文档库 最新最全的文档下载
当前位置:文档库 › 基于STM8开启总中断的总结

基于STM8开启总中断的总结

基于STM8开启总中断的总结
基于STM8开启总中断的总结

基于STM8开启总中断的总结

在IAR编译器中

使用寄存器编程时一般方法为

void init_devices(void)

{

asm("sim"); // 关全局中断

GPIO_init();

EXTI_init();

asm("rim"); // 开全局中断

}

void main( void )

{

init_devices();

同样在IAR编译器中

使用库函数编程时,开启总中断的方法是

把上面的asm(“sim”);改为rim();即可开启总中断

总中断的控制在CC寄存器中所有不好配置,IAR的工作方式如上总结

至于STVD中开启总中断的方式则更加简单

main()

{

GPIO_INIT();

Lcd_init();

Time_init();

Date_init();

Dater();

bruuze_init();

TIM4_Init();

_asm("rim");//开总中断(此处为开启总中断的方法)

TIM4_CR1|=0X01;//开始计时

while(1)

{

setting_detect();

disp_date();

disp_time();

}

}

STM32外部中断以及中断优先级

外部中断的初始化过程: 1.初始化IO为输入(可以设置上拉,下拉,浮空) 2.开启IO复用时钟 3.开启与该IO相对的线上(详解下) 4.配置NVIC,使能中断 5.编写中断服务函数 外部中断: Stm32中总共有19个外部中断 包括: 线0-15:IO输入中断(每条线上最多有7个IO,如GPIOA~GPIOG,但是每一条线每次只允许同时连接到一个IO)

线16:PVD 线17:RTC 线18:USB 关于优先级: CM3中内核支持256个中断(16个内核+240外部)和可编程256级中断优先级的设置

Stm32目前支持84个中断(16个内核+68个外部,注:不是指68个外部中断),16级可编程优先级(优先级设置寄存器中使用了4位)

注意:其中外部中断5-9和中断10-15向量存放在一起 优先级: 数值低的优先级要高于数值高的!!!!!! 上电复位后,系统默认使用的是组0; 一个系统只能使用一组优先级组,不可使用多个,优先级的设置不能超过组的范围,否则会产生不可预计的错误 1.高抢先级的中断可以打断低优先级的中断响应,构成中断嵌套 2.相同抢先级的中断不可以构成嵌套,系统会优先响应子优先级高的

3.当2(n)个相同抢先优先级和相同子优先级的中断出现,STM32首先响应中断通道所对应的中断向量地址低的那个中断 4.0号抢先优先级的中断,可以打断任何中断抢先优先级为非0号的中断;1号抢先优先级的中断,可以打断任何中断抢先优先级为2、3、4号的中断;……;构成中断嵌套。 5.所有外部中断通道的优先级控制字PRI_n也都是0,68个外部中断通道的抢先优先级都是0号,没有子优先级的区分。不会发生任何的中断嵌套行为,谁也不能打断当前正在执行的中断服务。当多个中断出现后,则看它们的中断向量地址:地址越低,中断级别越高,STM32优先响应

关于STM32串口空闲中断IDEL的问题

关于STM32串口空闲中断IDEL的问题 1.空闲中断是接受数据后出现一个byte 的高电平(空闲)状态,就会触发空闲 中断.并不是空闲就会一直中断,准确的说应该是上升沿(停止位)后一个 byte,如果一直是低电平是不会触发空闲中断的(会触发break 中断)。 2.关于第二点有要铺垫的三个情况,datasheet 中”当一空闲帧被检测到时,其处 理步骤和接收到普通数据帧一样,但如果IDLEIE 位被设置将产生一个中断”“空 闲符号被视为完全由'1'组成的一个完整的数据帧,后面跟着包含了数 据的下一帧的开始位'1'的位数也包括了停止位的位数”空闲符号的 配图后面跟这一个低电平.有人理解为只有收到下一个数据的起始位才会触发中 断,这样理解是不对的,应该是数据后有空闲了一帧就会触发. 3.清中断的方式感觉奇怪,使用函数USART_ClearITPendingBit( USART1, USART_IT_IDLE )清除不了中断的.我用的是3.5 的库,查看函数说明,里面的 @param 参数并没有IDLE,后面的@note 中,这样说:”PE(Parity error),FE(Framing error),NE(Noise error),ORE(OverRun error) and IDLE(Idle line detected) pending bits are cleared by software sequence: a read operation to USART_SR register (USART_GetITStatus()) followed by a read operation to USART_DR register (USART_ReceiveData()).”我是通过语句”USART1->DR;”来清除IDLE 中断的. 现在有很多数据处理都要用到不定长数据,而单片机串口的RXNE 中断一次 只能接收一个字节的数据,没有缓冲区,无法接收一帧多个数据,现提供两种 利用串口IDLE 空闲中断的方式接收一帧数据,方法如下: 方法1:实现思路:采用STM32F103 的串口1,并配置成空闲中断IDLE 模 式且使能DMA 接收,并同时设置接收缓冲区和初始化DMA。那么初始化完成 之后,当外部给单片机发送数据的时候,假设这帧数据长度是200 个字节,那

