文档库 最新最全的文档下载
当前位置:文档库 › 模式识别 感知器算法1

模式识别 感知器算法1

模式识别  感知器算法1
模式识别  感知器算法1

模式识别-参考

认知第一次作业 刘春华学号:53 以汉字识别为例,说明模式识别的四个模型各自的主要观点,以及这些模型之间有何区别。 1、模板匹配模型 刺激的视网膜图像传递到大脑,并与大脑存储的各种模式直接比较。 长时记忆中存储了各种与过去生活中形成的外部模式相对应的袖珍副本(模板),内在模板与客观事物的刺激模式之间存在着一一对应的关系。模式识别是将刺激提供的信息与相应的模板进行匹配的过程,是一种自下而上的加工模型。精确匹配 优点:模板说可以在一定程度上解释人在知觉过程中如何进行模式识别,并在实现具有人工智能的机器模式识别中得到了实际运用。 缺点:模板说在解释人的模式识别方面仍然有许多缺陷。①按照该理论的假设,每一个有千变万化现象的同一个事物,记忆系统中都要储备与之一一对应的模板才能识别,需要在记忆中存储大量模板②这种理论对模式识别的解释比较刻板和生硬,缺乏人们在实际知觉中对模式识别的灵活性和变通性③没有明确阐释模板匹配的机制,尤其难以解释人们迅速识别一个新的、不熟悉模式的现象。 2、原型模型(Prototype Models) 一类相关的物体或模式抽象的、理想化的样例,允许微小的变化,不需要精确匹配。 记忆中储存的不是与刺激模式一一对应的模板,而是一类刺激模式的原型(有关某一类事物或刺激模式的概括性表征,反映一类客观事物所具有的共同基本特性)。模式识别是在记忆中找到与当前的刺激模式最相似的原型的过程,不需要严格匹配,只要存在相应的原型,新的、不熟悉的模式也可以得到识别。 优点:原型匹配理论大大减少了模板的数量,不仅减轻了记忆负担,而且使模式识别的过程具有灵活性和变通性。这种识别过程基本与日常生活经验相符。 缺点:理论不够清晰直观;匹配过程只强调自上而下的加工,而缺少自下而上的加工。 3、区别性特征模型(Distinctive-Features Models) 将模式的特征同存储在记忆中的特征相匹配,而不是将整个模式同模板或原型相匹配。刺激被看成是一些基本特征(如水平、垂直或斜线、曲线等)模式识别通过特征分析来完成。每一种刺激模式都能被分解成一些基本特征,同一类别模式的刺激物具有共同的基本特征。刺激信息的特征和对这些特征的分析在模式识别过程中起着关键性的作用。 人已有的知识经验中的客观事物,以各种基本特征的方式储存在记忆系统中,模式识别的过程首先是对刺激信息的特征加以分析,抽取有关特征并加以合并,再与长时记忆系统中已储存的各种相应的特征比较,一旦获得二者特征之间最佳匹配,刺激就被识别。

模式识别(K近邻算法)

K 近邻算法 1.算法思想 取未知样本的x 的k 个近邻,看这k 个近邻中多数属于哪一类,就把x 归于哪一类。具体说就是在N 个已知的样本中,找出x 的k 个近邻。设这N 个样本中,来自1w 类的样本有1N 个,来自2w 的样本有2N 个,...,来自c w 类的样本有c N 个,若c k k k ,,,21 分别是k 个近邻中属于c w w w ,,,21 类的样本数,则我们可以定义判别函数为: c i k x g i i ,,2,1,)( == 决策规则为: 若i i j k x g max )(=,则决策j w x ∈ 2.程序代码 %KNN 算法程序 function error=knn(X,Y ,K) %error 为分类错误率 data=X; [M,N]=size(X); Y0=Y; [m0,n0]=size(Y); t=[1 2 3];%3类向量 ch=randperm(M);%随机排列1—M error=0; for i=1:10 Y1=Y0; b=ch(1+(i-1)*M/10:i*M/10); X1=X(b,:); X(b,:)=[]; Y1(b,:)=[]; c=X; [m,n]=size(X1); %m=15,n=4 [m1,n]=size(c); %m1=135,n=4 for ii=1:m for j=1:m1 ss(j,:)=sum((X1(ii,:)-c(j,:)).^2); end [z1,z2]=sort(ss); %由小到大排序 hh=hist(Y1(z2(1:K)),t); [w,best]=max(hh); yy(i,ii)=t(best); %保存修改的分类结果 end

