文档库 最新最全的文档下载
当前位置:文档库 › 基于主成分与逐步回归法的降尺度预报模型及应用

基于主成分与逐步回归法的降尺度预报模型及应用

基于主成分与逐步回归法的降尺度预报模型及应用
基于主成分与逐步回归法的降尺度预报模型及应用

第30卷第8期2 0 1 

2年8月水 电 能 源 科 学

Water Resources and PowerVol.30No.8

Aug

.2 0 1 2文章编号:1000-7709(2012)08-0009-

04基于主成分分析与逐步回归法的降尺度预报模型及应用

欧阳芬1,吕海深2,黎 敏1

(1.河海大学理学院,江苏南京210098;2.河海大学水文水资源与水利工程科学国家重点实验室,江苏南京210098

)摘要:全球气候模式(GCM)的空间分辨率较低,缺少趋于气候信息,很难精确预测区域尺度的气候变化,而统计降尺度法简单,可弥补此缺陷。结合NCEP数据和国家气象观测站的站点数据构建月平均降水量的统计降尺度模型,选取HadCM3、ECHAM5和CSIRO-Mk3.0模型的SRA2气候排放情景,并采用主成分分析及多元线性回归相结合的方法预测了淮河流域蚌埠上游地区未来30年的降水变化趋势。结果显示,检验期逐月降水量拟合结果较好,未来30年年平均降水量与基准年相比有上升的趋势。关键词:GCM模型;排放情景;月平均降水量;统计降尺度方法;主成分分析;淮河流域中图分类号:TV122;P332.1

文献标志码:B

收稿日期:2011-12-30,修回日期:2012-02-

06基金项目:国家自然科学基金资助项目(51190090,50939006);国家重点基金研究发展计划(973)基金资助项目(2010CB951101

)作者简介:欧阳芬(1987-),女,硕士研究生,研究方向为水系统科学,E-mail:ouyangfennj

@126.com 随着全球变暖逐步加剧,

气候变化对区域气候情景的影响已日益引起广泛的关注,其中水文及水资源受到的影响尤其明显。因此,较准确预测未来几十年内水文信息(如降水量、径流量等)对工农业生产的长期规划、环境保护和水资源可

持续利用等均有重大意义[

1]

。全球气候模式(GCM)

是目前用于预估未来气候变化最重要、最可行的方法,能较好地模拟大尺度最重要的平均特征,

特别是高层大气场、近地面温度和大气环流[2]

。但GCM模型的空间分辨率较低,

很难对区域气候情景精确预测,主要是水文模型尺度不匹配制约着水文预报的发展,而降尺度法则可将大尺度、低分辨率的GCM输出信息转化为区域尺度的地面气候变化信息(如温度和降水)。降尺度法大致分为统计降尺度法、动力降尺度法及统计与动力相结合的降尺度法三种,其中动力降尺度法计算量大、费时机,而统计降尺度方法则较简单

[3,4]

,是目前研究气候变化的新途径。鉴此,本

文采用统计降尺度法对淮河上游未来区域降水进行了预估,效果较好。

1 研究区域概况

1.1 概况

选择淮河上游地区(蚌埠市以上)作为研究区

域,面积约为12.1×104km

。淮河流域处于南北气候过渡带,多年平均降雨量883mm,降雨量50%~80%集中于6~9月;

降雨年际变化大,丰

水年的雨量多达枯水年的5倍;降雨分布也不均匀,北部沿黄地区平均年降雨量为600~700mm,南部及西部山区平均年降雨量为900~1 

400mm。图1为流域站点分布图。图1 淮河上游流域站点分布图

Fig.1 Distribution of stations of up

streamof Huaihe River 

Basin1.2 数据来源

采用NCEP全球再分析月资料为大尺度气候观测资料,空间分辨率为2.5°×2.5°。选择覆盖研究区域的16个网格(4×4)的数据,范围为E110°~E120°、N27.5°~N