TMS320F28335外部中断总结

TMS320F28335外部中断总结 作者:Free 文章来源:Free 点击数:93 更新时间:2010-8-26 在这里我们要十分清楚DSP的中断系统。C28XX一共有16个中断源,其中有2个不可屏蔽的中断RESET和NMI、定时器1和定时器2分别使用中断13 和14。这样还有12个中断都直接连接到外设中断扩展模块PIE上。说的简单一点就是PIE 通过12根线与28335核的12个中断线相连。而PIE的另外 一侧有12*8根线分别连接到外设,如AD、SPI、EXINT等等。这样PIE共管理12*8=96个外部中断。这12组大中断由28335核的中断寄存器IER来控 制,即IER确定每个中断到底属于哪一组大中断(如IER |= M_INT12;说明我们要用第12组的中断,但是第12组里面的什么中断CPU并不知道需 要再由PIEIER确定)。接下来再由PIE模块中的寄存器PIEIER中的低8确定该中断是这一组的第几个中断,这些配置都要告诉CPU(我们不难想 象到PIEIER共有12总即从PIEIER1-PIEIER12)。另外,PIE模块还有中断标志寄存器PIEIFR,同样它的低8位是来自外部中断的8个标志位,同 样CPU的IFR寄存器是中断组的标志寄存器。由此看来,CPU的所有中断寄存器控制12组的中断,PIE的所有中断寄存器控制每组内8个的中断。 除此之外,我们用到哪一个外部中断,相应的还有外部中断的寄存器,需要注意的就是外部中断的标志要自己通过软件来清零。而PIE和CPU的 中断标志寄存器由硬件来清零。 EALLOW; // This is needed to write to EALLOW protected registers PieVectTable.XINT2 = &ISRExint; //告诉中断入口地址 EDIS; // This is needed to disable write to EALLOW protected registers PieCtrlRegs.PIECTRL.bit.ENPIE = 1; // Enable the PIE block使能PIE PieCtrlRegs.PIEIER1.bit.INTx5= 1; //使能第一组中的中断5 IER |= M_INT1; // Enable CPU 第一组中断

STM32中断

STM32外部中断详解 2012-07-02 21:59:24| 分类:嵌入式相关| 标签:|举报|字号大中小订阅 一、基本概念 ARM Coetex-M3内核共支持256个中断,其中16个内部中断,240个外部中断和可编程的256级中断优先级的设置。STM32目前支持的中断共84个(16个内部+68个外部),还有16级可编程的中断优先级的设置,仅使用中断优先级设置8bit中的高4位。 STM32可支持68个中断通道,已经固定分配给相应的外部设备,每个中断通道都具备自己的中断优先级控制字节PRI_n(8位,但是STM32中只使用4位,高4位有效),每4个通道的8位中断优先级控制字构成一个32位的优先级寄存器。68个通道的优先级控制字至少构成17个32位的优先级寄存器。 4bit的中断优先级可以分成2组,从高位看,前面定义的是抢占式优先级,后面是响应优先级。按照这种分组,4bit一共可以分成5组 第0组:所有4bit用于指定响应优先级; 第1组:最高1位用于指定抢占式优先级,后面3位用于指定响应优先级; 第2组:最高2位用于指定抢占式优先级,后面2位用于指定响应优先级; 第3组:最高3位用于指定抢占式优先级,后面1位用于指定响应优先级; 第4组:所有4位用于指定抢占式优先级。 所谓抢占式优先级和响应优先级,他们之间的关系是:具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套。 当两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当一个中断到来后,如果正在处理另一个中断,这个后到来的中断就要等到前一个中断处理完之后才能被处理。如果这两个中断同时到达,则中断控制器根据他们的响应优先级高低来决定先处理哪一个;如果他们的抢占式优先级和响应优先级都相等,则根据他们在中断表中的排位顺序决定先处理哪一个。每一个中断源都必须定义2个优先级。 有几点需要注意的是: 1)如果指定的抢占式优先级别或响应优先级别超出了选定的优先级分组所限定的范围,将可能得到意想不到的结果; 2)抢占式优先级别相同的中断源之间没有嵌套关系; 3)如果某个中断源被指定为某个抢占式优先级别,又没有其它中断源处于同一个抢占式优先级别,则可以为这个中断源指定任意有效的响应优先级别。 二、 GPIO外部中断 STM32中,每一个GPIO都可以触发一个外部中断,但是,GPIO的中断是以组位一个单位的,同组间的外部中断同一时间只能使用一个。比如说,PA0,PB0,PC0,PD0,PE0,PF0,PG0这些为1组,如果我们使用PA0作为外部中断源,那么别的就不能够再使用了,在此情况下,我们智能使用类似于PB1,PC2这种末端序号不同的外部中断源。每一组使用一个中断标志EXTIx。EXTI0 –EXTI4这5个外部中断有着自己的单独的中断响应函数,EXTI5-9共用一个中断响应函数,EXTI10-15共用一个中断响应函数。对于中断的控制,STM32有一个专用的管理机构:NVIC。 三、程序实现