模式识别感知器算法求判别函数

感知器算法求判别函数 一、 实验目的 掌握判别函数的概念和性质,并熟悉判别函数的分类方法,通过实验更深入的了解判别函数及感知器算法用于多类的情况,为以后更好的学习模式识别打下基础。 二、 实验内容 学习判别函数及感知器算法原理,在MATLAB 平台设计一个基于感知器算法进行训练得到三类分布于二维空间的线性可分模式的样本判别函数的实验,并画出判决面,分析实验结果并做出总结。 三、 实验原理 3.1 判别函数概念 直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。其中 0)(32211=++=w x w x w d X (1) 21,x x 为坐标变量。 将某一未知模式 X 代入(1)中: 若0)(>X d ,则1ω∈X 类; 若0)(3时:判别边界为一超平面[1]。 3.2 感知器算法 1958年,(美)F.Rosenblatt 提出,适于简单的模式分类问题。感知器算法是对一种分

类学习机模型的称呼,属于有关机器学习的仿生学领域中的问题,由于无法实现非线性分类而下马。但“赏罚概念( reward-punishment concept )” 得到广泛应用,感知器算法就是一种赏罚过程[2]。 两类线性可分的模式类 21,ωω,设X W X d T )(=其中,[]T 1 21,,,,+=n n w w w w ΛW ,[]T 211,,,,n x x x Λ=X 应具有性质 (2) 对样本进行规范化处理,即ω2类样本全部乘以(-1),则有: (3) 感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。 感知器算法步骤: (1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。 (2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。 分两种情况,更新权向量的值: 1. (),若0≤T i k X W 分类器对第i 个模式做了错误分类,权向量校正为: ()()i c k k X W W +=+1 c :正的校正增量。 2. 若(),0T >i k X W 分类正确,权向量不变:()()k k W W =+1,统一写为: ???∈<∈>=21T ,0,0)(ωωX X X W X 若若d

什么是模式识别

什么是模式识别 1 模式识别的概念 模式识别[8]是一种从大量信息和数据出发,在专家经验和已有认识的基础上,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别的过程。模式识别包括相互关联的两个阶段,即学习阶段和实现阶段,前者是对样本进行特征选择,寻找分类的规律,后者是根据分类规律对未知样本集进行分类和识别。广义的模式识别属计算机科学中智能模拟的研究范畴,内容非常广泛,包括声音和语言识别、文字识别、指纹识别、声纳信号和地震信号分析、照片图片分析、化学模式识别等等。计算机模式识别实现了部分脑力劳动自动化。 模式识别--对表征事物或现象的各种形式的(数值的,文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。 模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、文字、符号、三位物体和景物以及各种可以用物理的、化学的、生物的传感器对对象进行测量的具体模式进行分类和辨识。 模式识别问题指的是对一系列过程或事件的分类与描述,具有某些相类似的性质的过程或事件就分为一类。模式识别问题一般可以应用以下4种方法进行分析处理。 统计模式识别方法:统计模式识别方法是受数学中的决策理论的启发而产生的一种识别方法,它一般假定被识别的对象或经过特征提取向量是符合一定分布规律的随机变量。其基本思想是将特征提取阶段得到的特征向量定义在一个特征空间中,这个空间包含了所有的特征向量,不同的特征向量,或者说不同类别的对象都对应于空间中的一点。在分类阶段,则利用统计决策的原理对特征空间进行划分,从而达到识别不同特征的对象的目的。统计模式识别中个应用的统计决策分类理论相对比较成熟,研究的重点是特征提取。 人工神经网络模式识别:人工神经网络的研究起源于对生物神经系统的研究。人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点。 句法结构模式识别:句法结构模式识别着眼于对待识别对象的结构特征的描述。 在上述4种算法中,统计模式识别是最经典的分类识别方法,在图像模式识别中有着非常广泛的应用。 2 模式识别研究方向 模式识别研究主要集中在两方面,即研究生物体(包括人)是如何感知对象的,属于认知科学的范畴,以及在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作着近几十年来的努力,已经取得了系统的研究成果。 一个计算机模式识别系统基本上事有三部分组成的[11],即数据采集、数据处理和分类决策或模型匹配。任何一种模式识别方法都首先要通过各种传感器把被研究对象的各种物理变量转换为计算机可以接受的数值或符号(串)集合。习惯上,称这种数值或符号(串)所组成的空间为模式空间。为了从这些数字或符号(串)中抽取出对识别有效的信息,必须对它进行处理,其中包括消除噪声,排除不相干的信号以及与对象的性质和采用的识别方法密切相关的特征的计算(如表征物体的形状、周长、面积等等)以及必要的变换(如为得到信号功率谱所进行的快速傅里叶变换)等。然后通过特征选择和提取或基元选择形成模式的特