37.5°。地面观测资料来自大气科学数据库,选取安徽省和河南省境内9个国家气象观测站1961~1994年的逐月降水

基于模型的多尺度间歇过程性能监控

2004年1月系统工程理论与实践第1期 文章编号:100026788(2004)0120097206 基于模型的多尺度间歇过程性能监控 郭 明,谢 磊,王树青 (浙江大学工业控制技术国家重点实验室,浙江杭州310027) 摘要: 利用神经网络对间歇过程的非线性和动态特征进行描述,神经网络的预测残差则利用多尺度主 元分析进行建模,将多尺度主元分析扩展用于间歇过程的监控Λ这一方法突破了传统多向主元分析单模 型、线性化的建模方式,是一种多模型非线性建模方法Λ它利用小波将每一残差信号分解为各个尺度上 的近似部分和细节部分,而主元分析则用于分别建立各个尺度上的统计模型Λ通过对实际工业链霉素发 酵过程数据的分析,表明文中所提出的方法与传统的多向主元分析方法相比,能够更早地发现故障,获 得更好的监控性能Λ 关键词: 间歇过程;神经网络;主元分析;小波分析;链霉素发酵 中图分类号: T P277 文献标识码: A M odel Based M u ltiscale Perfo rm ance M on ito ring fo r Batch P rocesses GU O M ing,X IE L ei,W AN G Shu2qing (N ati onal Key L ab of Indu strial Con tro l T echno logy,In stitu te of A dvanced P rocess Con tro l,Zhejiang U n iversity, H angzhou,310027,Ch ina) Abstract: Batch p rocess is one of the mo st i m po rtan t p rocesses in chem ical indu stry,and how to mon i2 to r the perfo rm ance of batch p rocesses has al w ays been one of the mo st active research areas in p rocess con tro l.In th is paper,neu ral netw o rk(NN)is u sed to describe the non linear and dynam ic behavi o r of batch p rocesses,and the p redicted residuals of NN is modeled th rough the ex ten si on of m u ltiscale p rin2 ci pal componen t analysis(M SPCA)to batch p https://www.wendangku.net/doc/bd6675810.html,pared to the m u lti w ay p rinci pal componen t analysis(M PCA)w ith a linear model,the p ropo sed m ethod is a m u lti2model,non linear model2bu ilt m ethod.Each of the residuals is decompo sed in to the app rox i m ati on s and details u sing w avelet analysis, and p rinci pal componen t analysis is emp loyed to develop a statistical model at each scale.T he advan tage of p ropo sed m ethod over the traditi onalM PCA is demon strated on the indu strial strep tom ycin ferm en ta2 ti on p rocess,and the s m aller detecti on delay is also ob tained. Key words: batch p rocess;neu ral netw o rk;p rinci pal componen t analysis(PCA);w avelet analysis; strep tom ycin ferm en tati on 1 引言 计算机技术的迅速发展和先进控制理论的大量应用,生产过程中能被测量和处理的变量越来越多,同时对工艺、设备及控制系统运行的可靠性与安全性要求也越来越高Λ如何从生产过程的历史数据库中挖掘出隐藏的有用信息,从而对系统进行监控,已成为越来越迫切的需要Λ多变量统计方法由于可以从大量的数据中提取重要的系统特征,在生产过程中得到广泛研究与成功应用Λ其中,有关主元分析(P rinci p al Com ponen t A nalysis,PCA)的理论研究和应用相对较多[1,2]Λ就基于PCA的过程监控方法而言,大多数的研究是基于Ho telling T2统计量和平方预测误差SPE统计量,通过采用SPE贡献图和主元得分贡献图 收稿日期:2002212216 资助项目:国家高技术发展计划(863计划,(2001AA413110)) 作者简介:郭明(1977-),男,湖北襄樊,博士研究生,主要研究化工过程性能监控与评估,故障诊断等,Em ail:guo_ m ing2000@https://www.wendangku.net/doc/bd6675810.html,

主成分分析法

一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: 主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。

主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 二、基本原理 主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP(比如p个指标),重新组合成一组较少个数的互不相关的综合指标Fm来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。 设F1表示原变量的第一个线性组合所形成的主成分指标,即 ,由数学知识可知,每一个主成分所提取的信息量可用其方差来度量,其方差 Var(F1)越大,表示F1包含的信息越多。常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP的所有线性组合中方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不相关的X1,X2,…,XP的所有线性组合中方差最大的,故称F2为第二主成分,依此类推构造出的F1、F2、……、Fm为原变量指标X1、X2……XP第一、第二、……、第m个主成分。 根据以上分析得知:

主成分分析法运用

统计学简介及在实践中的应用 --以主成分分析法分析影响房价因素为例 姓名:阳飞 学号:2111601015 学院:经济管理学院 指导教师:吴东武 时间:二〇一七年一月六日

1 简介 统计语源最早出现于中世界拉丁语的Status,意思指各种现象的状态和状况。后来由这一语根组成意大利语Stato,有表示“国家”的概念,也含有国家结构和 国情知识的意思。根据这一语根,最早作为学名使用的“统计”的是在十八世纪德国政治学教授亨瓦尔(G.Achenwall)。他在1749年所著《近代欧洲各国国家学纲要》一书的绪言中,就把国家学名定义为“Statistika”(统计)这个词。原意是 指“国家显著事项的比较和记述”或“国势学”,认为统计是关于国家应注意事项的学问。自此以后,各国就相继沿用“统计”这个词,更把这个词译成各国的文字,其中,法国译为Statistique;意大利译为Statistica;英国译为Statistics;日本最初译为“政表”、“政算”、“国势”、“形势”等,直到1880年在太政官中设立了统计院,这个时候才确定以“统计”二字正名。 在我国近代史上首次出现是在1903年(清光绪廿九年)由钮永建、林卓南等翻译了四本由横山雅南所著的《统计讲义录》一书,这个时候才把“统计”这个词从日本传到我国。1907年(清光绪卅三年),由彭祖植编写的《统计学》在日本出版,同时在国内发行。这本书是我国最早的一本“统计学”书籍。自此以后“统计”一词就成了记述国家和社会状况的数量关系的总称。 关于“统计”这个词,后来又引申到了各种各样的组合,包括:统计工作、统计资料、统计科学。 统计工作是指利用科学的方法搜集、整理、分析和提供关于社会经济现象数量资料的工作的总称,它是统计的基础,也称统计实践或统计活动。是在一定统计理论指导下,采用科学的方法,搜集、整理、分析统计资料的一系列活动过程。

主成分分析法总结

主成分分析法总结 在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。 因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息? 一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 主成分分析的具体步骤如下: (1)计算协方差矩阵 计算样品数据的协方差矩阵:Σ=(s ij )p ?p ,其中 1 1()() 1n ij ki i kj j k s x x x x n ==---∑i ,j=1,2,…,p (2)求出Σ的特征值 i λ及相应的正交化单位特征向量i a Σ的前m 个较大的特征值λ1≥λ2≥…λm>0,就是前m 个主成分对应的方差,i λ对应的单 位特征向量 i a 就是主成分Fi 的关于原变量的系数,则原变量的第i 个主成分Fi 为:

主成分分析法及其在SPSS中的操作

一、主成分分析基本原理 概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵, 记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则 系数l ij 的确定原则: ①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关; ②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。 新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。 从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。 ?????? ? ???????=np n n p p x x x x x x x x x X 2 1 2222111211 ?? ??? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............