AVR单片机外部中断0、1、2详解

AVR单片机外部中断0、1、2 详解 中断基本包含: 1.中断源 2.中断向量(中断入口地址) 3.中断优先级 4.中断函数 除此之外,在单片机中,中断的执行或者中断的触发必 须符合以下的规则:中断触发|执行= 全局中断使能位AND 中断源使能位AND 中断源标志位 单片机内部中断的触发必须完成,全局中断使能,中断 源使能,中断源标志位置一等条件。除此之外,如果是 外部中断0,1,2(INT0,1,2),必须设置引脚触发的规则。最后呢,就是需要在程序里建立处理中断的中断 函数。 在编程的时候的步骤大致如下:(无视INT2) 1. 初始化PD2,PD3 为输入状态。DDRD|=BIT(2)|BIT(3); 2. 设置INT0,1 引脚触发的规则,实验中为低电平触发。MCUCR=0xF0; 3. 设置INT0,1 中断源使能位为逻辑1。 GICR|BIT(7)|BIT(6); 4. 清除INT0,1 的中断标志位(软件写入,逻辑1 为清

除)。GIFR|=BIT(7);BIT(6); 5. 全局中断允许位使能。SREG|=BIT(7); 6. 编辑中断处理函数。 /*ATmega16提供3个外部中断,分别由INT0、INT1和INT2引脚触发。 需要注意的是,如果将ATmega16设置为允许外部中断,则即使把INT0、INT1和INT2引脚 设置为输出方式,外部中断仍然会被触发。外部中断可选择采用上升沿触发、下降沿触发和 低电平触发(INT2中断只能采用沿触发方式。 */ #include; #include; #include "smg.h" /*1.状态寄存器SREG bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 I T H S V N Z C I:全局中断使能位。 在I置位后,单独的中断使能由不同的中断寄存器控制。若I为0,则禁止中断。 MCU 控制寄存器- MCUCR MCU 控制寄存器包含中断

最新stm32学习之串口usart复习进程

STM32学习之串口USART STM32 的串口是相当丰富的。最多可提供5路串口,有分数波特率发生器、支持单线光通信和半双工单线通讯、支持LIN、智能卡协议和IrDA SIR ENDEC 规范(仅串口3 支持)、具有DMA 等。串口最基本的设置,就是波特率的设置。STM32 的串口使用起来还是蛮简单的,只要你开启了串口时钟,并设置相应IO口的模式,然后配置一下波特率,数据位长度,奇偶校验位等信息,就可以使用了。 1、串口时钟使能。串口作为STM32 的一个外设,其时钟由外设始终使能寄存器控制,这里我们使用的串口1是在APB2ENR 寄存器的第14 位。除了串口1 的时钟使能在APB2ENR寄存器,其他串口的时钟使能位都在APB1ENR。 1、串口的作用:用在STM32板子和PC机通信的。我们调试的时候,无法知道是否正确,就可以用STM32的cpu,给串口输出一些信息给PC,我们通过屏幕(实际上是终端串口软件),可以看到这些信息,从而知道当前程序的错误可能出现的位置。当然,也可以在PC的键盘敲打命令,让串口帮传递给STM32板子,来执行这些命令。 2、串口的工作模式一般有两种方式:查询和中断 (1)查询:串口程序不断地循环查询,看看当前有没有数据要它传,如果有,就帮助传送(可以从PC到STM32板子,也可以从STM32 板子到PC)。 (2)中断:平时串口只要打开中断即可。如果发现有一个中断来,则意味着要它帮助传输数据——它就马上进行数据的传送。同样,可以从PC到STM32板子,也可以从STM32板子到PC 。 步骤一从硬件开始学习。大家先打开芯达STM32开发板附带的原理图。找到串口部分。笔者把它截图如下。我们发现,串口模块的电路是这样的:STM32的CPU引脚,通过两个PA端口的引脚PA10和PA9(此两个引脚复用USART),连接到一个SP3232芯片,或者MAX232芯片。然后再连接到DB9串口座上。由于232芯片可以允许走两路信号,因此,我们扩展了一个串口COM2,请注意,如无特别说明,我们都将使用COM1。