机器学习入门 - 感知器

机器学习入门- 感知器(PERCEPTRON) POSTED IN 学术_STUDY, 机器学习 本文是基于马里兰大学教授Hal Dame III(Blogger)课程内容的笔记。 感知器(Perceptron)这个词会成为Machine Learning的重要概念之一,是由于先辈们对于生物神经学科的深刻理解和融会贯通。 对于神经(neuron)我们有一个简单的抽象:每个神经元是与其他神经元连结在一起的,一个神经元会受到多个其他神经元状态的冲击,并由此决定自身是否激发。(如下图) Neuron Model (From Wikipedia) 这玩意儿仔细想起来可以为我们解决很多问题,尤其是使用决策树和KNN算法时解决不了的那些问题: ?决策树只使用了一小部分知识来得到问题的答案,这造成了一定程度上的资源浪费。 ?KNN对待数据的每个特征值都是一样的,这也是个大问题。比如一组数据包含100种特征值,而只有其中的一两种是起最重要作用的话,其他的特征值就变成了阻碍我们找到最好答案的噪声(Noise)。 根据神经元模型,我们可以设计这样一种算法。对于每种输入值(1 - D),我们计算一个权重。当前神经元的总激发值(a)就等于每种输入值(x)乘以权重(w)之和。 neuron sum 我们还可以推导出以下几条规则: ?如果当前神经元的某个输入值权重为零,则当前神经元激发与否与这个输入值无关?如果某个输入值的权重为正,它对于当前神经元的激发值a 产生正影响。反之,如果权重为负,则它对激发值产生负影响。

接下来我们要将偏移量(bias)的概念加入这个算法。有时我们希望我们的神经元激发量a 超过某一个临界值时再激发。在这种情况下,我们需要用到偏移量b。 neuron sum with bias 偏移量b 虽然只是附在式子后面的一个常数,但是它改变了几件事情: ?它定义了神经元的激发临界值 ?在空间上,它对决策边界(decision boundary) 有平移作用,就像常数作用在一次或二次函数上的效果。这个问题我们稍后再讨论。 在了解了神经元模型的基本思路之后,我们来仔细探讨一下感知器算法的具体内容。 感知器算法虽然也是二维分类器(Binary Classifier),但它与我们所知道的决策树算法和KNN都不太一样。主要区别在于: ?感知器算法是一种所谓“错误驱动(error-driven)”的算法。当我们训练这个算法时,只要输出值是正确的,这个算法就不会进行任何数据的调整。反之,当输出值与实际值异号,这个算法就会自动调整参数的比重。 ?感知器算法是实时(online)的。它逐一处理每一条数据,而不是进行批处理。 perceptron algorithms by Hal Dame III 感知器算法实际上是在不断“猜测”正确的权重和偏移量: ?首先,感知器算法将所有输入值的权重预设为0。这意味着,输入值预设为对结果不产生任何影响。同时,偏移量也被预设为0。 ?我们使用参数MaxIter。这个参数是整个算法中唯一一个超参数(hyper-parameter)。 这个超参数表示当我们一直无法找到准确答案时,我们要最多对权重和偏移量进行几次优化。

黄庆明 模式识别与机器学习 第三章 作业

·在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少? 应该是252142 6 *74132 7=+=+ =++C 其中加一是分别3类 和 7类 ·一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1 (1)设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。 (2)设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。绘出其判别界面和多类情况2的区域。