多尺度耦合理论

多尺度耦合理论

何国威、白以龙 中国科学院力学研究所,非线性力学国家重点实验室 多尺度力学是当代科学技术发展的需求和前沿。在生物科学,材料科学,化学科学和流体力学中,许多重要问题的本质都表现为多尺度,它们涉及从分子尺度到连续介质尺度上不同物理机制的耦合和关联。例如,在生物和化学科学里,在分子尺度上的不同性态产生了生物体尺度上的复杂现象;在固体破坏中,不同尺度的微损伤相互作用产生更大尺度上的裂纹导致材料破坏;在流体力学中,不同时空尺度的涡相互作用构成复杂的流动图案。这些问题的共同特点是不同尺度上物理机制的耦合和关联。只考虑单个尺度上某个物理机制,不可能描述整个系统的复杂现象。因此,多尺度力学的核心问题是多过程耦合和跨尺度关联。 多尺度力学是传统的针对多尺度问题研究的发展,但有着本质的不同。它们都研究不 能通过解耦进行求解的多尺度耦合问题。但是,传统的多尺度问题具有相似性或弱耦合,即:不同尺度上的物理过程具有相似性,因此我们可以求相似解;或者,不同尺度上的物理过程具有弱耦合,因此我们可以采用平均法求解。然而,多尺度力学的研究对象具有多样性和强耦合,即:不同尺度上的物理过程既不具有相似性,耦合也不再是弱的了。因此,传统的相 似解和平均法对多尺度力学的问题都不适用。 动力系统理论和统计力学为多尺度现象的研究提供了基本方法。在一个给定尺度上的物理过程可以用动力学方程描述,而动力学方程的建立主要依赖于经典力学和量子力学。问题的关键在于不同尺度上物理过程的相互耦合。如果可以忽略耦合,单个尺度上的物理过程完全可以由经典力学或量子力学描述,剩下的就是类似于解方程那样的认识过程,原则上并不是什么困难的事情。在平衡态统计物理里,不同尺度之间物理过程耦合的基本假设是基于等概率原理的统计平均。但是,大多数多尺度问题涉及统计力学中非平衡态的非线性演化过程,不同的尺度之间存在强耦合或敏感耦合,不能简单地采用绝热近似、统计平均以及微扰等方法处理,而必须将不同尺度耦合求解。特别是存在敏感耦合的情形,小尺度上的某些无序性细节在非线性演化过程中可能被强烈地放大,变成大尺度上的显著效应。统计力学为处理这类问题提供了一个基本出发点。一个直接的方法是从第一原理出发,利用分子动力学,计算分子尺度上的所有细节,然后求得连续介质尺度上的物理性质。但是,由于现有计算机的限制,从第一原理出发的直接法并不现实。一个比较现实的方法是寻找中间尺度进行过渡,它包括基于区域分解的准连续方法和基于粗粒化的粒子动力学法。这些构造模型的方法在不同的问题上都取得了一定程度的成功,但是,它们都不具有普适性。最新的发展是建立在齐次化方法上的非均匀齐次法,它试图给出解决跨尺度关联问题的一般框架。 现代力学中两个典型的多尺度问题是流体湍流和固体破坏,它们既有共同点,但又有 所区别:流体湍流表现为不同尺度上多个物理过程的耦合,它没有尺度分离;固体破坏表现为不同尺度上物理机制的跨尺度关联,它具有尺度分离。现详细讨论如下: (1)流体湍流: 在流体湍流里,不同尺度上的涡相互作用构成了复杂的流动图案,它们具有不同的物理机制而又相互耦合。在上个世纪,针对不同尺度上物理过程相似的问题,流体力学家发展了求相似解的方法;针对不同尺度上物理过程耦合较弱的问题,流体力学家发展了小参数摄动法。正是相似解和摄动法解决了航空航天中诸如湍流边界层这样的重大问题,形成了力学史上的一个黄金时代。但是,现在对湍流问题的研究与过去有了根本的不同,它表现为要认识不同尺度上不同的物理过程的强耦合。对于这类问题,经典的相似解和摄动法并不适用。 因此,必须发展能解决多尺度现象里多样性和强耦合问题的理论和数值方法。 湍流具有从耗散尺度到积分尺度的连续谱,它没有尺度分离,因此平均法并不适用。 统计物理为湍流的多尺度模型提供了工具。一般而言,湍流的统计特性可以用矩和概率密度函数描述。但是,矩方程含有非线性引起的高阶矩耦合,概率密度函数方程含有耗散引起的

主成分分析分析法

第四节 主成分分析方法 地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题 是经常会遇到的。 变量太多, 无疑会增加分析问题的难度与复杂性, 而且在许多 实际问题中, 多个变量之间是具有一定的相关关系的。 因此,我们就会很自然地 想到,能否在各个变量之间相关关系研究的基础上, 用较少的新变量代替原来较 多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信 息?事实上, 这种想法是可以实现的, 本节拟介绍的主成分分析方法就是综合处 理这种问题的一种强有力的方法。 第一节 主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法, 从数学角度来看, 这是一种降维处理技术。 假定有 n 个地理样本, 每个样本共有 p 个变量描述,这样就构成了一个 n ×p 阶的地理数据矩阵: 如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问 题,自然要在 p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需 要进行降维处理, 即用较少的几个综合指标来代替原来较多的变量指标, 而且使 这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之 间又是彼此独立的。那么,这些综合指标(即新变量 ) 应如何选取呢?显然,其 最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数, 使新的变量 指标之间相互独立且代表性最好。 如果记原来的变量指标为 x 1, 为 x 1,x 2,?, zm (m ≤p ) 。则 x 2 ,?, x p ,它们的综合指标——新变量指标