STM32串口中断接收方式详细比较

本例程通过PC机的串口调试助手将数据发送至STM32,接收数据后将所接收的数据又发送至PC机,具体下面详谈。。。 实例一: void USART1_IRQHandler(u8 GetData) { u8 BackData; if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //中断产生 { USART_ClearITPendingBit(USART1,USART_IT_RXNE); //清除中断标志. GetData = UART1_GetByte(BackData); //也行GetData=USART1->DR; USART1_SendByte(GetData); //发送数据 GPIO_SetBits(GPIOE, GPIO_Pin_8 ); //LED闪烁,接收成功发送完成 delay(1000); GPIO_ResetBits(GPIOE, GPIO_Pin_8 ); } } 这是最基本的,将数据接收完成后又发送出去,接收和发送在中断函数里执行,main函数里无其他要处理的。 优点:简单,适合很少量数据传输。 缺点:无缓存区,并且对数据的正确性没有判断,数据量稍大可能导致数据丢失。 实例二: void USART2_IRQHandler() { if(USART_GetITStatus(USART2,USART_IT_RXNE) != RESET) //中断产生 { USART_ClearITPendingBit(USART2,USART_IT_RXNE); //清除中断标志 Uart2_Buffer[Uart2_Rx_Num] = USART_ReceiveData(USART2); Uart2_Rx_Num++; } if((Uart2_Buffer[0] == 0x5A)&&(Uart2_Buffer[Uart2_Rx_Num-1] == 0xA5)) //判断最后接收的数据是否为设定值,确定数据正确性 Uart2_Sta=1; if(USART_GetFlagStatus(USART2,USART_FLAG_ORE) == SET) //溢出 { USART_ClearFlag(USART2,USART_FLAG_ORE); //读SR USART_ReceiveData(USART2); //读DR } } if( Uart2_Sta ) { for(Uart2_Tx_Num=0;Uart2_Tx_Num < Uart2_Rx_Num;Uart2_Tx_Num++)

STM32 无中断串口代码

STM32 无中断串口代码2010-05-14 16:09 串口,是我们日常使用最多的一部分,刚开始做电子工程师的,基本都是从这个开始的,下面的代码是我使用STM32库编写的串口输出和读取的代码。 1、串口初始化函数:void USART_Ini(USART_TypeDef* USARTx,u16 buad) 2、串口中断开启和关闭:USART_IT(USART_TypeDef* USARTx,FunctionalState NewState) 3、串口接收:u16 Getch(USART_TypeDef* USARTx) 4、串口单个字符输出:void Putch(USART_TypeDef* USARTx,u16 ch) 5、串口输出字符串:void PutStr(USART_TypeDef* USARTx,u16 *SendBuf,u16 Length) #include "stm32f10x_lib.h" u16 RecDateBuffer[100]; u16 RecLen; u8 SendDateBuffer[100]; /************************************************************* ****************** * Function Name : Uart_Ini * Description : 串口初始化 * Input : * Output : None * Return : ************************************************************** *****************/ void USART_Ini(USART_TypeDef* USARTx,u16 buad) { USART_InitTypeDef USART_InitStructure; USART_ClockInitTypeDef USART_ClockIni; GPIO_InitTypeDef GPIO_InitStructure; /* Configure USART1 Tx (PA.09) as alternate function push-pull */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOD, &GPIO_InitStructure); /* Configure USART1 Rx (PA.10) as input floating */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;

外部中断详解

7.1EXTI外部按键中断实验 前面我们学习了,LED灯和按键。实际上对于STM32来说,我们是学习了它的外设GPIO。这一节我们前面学习的内容,学习STM32的EXTI (External interrupt),即外部中断。 前面的按键章节中,我们检测按键是否被按下的方式是轮询检测的方式,这里我们改为使用中断检测的方式,提高CPU的效率。 7.1.1什么是中断 单片机中断系统的概念:什么是中断,我们从一个生活中的例程引入。比如说你在做A 事,但是突然间来了你想起来了更重要的B事,所以你马上去做B事了,做完之后再回来继续做A事,这个就是中断。 7.1.2什么是单片机的中断? 当CPU正在执行一个任务,但突然又发生了一个更高级的任务,CPU必须立即去执行的任务,所以CPU必须中断当前的任务,并保存该任务已经执行的状态和相关信息,然后转而去执行那个更加高级的任务,因此就引入了“中断”这个概念。 中断是指计算机在执行程序的过程中,当出现异常情况或特殊请求时,计算机停止现行程序的运行,转向对这些异常情况或特殊请求的处理,处理结束后再返回现行程序的间断处,继续执行原程序。中断是单片机实时地处理内部或外部事件的一种内部机制。当某种内部或外部事件发生时,单片机的中断系统将迫使CPU暂停正在执行的程序,转而去进行中断事件的处理,中断处理完毕后,又返回被中断的程序处,继续执行下去。 在程序里面也是一样的。举个例子可能会容易懂点,定时中断:比如你定时1ms,主程序在运行,每当1ms时间到后,就跑到定时中断子程序里面执行,执行完后再回到主程序(中断程序是1ms中断一次)。那对于整个系统来说中断能实现什么好处呢?下面我们给以说明:1)提高了CPU的效率 CPU是计算机的指挥中心,它与外围设备(如按键、显示器等)通讯的方法有查询和中断2种:查询的方法是无论外围IO是否需要服务,CPU每隔一段时间都要依次查询一遍,这种方法CPU需要花费一些时间在做查询服务工作。 中断则是在外围设备需要通讯服务时主动告诉CPU,这个时候CPU才停下当前工作去处理中断程序,不需要占用CPU主动去查询的时间,CPU可以在没有中断请求来临之前一直做自己的工作,从而提高了CPU效率。 2)可以实现实时处理 外设任何时刻都可能发出请求中断信号,CPU接到请求后及时处理,以满足实时系统的需要。 3)可以及时处理故障 计算机系统运行过程中难免会出现故障,有许多事情是无法预料的,如电源掉电、存储器出错、外围设备工作不正常等,这时可以通过中断系统向中断源CPU发送中断请求,由CPU及时转到相应的出错处理程序,从而提高计算机的可靠性。 7.1.3STM32中断的初步理解 神舟III号开发板的主芯片是STM32F103ZET6,它采用的是ARM公司的Cortex-M3内核。Cortex-M3内核支持256个中断,具有256级的可编程中断设置。但STM32并没有使用M3