(3)设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。 ·两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。) 如果线性可分,则4个 建立二次的多项式判别函数,则102 5 C 个 ·(1)用感知器算法求下列模式分类的解向量w: ω1: {(0 0 0)T , (1 0 0)T , (1 0 1)T , (1 1 0)T } ω2: {(0 0 1)T , (0 1 1)T , (0 1 0)T , (1 1 1)T } 将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x ①=(0 0 0 1)T , x ②=(1 0 0 1)T , x ③=(1 0 1 1)T , x ④=(1 1 0 1)T x ⑤=(0 0 -1 -1)T , x ⑥=(0 -1 -1 -1)T , x ⑦=(0 -1 0 -1)T , x ⑧=(-1 -1 -1 -1)T 第一轮迭代:取C=1,w(1)=(0 0 0 0) T 因w T (1) x ① =(0 0 0 0)(0 0 0 1) T =0 ≯0,故w(2)=w(1)+ x ① =(0 0 0 1) 因w T (2) x ② =(0 0 0 1)(1 0 0 1) T =1>0,故w(3)=w(2)=(0 0 0 1)T 因w T (3)x ③=(0 0 0 1)(1 0 1 1)T =1>0,故w(4)=w(3) =(0 0 0 1)T 因w T (4)x ④=(0 0 0 1)(1 1 0 1)T =1>0,故w(5)=w(4)=(0 0 0 1)T 因w T (5)x ⑤=(0 0 0 1)(0 0 -1 -1)T =-1≯0,故w(6)=w(5)+ x ⑤=(0 0 -1 0)T 因w T (6)x ⑥=(0 0 -1 0)(0 -1 -1 -1)T =1>0,故w(7)=w(6)=(0 0 -1 0)T 因w T (7)x ⑦=(0 0 -1 0)(0 -1 0 -1)T =0≯0,故w(8)=w(7)+ x ⑦=(0 -1 -1 -1)T 因w T (8)x ⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T =3>0,故w(9)=w(8) =(0 -1 -1 -1)T 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代: 因w T (9)x ①=(0 -1 -1 -1)(0 0 0 1)T =-1≯0,故w(10)=w(9)+ x ① =(0 -1 -1 0)T

感知器的学习算法

感知器的学习算法 1.离散单输出感知器训练算法 设网络输入为n 维向量()110-=n x x x ,,, X ,网络权值向量为()110-=n ωωω,,, W ,样本集为(){}i i d ,X ,神经元激活函数为f ,神经元的理想输出为d ,实际输出为y 。 算法如下: Step1:初始化网络权值向量W ; Step2:重复下列过程,直到训练完成: (2.1)对样本集中的每个样本()d ,X ,重复如下过程: (2.1.1)将X 输入网络; (2.1.2)计算)(T =WX f y ; (2.1.3)若d y ≠,则当0=y 时,X W W ?+=α;否则X W W ?-=α。 2.离散多输出感知器训练算法 设网络的n 维输入向量为()110-=n x x x ,,, X ,网络权值矩阵为{}ji n m ω=?W ,网络理想输出向量为m 维,即()110-=m d d d ,,, D ,样本集为(){}i i D X ,,神经元激活函数为f , 网络的实际输出向量为()110-=m y y y ,,, Y 。 算法如下: Step1:初始化网络权值矩阵W ; Step2:重复下列过程,直到训练完成: (2.1)对样本集中的每个样本()D X ,,重复如下过程: (2.1.1)将X 输入网络; (2.1.2)计算)(T =XW Y f ; (2.1.3)对于输出层各神经元j (110-=m j ,,, )执行如下操作: 若j j d y ≠,则当0=j y 时,i ji ji x ?+=αωω,110-=n i ,,, ; 否则i ji ji x ?-=αωω,110-=n i ,,, 。

模式识别关于男女生身高和体重的神经网络算法

模式识别实验报告(二) 学院: 专业: 学号: 姓名:XXXX 教师:

目录 1实验目的 (1) 2实验内容 (1) 3实验平台 (1) 4实验过程与结果分析 (1) 4.1基于BP神经网络的分类器设计 .. 1 4.2基于SVM的分类器设计 (4) 4.3基于决策树的分类器设计 (7) 4.4三种分类器对比 (8) 5.总结 (8)

1)1实验目的 通过实际编程操作,实现对课堂上所学习的BP神经网络、SVM支持向量机和决策树这三种方法的应用,加深理解,同时锻炼自己的动手实践能力。 2)2实验内容 本次实验提供的样本数据有149个,每个数据提取5个特征,即身高、体重、是否喜欢数学、是否喜欢文学及是否喜欢运动,分别将样本数据用于对BP神经网络分类器、SVM支持向量机和决策树训练,用测试数据测试分类器的效果,采用交叉验证的方式实现对于性能指标的评判。具体要求如下: BP神经网络--自行编写代码完成后向传播算法,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算可以基于平台的软件包); SVM支持向量机--采用平台提供的软件包进行分类器的设计以及测试,尝试不同的核函数设计分类器,采用交叉验证的方式实现对于性能指标的评判; 决策树--采用平台提供的软件包进行分类器的设计以及测试,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算基于平台的软件包)。 3)3实验平台 专业研究方向为图像处理,用的较多的编程语言为C++,因此此次程序编写用的平台是VisualStudio及opencv,其中的BP神经网络为自己独立编写,SVM 支持向量机和决策树通过调用Opencv3.0库中相应的库函数并进行相应的配置进行实现。将Excel中的119个数据作为样本数据,其余30个作为分类器性能的测试数据。 4)4实验过程与结果分析 4.1基于BP神经网络的分类器设计 BP神经网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。其学习规则是使用梯度下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。 在独自设计的BP神经中,激励函数采用sigmod函数,输入层节点个数为5,