在(2)式中,系数l ij 由下列原则来决定: (1)z1 2与z j(i ≠j ;i ,j=1 ,2,?,m)相互无关; (2)z 1是x1,x2,?,x p的一切线性组合中方差最大者;z2是与z1不相关的x1,x2,?,x p的所有线性组合中方差最大者;??;z m是与z1,z2,??z m-1 都不相关的x1,x2,?,x p的所有线性组合中方差最大者。 这样决定的新变量指标z1,z2,?,zm分别称为原变量指标x1,x2,?,x p 的第一,第二,?,第m主成分。其中,z1在总方差中占的比例最大,z2,z3,?,z m的方差依次递减。在实际问题的分析中,常挑选前几个最大的主成分,这样既减少了变量的数目,又抓住了主要矛盾,简化了变量之间的关系。 从以上分析可以看出,找主成分就是确定原来变量x j(j=1 ,2,?,p)在诸主成分z i (i=1 ,2,?,m)上的载荷l ij (i=1 ,2,?,m;j=1 ,2,?,p),从数学上容易知道,它们分别是x1,x2,?,x p的相关矩阵的m个较大的特征值所对应的特征向量。 第二节主成分分析的解法 主成分分析的计算步骤 通过上述主成分分析的基本原理的介绍,我们可以把主成分分析计算步骤归纳如下:在公式(3)中,r ij (i ,j=1 ,2,?,p)为原来变量x i与x j的相关系数,其计 算公式为 因为R是实对称矩阵(即r ij =r ji ),所以只需计算其上三角元素或下三角元素即可。 1 计算相关系数矩阵 2 计算特征值与特征向量

SDSM降尺度模型中文操作手册范本

Reviews typically group downscaling methodologies into four main types: a) dynamical climate modelling, b) synoptic weather typing, c) stochastic weather generation, or d) transfer-function approaches. 综述了典型组降尺度方法研究分为四种主要类型:一)动力气候建模,B)的天气天气分型,C)随机天气生成,或D)的传递函数方法。 The SDSM software reduces the task of statistically downscaling daily weather series into seven discrete steps: 1) quality control and data transformation; 2) screening of predictor variables; 3) model calibration; 4) weather generation (using observed predictors); 5) statistical analyses; 6) graphing model output; 7) scenario generation (using climate model predictors). 模型的校准,来源是美国国家环境预报中心(NCEP)再分析数据集–。数据被重新–网格适

应HadCM3网格系统(图2.2)。所有的预测(与地转风的方向,异常,见下文)进行标准化与1961至1990的平均水平。然而,日常的预测也为期1961–2000提供。 缩减未来气候情景下四套的GCM输出是可用的:HADCM2,HADCM3,CGCM2,CSIRO。三种排放情景:可用:CO2年均以每年1%的温室气体实验(HADCM2只),A2和B2两个SRES情景的温室气体,产生的硫酸盐气溶胶,和太阳辐射(HADCM3,CSIRO,CGCM2)。 3。开始 启动SDSM,在Windows桌面上的开始按钮,然后在 程序,然后在SDSM(出现在上的一个小雨云 可用的程序)。下面的屏幕会出现: 飞溅屏幕出现在未来(IE主菜单屏幕,将开始出现在盒子SDSM)单击“不再显示此屏幕再次。如果进一步的信息在任何时间,在每个屏幕的顶部,请单击“帮助”按钮(用户可以通过关键词或任务搜索帮助的容)。SDSM是由在每个屏幕的顶部栏中选择适当的按钮导航。这些设置在同一逻辑顺序为SDSM关键功能。 在降尺度,用户应该检查的日期围,所有输入的数据类型和完整性。建立工作环境点击扳手符号在主菜单的顶部(或任何其他屏幕顶部)访问settingsscreen(图3.3)。 3.2高级设置 先进的设置是通过设置屏幕点击高级按钮在屏幕的顶部。高级设置屏幕允许用户更改并保存偏好进一步降尺度模型(图3.4): 模型转换:指定的变换应用在有条件的模型预测。默认的(不)时使用的预测通常是分布式的(通常为每日温度的情况下)。替代(第四根,自然对数逆正常)时使用的数据是倾斜的