stm32 串口中断总结

本文以USART1为例,叙述串口中断的编程过程。 1、先来讲述一下在应用串口中断时涉及到的一些库文件。 首先对于STM32外设库文件的应用编程,misc.c和stm32f10x_rcc.c是肯定要添加到。 接下来就是我们要用到的相关外设了。毫无疑问,串口文件stm32f10x_usart.c是必须的。串口通信是对通用GPIO端口引脚的功能复用,所以还需要stm32f10x_gpio.c文件。另外,因为有中断的产生,所以中断文件stm32f10x_it.c也是必要的,当然这个文件一般和main.c 放在一个文件夹下(一般习惯为User文件夹),因为我们的中断响应函数是要在里面自己编写的。 当然还有其他的基本必须文件如系统配置文件等在这地方就不说了,这个是创建一个工程应该知道的。 2、初始化 对于串口通信的初始化,不仅仅只是对串口的初始化(这个地方是比较烦人的,不像别的芯片那样简洁明了)。 ●?首先时钟使能配置。STM32内部的时钟有很多,感兴趣的自己看看参考手册。此处 以USART1为例说明。有USART1时钟、GPIOA时钟、GPIO复用(AFIO)时钟。由于 此处USART1和GPIOA、AFIO均在APB2上,所以可以一次配置完成。如下: RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_AFIO|RCC_APB 2Periph_USART1 ,ENABLE); ●?其次中断配置。主要有优先级组设定、USART1中断使能、该中断的优先级,中断初 始化。程序如下: void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);//选择分组方式0 /* 使能 USART1中断 */ NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } ●?然后GPIO复用功能配置。一般情况下我们使用原始的外设和GPIO端口引脚的映射 关系,如果要改变其映射的话,请另外查看参考手册上关于GPIO重映射部分。对 于GPIO的复用,其引脚的输入与输出模式都有要求,在参考手册上有详细说明。 void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; /* 配置 USART1 Rx 作为浮空输入 */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(USARTy_GPIO, &GPIO_InitStructure); /* 配置 USART1 Tx 作为推挽输出 */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

单片机外部中断详解

单片机外部中断详解 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

一.外部中断相关寄存器 1.定时器/计数器控制寄存器控制寄存器(TCON)? ? IT0:外部中断0触发方式控制位? 当IT0=0时,为电平触发方式(低电平有效)? 当IT0=1时,为边沿触发方式(下降沿有效)? IT1:外部中断1触发方式控制位? 当IT1=0时,为电平触发方式(低电平有效)? 当IT1=1时,为边沿触发方式(下降沿有效) 2.中断允许控制寄存器(IE)? ?

EX0:外部中断0允许位;? EX1:外部中断1允许位;? EA :CPU中断允许(总允许)位。 二.外部中断的处理过程 1、设置中断触发方式,即IT0=1或0,IT1=1或0? 2、开对应的外部中断,即EX0=1或EX1=1;? 3、开总中断,即EA=1;? 4、等待外部设备产生中断请求,即通过P3.2,P.3.3口连接外部设备产生中断? 5、中断响应,执行中断服务函数 三.程序编写 要求:通过两位按键连接外部中断0和1,设定外部中断0为下降沿触发方式,外部中断1为低电平触发方式,按键产生中断使数字加减,用一位共阳极数码管来显示数值。? 目的:感受外部中断对程序的影响,体会低电平触发和下降沿触发的区别。

#include#define uint unsigned int #define uchar unsign ed char uchar code dat[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0x f8,0x80,0x90};uint num; void main() { EA=1; //开总中断 IT0=1; //下降沿触发 IT1=0; //低电平触发 EX0=1; //外部中断0允许 EX1=1; //外部中断1允许 while(1) { P0=dat[num%10]; } } void plus() interrupt 0???? //外部中断0 {