感知器算法实验--1

感知器算法实验--1

一.实验目的 1.理解线性分类器的分类原理。 2.掌握感知器算法,利用它对输入的数据进行 分类。 3.理解BP算法,使用BP算法对输入数据进 行分类。 二. 实验原理 1.感知器算法 感知器算法是通过训练模式的迭代和学习算法,产生线性可分的模式判别函数。感知器算法就是通过对训练模式样本集的“学习”得出判别函数的系数解。在本次实验中,我们主要是采用硬限幅函数进行分类。 感知器的训练算法如下: 设输入矢量{x1,x2,…,x n}其中每一个模式类别已知,它们分别属于ω1类和ω2类。 (1)置步数k=1,令增量ρ为某正的常数,分别赋给初始增广权矢量w(1)的各分量较小的任意值。 (2)输入训练模式x k,计算判别函数值 w T(k) x k。 (3)调整增广权矢量,规则是:

a.如果x k ∈ω1和w T (k) x k ≤0,则w(k+1)=w(k)+ ρx k ; b.如果x k ∈ω2和w T (k) x k ≥0,则w(k+1)=w(k)-ρx k ; c.如果x k ∈ω1和w T (k) x k >0,或x k ∈ω2和w T (k) x k <0,则w(k+1)=w(k) (4)如果k 0分类正确,则为第一个表达式,如果w T (k) x k ≤0错误分类则为第二个表达式。 在全部模式训练完一轮之后只要还有模式分类错误,则需要进行第二轮迭代,再用全部训练模式训练一次,建立新的权矢量。如果对训练模式还有错分,则进行第三轮迭代依此类推,直

人工智能 多种模式识别的调研报告

郑州科技学院 本科毕业设计(论文) 题目多种模式识别的调研报告 姓名闫永光 专业计算机科学与技术 学号201115025 指导教师 郑州科技学院信息工程系 二○一四年六月

摘要 信息技术的飞速发展使得人工智能的应用范围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。 模式识别(Pattern Recognition)是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。 关键词:模式识别;人工智能;多种模式识别的应用;模式识别技术的发展潜力

引言 随着计算机应用范围不断的拓宽,我们对于计算机具有更加有效的感知“能力”,诸如对声音、文字、图像、温度以及震动等外界信息,这样就可以依靠计算机来对人类的生存环境进行数字化改造。但是从一般的意义上来讲,当前的计算机都无法直接感知这些信息,而只能通过人在键盘、鼠标等外设上的操作才能感知外部信息。虽然摄像仪、图文扫描仪和话筒等相关设备已经部分的解决了非电信号的转换问题,但是仍然存在着识别技术不高,不能确保计算机真正的感知所采录的究竟是什么信息。这直接使得计算机对外部世界的感知能力低下,成为计算机应用发展的瓶颈。这时,能够提高计算机外部感知能力的学科——模式识别应运而生,并得到了快速的发展。人工智能中所提到的模式识别是指采用计算机来代替人类或者是帮助人类来感知外部信息,可以说是一种对人类感知能力的一种仿真模拟。它探讨的是计算机模式识别系统的建立,通过计算机系统来模拟人类感官对外界信息的识别和感知 1、模式识别 什么是模式和模式识别? 模式可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。 模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种。二者的主要差别在于,各实验样本所属的类别是否预先已知。一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。

