和变比试验的试验结果 (12) 5、极性和变比试验的试验结果分析 (12) (六) 互感器交流耐压试验 (12) 1、互感器交流耐压试验的试验目的 (12) 2、互感器交流耐压试验的试验方法及结果判断 (12) 三、电容式电压互感器 (12) 1、电容分压器介损正切值测量的试验接线 (12) 2、电容分压器介损正切值测量的试验结果 (13) 3、电容分压器介损正切值测量的试验结果分析 (13) 总结 (14) 致谢 (14) 参考文献 (15)

换热器设计开题报告

毕业设计(论文)开题报告设计(论文)题目: 学院:化工装备学院 专业班级:过程装备与控制工程0802 学生: 指导教师: 开题时间:2011年10 月18 日

指导教师评阅意见

一、选题的目的及意义: 换热器的基建投资在一般化工、石化企业中约占设备总投资的20%,其中固定管板式换热器约占换热器的70%。 固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。 特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。 固定管板换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束根据换热器的长度设置了若干块折流板。这种换热器管程可以用隔板分成任何程数。 固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格围广,故在工程上广泛应用。壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。 本课题所设计的冷却器属于固定管板换热器,是针对给定的设计参数,按照相关规定的要求,通过壁厚计算和强度校核等,设计固定管板式换热器产品。熟悉压力容器设计的基本要求,掌握固定管板式换热器的常规设计方法,把所学的知识应用到实际的工程设计中区,为以后的工作和学习打下扎实的基础。 二、国外现状发展及趋势 2.1 国外情况 对国外换热器市场的调查表明,管壳式换热器占64%。虽然各种板式换热器的竞争力在上升,但管壳式换热器仍将占主导地位。随着动力、石油化工工业的发展,其设备也继续向着高温、高压、大型化方向发展。而换热器在结构方面也有不少新的发展。螺旋折流板换热器是最新发展起来的一种管壳式换热器是由美国ABB公司提出的。其基本原理为:将圆截面的特制板安装在“拟螺旋折流系统”中每块折流板占换热器壳程中横剖面的四分之一其倾角朝向换热器的轴线即与换热器轴线保持一定倾斜度。相邻折流板的周边相接与外圆处成连续螺旋状。每个折流板与壳程流体的流动方向成一定的角度使壳程流体做螺旋运动能减少管板与壳体之间易结垢的死角从而提高了换热效率。在气一水换热的情况下传递相同热量时该换热器可减少30%-40%的传热面积节省材料20%-30%。相对于弓形折

电力变压器论文

电力变压器论文 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

福建电力职业技术学院 毕业论文 题目:浅谈变压器抗短路能力 提高的方法 专业:发电厂及电力系统 年级:2015级大专函授 学生姓名:王贵元 学号: 指导教师:黄朵 成人教育中心 2017年7月21日 目录 8 浅谈变压器抗短路能力提高的方法 摘要

2015年3月7日,石狮鸿山消防中队接到群众报警,称位于石狮锦尚工业区附近一室外变压器突然着火。接到报警后,该中队立即出动2辆消防车赶赴现场扑救,十几分钟后火灾被扑灭。目前,起火原因正在进一步调查中。2017年2月14日凌晨03时16分许,莆田荔城拱辰中队接到报警称:在荔城区拱辰街道幸福小区对面变压器着火,中队接到警后迅速赶赴现场。经侦查和询问得知变压器已断电,指挥员迅速下令警戒一组拉好警戒,防止无关人员进入;灭火一组利用干粉灭火器进行火势控制;灭火二组从大力车单干线出一把水枪对明火进行扑灭。为了防止复燃,消防官兵们又利用火钩、锄头等工具进行残火、余火的消灭。电力变压器是传输、分配电能的枢纽,是电力网的核心元件,其可靠运行不仅关系到广大用户的电能质量,也关系到整个系统的安全程度。电力变压器的可靠性由其健康状况决定,不仅取决于设计制造、结构材料,也与检修维护密切相关。本文就电力系统中变压器抗短路能力的提高的问题进行了探讨。 关键词:电力变压器短路电流策略 1 电力变压器概述 电子电力变压器主要是采用电力电子技术实现的,其实现过程所示。其基本原理为在原方将工频信号通过电力电子电路转化为高频信号,即升频,然后通过中间高频隔离变压器耦合到副方,再还原成工频信号,即降频。通过采用适当的控制方案来控制电力电子装置的工作,从而将一种频率、电压、波形的电能变换为另一种频率、电压、波形的电能。由于中间隔离变压器的体积取决于铁芯材质的饱和磁通密度以及铁芯和绕组的最大允许温升,而饱和磁通密度与工作频率成反比,这样提高其工作频率就可提高铁芯的利用率,从而减小变压器的体积并提高其整体效率。 2 变压器短路实验的分析 中国正在构建安全可靠、经济高效的电网,未来将形成由四个同步电网(“三华”电网、东北电网、西北电网和南方电网)异步联接构成的全国互联电网。特别是全国互