51单片机中断详解

一、中断的概念 CPU在处理某一事件A时,发生了另一事件B请求C PU迅速去处理(中断发生); CPU暂时中断当前的工作,转去处理事件B(中断响应和中断服务); 待C PU将事件B处理完毕后,再回到原来事件A被中断的地方继续处理事件A(中断返回),这一过程称为中断二、中断源 在51单片机中有5个中断源 中断号优先级中断源中断入口地址 0 1(最高)外部中断0 0003H 1 2 定时器0 000BH 2 3 外部中断1 0013H 3 4 定时器1 0018H 4 5 串口总段0023H 三、中断寄存器 单片机有10个寄存器主要与中断程序的书写控制有关 1.中断允许控制寄存器IE 2.定时器控制寄存器TC ON 3.串口控制寄存器SCON 4.中断优先控制寄存器IP 5.定时器工作方式控制寄存器TMOD 6.定时器初值赋予寄存器(TH0/TH1,TL0/TL1)

四、寄存器功能与赋值说明 注:在用到中断时,必须要开总中断EA,即EA=1。//开总中断 1.中断允许控制寄存器IE EX0(EX1):外部中断允许控制位 EX0=1 外部中断0开关闭合//开外部0中断 EX0=0 外部中断0开关断开 ET0(ET1):定时中断允许控制位 ET0=1 定时器中断0开关闭合//开内部中断0 ET0=0 定时器中断0开关断开 ES: 串口中断允许控制位 ES=1 串口中断开关闭合//开串口中断 ES=0 串口中断开关断开 2.定时器控制寄存器TCON //控制外部中断和定时器中断 外部中断: IE0(IE1):外部中断请求标志位 当INT0(INT1)引脚出现有效的请求信号,此位由单片机自动置1,cpu开始响应,处理终端,而当入

STM32个人总结

基础入门编 1.搭建开发环境 详情看光盘资料,主要是软件安装和设置。 2.新建工程 可以直接用模板,了解每个文件的含义,会使用chm帮助。 3.STM32库 库的含义。 4.GPIO流水灯 认识RCC,GPIO的各种模式,寄存器的种类和作用。 5.POLLING按键 主要介绍了各种模式,实验通过不断读取GPIO的状态以达到判断按键的目的。 6.EXTI按键 使用了GPIO的EXTI中断来判断按键,记住EXTI要开AFIO(重映射也要开),另外SYSTICK不归NVIC管。注意NVIC_IRQChannelSubPriority(),最多可以判断16种优先级,即16种中断,同一个中断入口的引脚引发的中断也算是同一种中断,同种种中断不能相互嵌套。(响应优先级是在抢占优先级相同时,同时发生才有用,其中一个发生后无用)。 7.SYSTICK 关键是SYSTICK的初始化函数,了解那几个寄存器的作用和特殊的宏定义(就是选择自己想选择的位),根据配置可以延时不同的时间,详情看代码。 8.串口通信 开启相应RCC,做好Iint,配置好中断(可选,主要用于接收),然后弄好fputc(),可以直接用printf()直接输出。 9.DMA 不经CPU处理直接相互传输,开启相应的DMA,配置好from..to..,字节大小等,用cmd 命令后可以开启传输。 10.ADC(DMA) 主要就是初始化好ADC,什么通道模式之类的,详情看代码,由于使用了DMA模式,要配置好DMA,有ADC_DMACmd()开始传输。 11..FSMC显示英文 用FSMC直接写入液晶的控制芯片的显存,注意使用的是16位的颜色,线的接法要注意(RGB为5:6:5)。 由于用的是模拟的方法,输入数据时用的都是宏,该地址线用来作为C/D,16位是往前移了一位的,因此要乘以2. 值得注意的是开窗的显示手法,在显示字符前先“开”一个窗,当一行数据写完时,自动换到下一行继续写。 在写数据的函数那里可以更换字的背景色,也可以修改该函数的.h的BACKGROUND 的宏定义。 FSMC的初始化暂时不清楚,应该是关于NOR FLASH的。控制代码是配好的,具体的设置看参考文档(有关定位坐标和扫描方式都与此有关)。 (NOR-FLASH 有4个bank,NE[3:0],区分不同的bank,实验用NE1;DataAddress_Mux 数据域地址线复用;8位地址线25:0->24:0 16位地址线25:1->24:0,宏定义是16位的地址线,对应的机内地址*2左移1位) 12.IIC-EEPROM