主成分分析法的步骤和原理

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p个变量来描述研究对象,分别用X1,X2…X p来表示,这p个变量构成的p维随机向量为X=(X1,X2…X p)t。设随机向量X的均值为μ,协方差矩阵为Σ。对X进行线性变化,考虑原始变量的线性组合: Z=μX+μX+…μX Z=μX+μX+…μX ……………… Z=μX+μX+…μX 主成分是不相关的线性组合Z1,Z2……Z p,并且Z1是X,X…X的线性组合中方差最大者,Z2是与Z1不相关的线性组合中方差最大者,…,Z是与Z1,Z2……Z p-1都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x ij)m×p,其中x ij表示第i家上市公司的第j项财务指标数据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。其中,R ij(i,j=1,2,…,p)为原始变量X i与X j的相关系数。R为实对称矩阵

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

主成分分析法概念及例题

主成分分析法 [ 编辑 ] 什么是主成分分析法 主成分分析也称 主分量分析 ,旨在利用降维的思想,把多 指标 转化为少数几个综合指标。 在 统计学 中,主成分分析( principal components analysis,PCA )是一种简化数据集的技 术。它是一个线性变换。 这个变换把数据变换到一个新的坐标系统中, 使得任何数据投影的第一 大方差 在第一个坐标 (称为第一主成分 )上,第二大方差在第二个坐标 (第二主成分 )上,依次类推。 主成分分析经常用减少数据集的维数, 同时保持数据集的对 方差 贡献最大的特征。 这是通过保留 低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是, 这也不是一定的,要视具体应用而定。 [ 编辑 ] , PCA ) 又称: 主分量分析,主成分回归分析法 主成分分析( principal components analysis

主成分分析的基本思想 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [ 编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [ 编辑] 主成分分析的主要作用

统计降尺度方法和Delta方法建立黄河源区气候情景的比较 …

统计降尺度方法和Delta方法建立黄河源区气候情景的比较分析 赵芳芳徐宗学 北京师范大学水科学研究院,水沙科学教育部重点实验室, 北京, 100875 摘要 大气环流模型(GCMs)预测的气候变化情景,必须经降尺度处理得出小尺度上未来气候变化的时空分布资料,才能满足气候变化对资源、环境和社会经济等影响进行评估的需要。文中研究同时应用Delta方法和统计降尺度(SDS)方法对黄河源区的日降水量和日最高、最低气温进行降尺度处理,建立起未来3个时期(2006—2035、2036—2065和2066—2095年,简记为2020s、2050s和2080s)的气候变化情景,并比较分析两种方法的优缺点和适用性。结果表明,未来降水量有一定的增加趋势,但是增幅不大,而日最高、最低气温存在明显的上升趋势,且增幅较大。与基准期相比,Delta方法模拟的未来3个时期降水量将分别增加8.75%、19.70%和18.49%;日最高气温将分别升高1.41、2.42和3.44 ℃,同时,日最低气温将分别升高1.49、2.68和3.76 ℃,未来极值气温变幅减小。SDS法借助站点实测数据和NCEP再分析资料建立GCM强迫条件下的降尺度模型,模拟结果表明,未来3个时期降水量将分别增加3.47%、6.42%和8.67%,季节变化明显;气温随时间推移增幅明显,未来3个时期的日最高气温将分别升高1.34、2.60和3.90 ℃,最低气温增幅相对较小,3个时期将分别升高0.87、1.49和2.27 ℃,由此模拟的未来时期无霜期将延长。在降尺度方法的应用上,SDS方法存在明显的优势,但同时也存在不可避免的缺陷。因此,在实际的气候变化影响评估中,需要多种方法综合比较,以期为决策部门提供参考和依据。 关键词:气候变化,大气环流模型(GCMs),情景,降尺度,黄河。 初稿时间:2006年2月23日;修改稿时间:2006年7月8 作者简介:赵芳芳,主要从事气候变化对水文资源的影响分析研究。 Email: zhfang2003@https://www.wendangku.net/doc/bd6675810.html,