继电保护毕业设计开题报告写法及示例

如何书写开题报告,以下内容可以作为参考。 一、选题背景与意义 注意不要加编号,分两段,一段讲背景,一段讲意义。背景段,回答几个问题,(1)110kV 属于什么类型的电网?是主干网么?(2)传统的110kV电网是单侧电源网还是双侧电源网?(3)现在的110kV电网存在分布式电源问题……(4)110kV电网一般配置有距离与零序电流保护,但在配置、整定与运行中中出现过什么问题? 意义段,针对110kV电网一般配置有距离与零序电流保护所存在的问题,通过……工作,……研究,解决……问题。将对电网的安全稳定运行产生积极的意义。 二、课题关键问题及难点 关键问题: (1)等值阻抗计算与网络简化问题 ……………… (2)短路电流计算问题 ……………… (3)保护整定配合问题 ……………… (4)PSCAD仿真验证问题 …………………… 难点: (1)分支系数求取的问题 (2)系统运行方式确定的问题 (3)PSCAD仿真验证问题 等,自由发挥 三、文献综述 围绕上述问题进行综述,字数要够,格式正确,引用正确。具体方法:在《中国电机工程学报》、《电力系统保护与控制》、《电力自动化设备》、《电力系统自动化》、《中国电力》等杂志上下载20篇相关论文,注意要限定期刊,关键词为:距离保护、零序保护、分布式电源等。 四、方案(设计方案、研制方案、研究方案)论证 根据个人的任务,确定以下内容: (1)运行方式的论证 具体说明对于本课题,的大运行方式及小运行方式。…………………… (2)短路点的论证 以哪些点为短路点,为什么?准确求取什么类型的短路故障?为什么 (3)短路电流求取 求出短路点的短路电流后,将要求出哪些支路的短路电流? (4)整定计算方案 说明一下。 (5)仿真任务 ……该条泛泛地说下即可。 五、工作计划

单相变压器毕业设计

单相变压器毕业设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录 单相变压器的设计 摘要:本次设计的课题是单相变压器,基本要求是输入电压范围在24V到60V,功率为100W的单相升压变压器。首先要了解变压器的工作原理、结构和分类,

其次是变压器的设计步骤包括额定容量的确定;铁芯尺寸的选定;绕组的匝数与导线直径;绕组(线圈)排列及铁芯尺寸的确定。 关键词:变压器基本原理设计步骤 前言 随着科学技术进步,电工电子新技术的不断发展,新型电气设备不断涌现,人们使用电的频率越来越高,人与电的关系也日益紧密,对于电性能和电气产品的了解,已成为人们必需的生活常识。 变压器是一种静止的电气设备,它是利用电磁感应原理把一种电压的交流电能转变成同频率的另一种电压的交流电能,以满足不同负载的需要。在电力系统中,变压器是一个重要的电气设备,它对电能的经济传输,灵活分配和安全使用具有重要的作用,此外,也使人们能够方便地解决输电和用电这一矛盾。 输电线路将几万伏或几十万伏高电压的电能输送到负荷区后,由于用电设备绝缘及安全的限制,必需经过降压变压器将高电压降低到适合于用电设备使用的低电压。当输送一定功率的电能时,电压越低,则电流越大,电能有可能大部分消耗在输电线路的电阻上。为此需采用高压输电,即用升压变压器把电压升高输电电压,这样能经济的传输电能。 它的种类很多,容量小的只有几伏安,大的可达到数十万千伏安;电压低的只有几伏,高的可达几十万伏。如果按变压器的用途来分类,几种应用最广泛的变压器为:电力变压器、仪用互感器和其他特殊用途的变压器;如果按相数可以分为单相和三相变压器。不管如何进行分类,其工作原理及性能都是一样的。变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合