机器学习在模式识别中的算法研究

机器学习在模式识别中的算法研究 摘要:机器学习是计算机开展智能操作的基础,人工智能的发展依靠机器学习 技术,而机器学习、模式识别与当前人工智能的发展密切相关。本文通过概述机 器学习机制,围绕神经网络、遗传算法、支持向量机、K-近邻法等算法研究当前 机器学习在模拟识别中的应用,为今后模拟识别与人工智能开发与研究提供借鉴。关键词:机器学习;模式识别;人工神经网络 前言: 机器学习技术覆盖了人工智能的各个部分,如自动推理、专家系统、模式识别、智能机器人等。模式识别是将计算机的不同事物划分成不同的类别。人工智 能的模式识别可以利用机器学习算法完善分类能效。因此,机器学习与模式识别 密不可分,本文就机器学习在模式识别领域的学习算法中的应用展开研究。 1、机器学习机制与系统设计 在机器学习模型中,环境可以向系统的学习部件中提供信息,学习部件根据 这些信息调整和修改知识库,提升系统内部执行文件的性能。执行文件再将获得 的信息向学习部件反馈,此过程就是机器学习系统结合外部与内部的环境信息自 动获取知识的过程。机器学习系统设计的构建过程应包含两部分:其一,模型的 选择和构建。其二,学习算法的选择与设计。不同种类的模型具有不同的目标函数,涉及到不同的学习机制,算法的复杂性与能力决定着学习系统的效率与学习 能力。此外,训练样本集的特征与大小的问题也与机器学习系统的性能相关。 2、机器学习在模式识别中的应用 2.1 遗传算法 在机器学习中,特征维数是一大难题,每一种模式中的特征反映出的事物本 质权重均不一致。部分对于分类结果并无积极作用,甚至属于冗余,因此选择特 征尤为关键。遗传算法实际上是寻优算法,可以有效的解决特征选择问题。遗传 算法可以筛选出准确反映出原模式相关信息、影响分类的结果、相互关联性较小 的特征。遗传算法实际是利用达尔文的生物进化思想,在运算领域中巧妙生成一 种寻优算法。该算法是1975年由美国Michigan大学的Holland教授提出的,遗 传算法的主要方法如下:首先,将种群中的个体作为对象,进行一系列的变异、 交叉、选择等操作。其次,利用遗传操作促进群体不断的进化,最终产生最优的 个体,最后,结合个体对于环境的适应程度选择最优良的个体,为其创造机会繁 衍后代。遗传算法程序如下:选择合适的编码策略,确定遗传策略和适应度函数。遗传策略包含种群的选择、大小、交叉概率、变异方法、变异概率等遗传参数; 利用编码策略,将特征集变为位串结构;构建初始化群体;计算整个群体的个体 适应度;结合遗传策略,将交叉、选择等作用在群体中,产生下一代群体;判别 群体性能是否到达某一标准,假若不满足将回到遗传策略阶段。 2.2 k-近邻法 k-nearest neighbor(k-近邻法)被广泛运用在无指导、基于实例的学习方法中, 可以实现线性不可分的样本识别,在之前并不了解待分样本的分布函数。当前被 广泛应用的k-近邻法主要是将待分类样本为重点形成超球体,同时扩展超球的半 径一直到球内包含着K个已知模式的样本,判别k个邻近样本属于哪一种。其主 要分类算法如下:设有c个类别,分别是w1,w2,w3,...,wc,i=1,2,3,...,c.测试样本x

感知器的训练算法实例

感知器的训练算法实例 将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x①=(0 0 1)T, x②=(0 1 1)T, x③=(-1 0 -1)T, x④=(-1 -1 -1)T 第一轮迭代:取C=1,w(1)= (0 0 0)T 因w T(1)x①=(0 0 0)(0 0 1)T=0≯0,故w(2)=w(1)+x①=(0 0 1)T 因w T(2)x②=(0 0 1)(0 1 1)T=1>0,故w(3)=w(2)=(0 0 1)T 因w T(3)x③=(0 0 1)(-1 0 -1)T=-1≯0,故w(4)=w(3)+x③=(-1 0 0)T 因w T(4)x④=(-1 0 0)(-1 -1 -1)T=1>0,故w(5)=w(4)=(-1 0 0)T 这里,第1步和第3步为错误分类,应“罚”。 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代: 因w T(5)x①=(-1 0 0)(0 0 1)T=0≯0,故w(6)=w(5)+x①=(-1 0 1)T 因w T(6)x②=(-1 0 1)(0 1 1)T=1>0,故w(7)=w(6)=(-1 0 1)T 因w T(7)x③=(-1 0 1)(-1 0 -1)T=0≯0,故w(8)=w(7)+x③=(-2 0 0)T 因w T(8)x④=(-2 0 0)(-1 -1 -1)T=2>0,故w(9)=w(8)=(-2 0 0)T 需进行第三轮迭代。 第三轮迭代: 因w T(9)x①=(-2 0 0)(0 0 1)T=0≯0,故w(10)=w(9)+x①=(-2 0 1)T

图像模式识别的方法介绍

2.1图像模式识别的方法 图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特征矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。基于色彩特征的识别技术主要针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏感等特点进行分类识别。基于纹理特征的识别方法是通过对图像中非常具有结构规律的特征加以分析或者则是对图像中的色彩强度的分布信息进行统计来完成。 从模式特征选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。在此将这四种方法进行一下说明。 2.1.1句法模式识别 对于较复杂的模式,如采用统计模式识别的方法,所面临的一个困难就是特征提取的问题,它所要求的特征量十分巨大,要把某一个复杂模式准确分类很困难,从而很自然地就想到这样的一种设计,即努力地把一个复杂模式分化为若干