外部中断详解

由于不少同学们,学习51单片机到了中断课程的时候,就开始进入一知半解的状态了,为此,开题一篇,以供大家搞明白,中断这回事。 我们还是用清晰点的逻辑来分析,围绕这四个部分来介绍,当然重点在于3和4部分。通篇我会以让初学者都能看懂的语言来说明。如果有专业一点的术语名词,我也尽量用简单易懂的描述。 注:本文旨在让大家理解什么是中断和怎么去设置。具体的东西有些考虑到深浅问题,则跳过不讲。如需了解,可自行查询资料 1.什么是中断? 2.为什么要有中断? 3.中断怎么触发? 4.怎么设置中断? 什么是中断? 举个老生常谈的例子——接电话。 在一个风和日丽的下午,你在电脑前看着视频,突然间,你桌上的手机来电话了,这时候你就该暂停视频,拿起手机接电话。 OK,回到单片机里来,我们之前写程序,都是在main函数里,甚至main 函数里的while(1)里执行我们的程序。这就相当于这个例子中的【看视频】,而【电话响了】这个过程,就相当于产生了中断,而【接电话】就是你在中断里做的事情。

为什么要有中断? 为什么要有中断,再举一个例子好了。 简单来讲,就是一些程序我们平时不执行,但到了某个特殊时刻,我们才去执行。所以我们就让这个特殊时刻产生一个中断,这时候,就跳去了我们特殊时刻才执行的函数里了。 什么情况会触发中断? 那么,我们什么情况下,单片机才会识别到中断,或者说,什么情况下,单片机才会跳入我们中断的函数里呢? 简单来讲,我们的中断大致分为三种,外部中断、定时器中断、串口中断。这三种的触发方式不一样。 外部中断:

顾名思义,就是单片机外部出现了一定的情况,才进入了中断。89c51有两个外部中断,一个是P3.2引脚,一个是P3.3引脚。分别是外部中断0和外部中断1。我们以外部中断0为例,当P3.2这个脚读到一个低电平(0)或者下降沿(由高电平变低电平)的时候,这时单片机自己就识别到了,所以就会自己跳入中断。 定时器中断: 定时器中断不再这详细说明,大致是讲,我们可以设置一个时间(或者叫闹钟),然后这个单片机会开始计时,当到了这个时间点,单片机就会跳入中断。串口中断: 串口中断也不再这赘述,大致是,当单片机的RX引脚接收到信号的时候,会自动进入中断。 怎么设置中断? OK,在了解这些之后,我们就可以开始来写程序,设置一个中断了。所有中断,如果要开启的话,我们就需要对单片机进行一个【初始化设置】,让单片机知道:“哦,你要老子开启外部中断。” 这时候,我们设置的东西,其实就是在设置单片机里的一些特殊功能寄存器。这时候涉及到一个新名词叫做寄存器,我们这么理解寄存器顾名思义他是存放数据的,需要的时候,我就把他拿出来。

单片机外部中断详解及程序

单片机外部中断详解及程序 单片机在自主运行的时候一般是在执行一个死循环程序,在没有外界干扰(输入信号)的时候它基本处于一个封闭状态。比如一个电子时钟,它会按时、分、秒的规律来自主运行并通过输出设备(如液晶显示屏)把时间显示出来。在不需要对它进行调校的时候它不需要外部干预,自主封闭地运行。如果这个时钟足够准确而又不掉电的话,它可能一直处于这种封闭运行状态。但事情往往不会如此简单,在时钟刚刚上电、或时钟需要重新校准、甚至时钟被带到了不同的时区的时候,就需要重新调校时钟,这时就要求时钟就必须具有调校功能。因此单片机系统往往又不会是一个单纯的封闭系统,它有些时候恰恰需要外部的干预,这也就是外部中断产生的根本原由。 实际上在第二个示例演示中,就已经举过有按键输入的例子了,只不过当时使用的方法并不是外部中断,而是用程序查询的方式。下面就用外部中断的方法来改写一下第二个示例中,通过按键来更改闪烁速度的例子(第二个例子)。电路结构和接线不变,仅把程序改为下面的形式。 #include ;

unsigned int t=500; //定义一个全局变量t,并设定初始值为500次 //===========延时子函数,在8MHz晶振时约 1ms============= void delay_ms(unsigned int k) { unsigned int i,j; for(i=0;i

STM32GPIO外部中断的详细解析和总结

STM32GPIO外部中断的详细解析和总结 1 STM32中断分组 STM32 的每一个GPIO都能配置成一个外部中断触发源,这点也是STM32 的强大之处。STM32 通过根据引脚的序号不同将众多中断触发源分成不同的组,比如:PA0,PB0,PC0,PD0,PE0,PF0,PG0为第一组,那么依此类推,我们能得出一共有16 组,STM32 规定,每一组中同时只能有一个中断触发源工作,那么,最多工作的也就是16个外部中断。STM32F103 的中断控制器支持19 个外部中断/事件请求。每个中断设有状态位,每个中断/事件都有独立的触发和屏蔽设置。STM32F103 的19 个外部中断为: 线0~15:对应外部IO 口的输入中断。 线16:连接到PVD 输出。 线17:连接到RTC 闹钟事件。 线18:连接到USB 唤醒事件。 2 外部中断的配置过程 1.配置触发源GPIO口 因为GPIO口作为触发源使用,所以将GPIO口配置成输入模式,触发模式有以下几种: a.GPIO_Mode_AIN ,模拟输入(ADC模拟输入,或者低功耗下省电) b.GPIO_Mode_IN_FLOATING ,浮空输入 c.GPIO_Mode_IPD ,带下拉输入 d.GPIO_Mode_IPU ,带上拉输入 GPIO_InitTypeDef GPIO_InitStructure;//定义结构体 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE,ENABLE);//使能时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;//选择IO口PE2 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;//设置成上拉输入