换热器设计论文

上海理工大学成人高等学历教育毕业设计(论文) 第1章绪论 换热器是一种实现物料之间传递热量的节能设备,在石油,化工,动力,食品,轻工等行业应用普遍。在炼油,化工装置中换热器占总设备数量的40%左右,占总投资的30%—45%。近年来随着节能技术的发展,换热器的应用领域不断扩大带来了显著的经济效益。换热器的种类很多,但根据冷,热流体热量交换的原理和方式基本上可分为三大类即:间壁式、混合式和蓄热式。在三大类换热器中,间壁式换热器应用最多。 间壁式换热器又可分为夹套式换热器、沉浸式蛇管换热器、喷淋式换热器、套管式换热器和壳管式换热器。其中壳管式换热器(又称列管式)是最典型的间壁式换热器,它在工业应用有着悠久的历史,而且至今仍在所有换热器中占有主导的地位。 1.1 课题的提出和研究内容 1.1.1 课题背景 管壳式冷凝器所涉及到的原理和它应用的领域都十分广泛,特别在制冷工业中蒸汽压缩式制冷机或吸收式制冷机中的冷凝器,大型中央空调的冷水机组中都有其身影。可以说在民用和工业领域中的重要性不言而喻,所以对其的合理优化设计是非常重要的。 这次的毕业设计是与上海第一冷冻机厂的校企合作项目,上海第一冷冻机厂有限公司始创于1934年,我国第一台活塞式制冷压缩机、第一台离心式压缩机、第一台溴化锂制冷机和第一台螺杆制冷压缩机都诞生在这里!公司现已成为一个集冷冻空调设备研制开发、制造和压力容器制造、压力管道设计及相关工程安装和系统服务于一体的集约化企业。此次的毕业设计正是为企业设计HSG70-2型冷凝器,也是将大学四年所学知识学以致用。 1.1.2课题任务 本课题是按照上海第一冷冻机厂的要求设计HSG70-2型双机头(双回路)管壳式冷凝器。由于这个型号是工厂第一次设计,所以需

110kV变电站电气部分设计毕业论文设计

110kV变电站电气部分设计 第一篇:毕业设计说明书 第一章变电站总体分析 第一节变电站的基本知识 一.变电站的定义 变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用,是进行电压变换以及电能接受和分配的场所。 二.变电站的分类 1、根据变电站的性质可分为升压和降压变电站 (1)升压变电站是将发电厂发出的电能进行升压处理,便于大功率和 远距离输送。 (2)降压变电站是对电力系统的高电压进行降压处理,以便电气设备的使用。 2、变电所根据变电站在系统中的地位,可分为枢纽变电站、区域变电站和用户变电站 (1)枢纽变电所。位于电力系统的枢纽点,连接电力系统高压和中压的几个部分,汇集多个电源,电压为330~500KV的变电所,称为枢纽变电所。全所停电后,将引起系统解列,甚至出现瘫痪。 (2)中间变电所。高压侧以交换潮流为主,起系统交换功率的作用,或使长距离输电线路分段,一般汇集2~3个电源,电压为220~330KV,同时又降压供当地用电,这样的变电所起中间环节的作用,所以叫中间变电所。全所停电后,将引起区域电网解列。 (3)地区变电所。高压侧一般为110~220KV,向地区用户供电为主的变电所,这是一个地区或城市的主要变电所。全所停电后,仅使该地区中供电停电。 (4)终端变电所。在输电线路的终端,接近负荷点,高压侧电压为110KV,经降压后直接向用户供电的变电所,即为终端变电所。全所停电后,只是用户受

到损失。 第二节所设计变电站的总体分析 变电站电气一次部分的设计主要包含:负荷的分析计算、变压器的选型、主接线的设计、无功补偿、短路电流的计算、电气设备的选型和校验、母线的选择和校验等有关知识。因此,变电站的总体分析也应该从这几个方面着手。 1、由待设计变电站的建设性质和规模可知,所设计变电站主要是为了满足某铁矿生产生活的发展需要,是一个110/10kv降压变电站,也是一个地区性变电站,并且只有两个电压等级,因此,主变压器可选用双绕组型的。 2、由原始资料电力系统接线简图可知有来自同一个电力系统的双电源供电。 3、由原始资料负荷资料可知110kv侧线路共三回,两用一备,有穿越功率,穿越功率经过110kv母线配电装置传出。10kv侧线路共15回,13用2备,负荷较大,无功补偿应选在10kv侧,一二级负荷所占比例较大,对供电可靠性要求较高。因此110kv,10kv侧母线可考虑对供电可靠性较高的单母线分段和双母线接线两种接线形式。 4、由原始资料所设计变电站的地理位置示意图和该地地形、地质、水文、气象等条件可知,所设计变电站应选址在负荷中心且地势较平坦的山谷中,根据变电站的出线方向来设计配电装置的布置,还应考虑到变电站的防震防雷防雪等,根据110kv变电站的设计手册可知所选电气设备应优先考虑室外型。。

相关文档
相关文档 最新文档