较简单子模式的组合,而子模式又分为若干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。支配基元组成模式的规则称为文法。当每个基元被识别后,利用句法分析就可以作出整个的模式识别。即以这个句子是否符合某特定文法,以判别它是否属于某一类别。这就是句法模式识别的基本思想。 句法模式识别系统主要由预处理、基元提取、句法分析和文法推断等几部分组成。由预处理分割的模式,经基元提取形成描述模式的基元串(即字符串)。句法分析根据文法推理所推断的文法,判决有序字符串所描述的模式类别,得到判决结果。问题在于句法分析所依据的文法。不同的模式类对应着不同的文法,描述不同的目标。为了得到于模式类相适应的文法,类似于统计模式识别的训练过程,必须事先采集足够多的训练模式样本,经基元提取,把相应的文法推断出来。实际应用还有一定的困难。 2.1.2统计模式识别 统计模式识别是目前最成熟也是应用最广泛的方法,它主要利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。统计模式识别的基本模型如图2,该模型主要包括两种操作模型:训练和分类,其中训练主要利用己有样本完成对决策边界的划分,并采取了一定的学习机制以保证基于样本的划分是最优的;而分类主要对输入的模式利用其特征和训练得来的决策函数而把模式划分到相应模式类中。 统计模式识别方法以数学上的决策理论为基础建立统计模式识别模型。其基本模型是:对被研究图像进行大量统计分析,找出规律性的认识,并选取出反映图像本质的特征进行分类识别。统计模式识别系统可分为两种运行模式:训练和分类。训练模式中,预处理模块负责将感兴趣的特征从背景中分割出来、去除噪声以及进行其它操作;特征选取模块主要负责找到合适的特征来表示输入模式;分类器负责训练分割特征空间。在分类模式中,被训练好的分类器将输入模式根据测量的特征分配到某个指定的类。统计模式识别组成如图2所示。

模式识别第三章-感知器算法

模式识别第三章 感知器算法 一.用感知器算法求下列模式分类的解向量w : })0,1,1(,)1,0,1(,)0,0,1(,)0,0,0{(:1T T T T ω })1,1,1(,)0,1,0(,)1,1,0(,)1,0,0{(:2T T T T ω 将属于2ω的训练样本乘以(-1),并写成增广向量的形式: T x )1,0,0,0(1 =,T x )1,0,0,1(2=,T x )1,1,0,1(3=,T x )1,0,1,1(4 = T x )1,1-,0,0(5-=,T x )1,1-,1-,0(6-=,T x )1,0,1-,0(7-=,T x )1,1-,1-,1-(8-= 第一轮迭代:取1=C ,T )0,0,0,0()1(=ω 因0)1,0,0,0)(0,0,0,0()1(1==T T x ω不大于0,故T x )1,0,0,0()1()2(1=+=ωω 因1)1,0,0,1)(1,0,0,0()2(2==T T x ω大于0,故T )1,0,0,0()2()3(==ωω 因1)1,1,0,1)(1,0,0,0()3(3==T T x ω大于0,故T )1,0,0,0()3()4(==ωω 因1)1,0,1,1)(1,0,0,0()4(4==T T x ω大于0,故T )1,0,0,0()4()5(==ωω 因1)1,1-,0,0)(1,0,0,0()5(5-=-=T T x ω不大于0,故T x )0,1-,0,0()5()6(5 =+=ωω 因1)1,1-,1-,0)(0,1-,0,0()6(6=-=T T x ω大于0,故T )0,1-,0,0()6()7(==ωω 因0)1,0,1-,0)(0,1-,0,0()7(7=-=T T x ω不大于0,故T x )1-,1-,1,0()7()8(7-=+=ωω 因3)1,1-,1-,1-)(1-,1-,1,0()8(8=--=T T x ω大于0,故T )1-,1-,1,0()8()9(-==ωω 第二轮迭代: 因1)1,0,0,0)(1-,1-,1,0()9(1-=-=T T x ω不大于0,故T x )0,1-,1,0()9()10(1-=+=ωω 因0)1,0,0,1)(0,1-,1-,0()10(2==T T x ω不大于0,故T x )1,1,1,1()10()11(2--=+=ωω 因1)1,1,0,1)(1,1,1,1()11(3=--=T T x ω大于0,故T )1,1,1,1()11()12(--==ωω 因1)1,0,1,1)(1,1,1,1()12(4=--=T T x ω大于0,故T )1,1,1,1()12()13(--==ωω