STM32 Uart串口中断响应、发送接收详细程序

程序实现功能:可以直接接收USART1的数据,并通过串口调试输出显示 #include"stm32f10x_lib.h" void NVIC_Configuration(void); void RCC_Configuration(void); void GPIO_Configuration(void); ErrorStatus HSEStartUpStatus; USART_InitTypeDef USART_InitStructure; USART_ClockInitTypeDef USART_ClockInitStructure; int main() { #ifdef DEBUG debug #endif RCC_Configuration(); NVIC_Configuration(); GPIO_Configuration(); /*串口传输速率的大小必须与RCC所设定的时钟相对应起来*/ USART_https://www.wendangku.net/doc/bb6155400.html,ART_BaudRate = 9600; //设置USART的传输速率/*设定数据的接收发送模式*/ USART_https://www.wendangku.net/doc/bb6155400.html,ART_WordLength = USART_WordLength_8b;//在一帧中传输或接受8位数据位 USART_https://www.wendangku.net/doc/bb6155400.html,ART_StopBits = USART_StopBits_1; //定义在帧的结尾传输一个停止位 USART_https://www.wendangku.net/doc/bb6155400.html,ART_Parity = USART_Parity_No; //奇偶失能 USART_https://www.wendangku.net/doc/bb6155400.html,ART_HardwareFlowControl = USART_HardwareFlowControl_None; //指定硬件流控制模式RTS和CTS使能 USART_https://www.wendangku.net/doc/bb6155400.html,ART_Mode = USART_Mode_Rx | USART_Mode_Tx; //指定使能或失能发送和接受模式Tx发送使能和Rx接收使能 USART_Clock https://www.wendangku.net/doc/bb6155400.html,ART_Clock = USART_Clock_Disable; //提升USART时钟时使能还是失能,钟低电平活动 USART_https://www.wendangku.net/doc/bb6155400.html,ART_CPOL = USART_CPOL_Low; //指定SLCK引脚上时钟的极性 USART_https://www.wendangku.net/doc/bb6155400.html,ART_CPHA = USART_CPHA_2Edge; //时钟第二个边缘进行数据捕获 USART_https://www.wendangku.net/doc/bb6155400.html,ART_LastBit = USART_LastBit_Disable; //在SCLK引脚上输出最后发送的那个数据字的脉冲不从SCLK输出 USART_ClockInit(USART1, &USART_ClockInitStructure); USART_Init(USART1, &USART_InitStructure); /*输入输出的中断使能*/ // USART_ITConfig(USART1, USART_IT_TXE, ENABLE); USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);

51单片机外部中断详解

一.外部中断相关寄存器 1.定时器/计数器控制寄存器控制寄存器(TCON) IT0:外部中断0触发方式控制位 当IT0=0时,为电平触发方式(低电平有效) 当IT0=1时,为边沿触发方式(下降沿有效) IT1:外部中断1触发方式控制位 当IT1=0时,为电平触发方式(低电平有效) 当IT1=1时,为边沿触发方式(下降沿有效) 2.中断允许控制寄存器(IE) EX0:外部中断0允许位; EX1:外部中断1允许位; EA :CPU中断允许(总允许)位。 二.外部中断的处理过程 1、设置中断触发方式,即IT0=1或0,IT1=1或0

2、开对应的外部中断,即EX0=1或EX1=1; 3、开总中断,即EA=1; 4、等待外部设备产生中断请求,即通过,口连接外部设备产生中断 5、中断响应,执行中断服务函数 三.程序编写 要求:通过两位按键连接外部中断0和1,设定外部中断0为下降沿触发方式,外部中断1为低电平触发方式,按键产生中断使数字加减,用一位共阳极数码管来显示数值。 目的:感受外部中断对程序的影响,体会低电平触发和下降沿触发的区别。 #include<>#define uint unsigned int #define uchar unsigned char uchar code dat[]={0xc0, 0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};uint num; void main() { ! EA=1; //开总中断 IT0=1; //下降沿触发 IT1=0; //低电平触发 EX0=1; //外部中断0允许 EX1=1; //外部中断1允许 while(1) { P0=dat[num%10]; } } { void plus() interrupt 0//外部中断0

相关文档