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么就是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)就是一种简化数据集的技术。它就是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这就是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但就是,这也不就是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量与增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正就是适应这一要求产生的,就是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果就是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取就是个重点与难点。如上所述,主成分分析法正就是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量就是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量就是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发与利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用与开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法就是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

主成分法及其应用

【作者简介】 苏键(1985-),男,广西钦州人,助理工程师,研究方向:食品科学。1主成分分析法 何谓主成分分析,就是将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法,又称主分量分析[1]。主成分分析的中心思想是缩减一个包括很多相互联系着的变量的数量集,在数量集中保留尽可能多的有用的变量。 主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。主成分分析是设法将原来众多具有一定相关性(比如P 个指标 ),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P 个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var (F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的, 故称F1为第一主成分。如果第一主成分不足以代表原来P 个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov (F1,F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P 个主成分[2]。 主成分分析首先是由K.皮尔森对非随机变量引入的,而后H.霍特林将此方法推广到随机向量的情形[2]。信息的大小通常用离差平方和或方差来衡量。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。 2主成分分析法在食品领域的应用 2.1主成分分析在食品风味方面的应用 目前,主成分分析应用还是比较广泛的,但是就食品风味方面,关于该分析方法的文献鲜见报道。戴素贤等[3]人对七种高香型乌龙茶中的香气成分进行了主成分分析,他们尝试用主成分分析法来研究茶业香型的变化,并进而找到影响这些香型变化的主要化合物,同时还发现了不同的茶别中香气化合物变化的趋势并进行了模拟量化,直观地表现了各种香气化合物对香气的贡献程度。李华等[4]运用多元统计分析确定葡萄酒感官特性,多元统计分析中的主成分分析等数学工具能够把大量的描述葡萄酒感官特性的描述语精简成较少的综合性更强的描述语,这些精简后的描述语不但能够反映精简前描述语的信息,还可以筛选出科学合理的描述符,描述符是描述分析的语言和工具,根据描述符可以分类不同的葡萄酒。邵威平等[5]应用主成分分析法完成了不同品牌啤酒风味差异性的评价,同一品牌啤酒风味一致性的评价,同一品牌不同生产厂之间一致性的评价以及同一生产厂啤酒一致性的评价这些工作。 啤酒是个多指标的风味食品,主成分分析法可以帮助我们更好地研究啤酒理化指标和啤酒风格之间的相关性,从而达到更好地理解啤酒风味的目的。岳田利等[6]人则通过利用主成分分析的方法建立了苹果酒香气质量的评价模型,并以此来对苹果酒样品香气组分进行客观的统计分析。S.Kallithraka 等[7]采用高效液相色谱法和气相色谱法研究了希腊国内不同产地葡萄酒的化合物成分和感官特性,并运用了PCA 法(主成分分析法)对所得参数进行多元分析,最终达到给葡萄酒评价和分类的目的。2.2主成分分析在食品品质方面的应用 食品品质的评价往往是非常复杂的过程。因为影响食品品质的因素大量存在,非人为因素如食品环境中的微生物,温度及pH 等的变化带来的影响。另一方面,由于人为的因素掺假也会造成食品品质的低劣,进而损害广大销售者和消费者的利益。如黎海红等[8]人运用主成分分析法对掺伪芝麻油的检测方法进行研究分析。根据主成分分析的实验原理,可以选择芝麻油的折光率、酸价、色泽、水分及挥发物、皂化值和碘价等理化指标作为变量,将这些变量的所测数据做矩阵处理最后分析就 轻工科技 LIGHT INDUSTRY SCIENCE AND TECHNOLOGY 2012年9月第9期(总第166期) 食品与生物 主成分分析法及其应用 苏键,陈军,何洁 (广西轻工业科学技术研究院,广西南宁530031) 【摘要】 介绍了主成分分析法的定义、原理,概述了该法在食品及一些仪器分析领域的应用,目的是为其他还未应用该分 析方法的学术领域提供一种参考和借鉴,使得主成分分析法能够在越来越多的学术领域中得以推广和应用。 【关键词】主成分分析;应用;概述【中图分类号】TS262【文献标识码】A 【文章编号】2095-3518 (2012)09-12-02

相关文档