模式识别方法简述

XXX大学 课程设计报告书 课题名称模式识别 姓名 学号 院、系、部 专业 指导教师 xxxx年 xx 月 xx日

模式识别方法简述 摘要:模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的( 数值的、文字的和逻辑关系的) 信息进行处理和分析, 以对事物或现象进行描述、辨认、分类和解释的过程, 是信息科学和人工智能的重要组成部分。模式识别研究主要集中在两方面, 一是研究生物体( 包括人) 是如何感知对象的,属于认识科学的范畴, 二是在给定的任务下, 如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容, 后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力, 已经取得了系统的研究成果。 关键词:模式识别; 模式识别方法; 统计模式识别; 模板匹配; 神经网络模式识别 模式识别(Pattern Recognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着2 0 世纪4 0 年代计算机的出现以及5 0 年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。(计算机)模式识别在2 0 世纪6 0 年代初迅速发展并成为一门新学科。 模式识别研究主要集中在两方面, 一是研究生物体( 包括人) 是如何感知对象的,属于认识科学的范畴, 二是在给定的任务下, 如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容, 后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力, 已经取得了系统的研究成果。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。 模式识别是一种借助计算机对信息进行处理、判别的分类过程。判决分类在科学研究和生产实践中的应用是相当广泛的, 但往往因所需处理的影响因子过多, 过于复杂, 给问题的研究和解决增加了困难。多因子问题的目标( 结果或性能) 与影响因子之间难以找出直接的联系, 或是很难直接用理论的途径解决,

几种统计模式识别方案的比较

摘要:模式识别是对表征事物或现象的各种形式的(数值的,文字的和逻辑关系的)信息进行处理和分析,以达到对事物或现象进行描述、辨认、分类和解释的目的,是信息科学和人工智能的重要组成部分。而统计决策理论是处理模式分类问题的基本理论之一,它对模式分析和分类器的设计有着实际的指导意义。本文归纳总结了统计模式识别的不同方案的详细性能,比较了它们的原理、算法、属性、应用场合、错误率等。 关键词:统计模式识别贝叶斯决策方法几何分类法监督参数统计法非监督参数统计法聚类分析法 Comparison of Several Kinds of Statistical Pattern Recognit ion Schemes Abstract: Pattern recognition deals with and analyses the i nformation which signify all kinds of things and phenomena (number values, Characters and logic relation), in order to describe, recognize, classify and interpret them. It is on e of the important parts of information science and artific ial intelligence. While statistical pattern recognition is one of the basics theory of classifying and is real directi ve significance in analyzing and classifying of pattern. We

模式识别实验 感知器准则算法实验

实验二 感知器准则算法实验 一、实验目的: 1)加深对感知准则算法的基本思想的认识和理解。 2)编程实现批处理感知器算法的程序。 二、实验原理: 1.假设已知一组容量为N 的样本集1y ,2y ,…,N y ,其中N y 为d 维增广样本向量,分别来自1ω和2ω类。如果有一个线性机器能把每个样本正确分类,即存在一个权向量a ,使得对于任何1ω∈y ,都有y a T >0,而对一任何2ω∈y ,都有y a T <0,则称这组样本集线性可分;否则称线性不可分。若线性可分,则必存在一个权向量a ,能将每个样本正确分类。 2.基本方法: 由上面原理可知,样本集1y ,2y ,…,N y 是线性可分,则必存在某个权向量a ,使得 ?????∈<∈>2 1 y ,0y ,0ωωj j T i i T y a y a 对一切对一切 如果我们在来自2ω类的样本j y 前面加上一个负号,即令j y =—j y ,其中2ω∈j y ,则也有 y a T >0。因此,我们令 ???∈∈='21y ,-y ,ωωj j i i n y y y 对一切对一切 那么,我们就可以不管样本原来的类型标志,只要找到一个对全部样本n y '都满足y a T >0,N n ,,3,2,1??=的权向量a 就行了。此过程称为样本的规范化,n y '成为规范化增广样本向量,后面我们用y 来表示它。 我们的目的是找到一个解向量* a ,使得 N n y a n T ,...,2,1,0=> 为此我们首先考虑处理线性可分问题的算法。先构造这样一个准则函数 )()(∑∈-= k y T p y a a J γ 式中k γ是被权向量a 错分类的样本集合。错分类时有0≤y a T ,或0≥-y a T

相关文档
相关文档 最新文档