文档库 最新最全的文档下载
当前位置:文档库 › 高中物理二轮复习专题练习带电粒子在复合场中的运动

高中物理二轮复习专题练习带电粒子在复合场中的运动

高中物理二轮复习专题练习带电粒子在复合场中的运动
高中物理二轮复习专题练习带电粒子在复合场中的运动

高考物理二轮复习专题练习

带电粒子在复合场中的运动

一、选择题(共10小题,每小题6分,共60分,在每小题给出的四个选项中至少有一项符合题意,全部选对的得6分,漏选的得3分,错选的得0分)

1.(·高考北京理综)如图所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场.一带电粒子a(不计重力)以一定的初速度由左边界的O点射入磁场、电场区域,恰好沿直线由区域右边界的O′点(图中未标出)穿出.若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b(不计重力)仍以相同初速度由O点射入,从区域右边界穿出,则粒子b ()

A.穿出位置一定在O′点下方

B.穿出位置一定在O′点上方

C.运动时,在电场中的电势能一定减小

D.在电场中运动时,动能一定减小

【解析】本题考查带电粒子在磁场和电场中的运动,意在考查考生发散思维的能力.带电粒子的电性可正也可负,当只有电场作用时,粒子穿出位置可能在O′点上方,也可能在O′点下方.电场力一定对粒子做正功,粒子的电势能减小,动能一定增加.

【答案】 C

2.(·广东)如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、强度为B的匀强磁场中.质量为m、带电量为+Q的小滑块从斜面顶端由静止下滑.在滑块下滑的过程中,下列判断正确的是()

A.滑块受到的摩擦力不变

B.滑块到达地面时的动能与B的大小无关

C.滑块受到的洛伦兹力方向垂直斜面向下

D.B很大时,滑块可能静止于斜面上

【解析】本题考查洛伦兹力.意在考查考生对带电物体在磁场中运动的受力分析.滑块受重力、支持力、洛伦兹力、摩擦力,如图所示.由左手定则首先容易判断洛伦兹力的方向为垂直斜面向下,C正确;由f洛=Q v B,当速度发生变化时,洛伦兹力变化,由F N=f洛+mg cosθ,支持力也随之变化,由f=μF N知摩擦力也随之变化,A错误;磁场B的大小最终影响摩擦力的大小,影响滑块到达地面的过程中摩擦力做功的大小,滑块到达地面时的动能与B 的大小有关,B错误;滑块从斜面顶端由静止下滑,所以中间不可能静止在斜面上,D错误.

【答案】 C

3.(·高考辽宁、宁夏理综)医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血

流速度.电磁血流计由一对电极a 和b 以及一对磁极N 和S 构成,磁极间的磁场是均匀的.使用时,两电极a 、b 均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示.由于血液中的正负离子随血流一起在磁场中运动,电极a 、b 之间会有微小电势差.在达到平衡时,血管内部的电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零.在某次监测中,两触点间的距离为 3.0mm ,血管壁的厚度可忽略,两触点间的电势差为160μV ,磁感应强度的大小为0.040T.则血流速度的近似值和电极a 、b 的正负为

( )

A .1.3m/s ,a 正、b 负

B .2.7m/s ,a 正、b 负

C .1.3m/s ,a 负、b 正

D .2.7m/s ,a 负、b 正

【解析】 本题考查带电粒子在复合场中的运动、磁流体发电机、左手定则等知识点,意在考查考生对带电粒子在复合场中的运动、力的平衡、左手定则的综合运用能力.根据左

手定则,可知a 正b 负,所以CD 错误;因为离子在场中所受合力为零,Bq v =U d q ,所以v =U Bd

=1.3m/s ,A 正确B 错误.

【答案】 A

4.(·高考广东卷)如图是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有强度为B 0的匀强磁场.下列表述正确的是 ( )

A .质谱仪是分析同位素的重要工具

B .速度选择器中的磁场方向垂直纸面向外

C .能通过狭缝P 的带电粒子的速率等于E /B

D .粒子打在胶片上的位置越靠近 狭缝P ,粒子的比荷越小

【解析】 本题考查质谱仪的工作原理,意在考查考生分析带电粒子在电场、磁场中的受力和运动的能力.粒子先在电场中加速,进入速度选择器做匀速直线运动,最后进入磁场做匀速圆周运动.在速度选择器中受力平衡:Eq =q v B 得v =E /B ,方向由左手定则可知磁场

方向垂直纸面向外,BC 正确;进入磁场后,洛伦兹力提供向心力,q v B 0=m v 2R 得,R =m v qB 0

,所以比荷不同的粒子偏转半径不一样,所以,A 正确;D 错误.

【答案】 ABC

5.(·江西重点中学联考)如图所示,从离子源发射出的正离子,经加速电压U 加速后进入相互垂直的电场(E 方向竖直向上)和磁场(B 方向垂直纸面向外)中,发现离子向上偏转.要使此离子沿直线通过电磁场,需要 ( )

3

A .增加E ,减小B

B .增加E ,减小U

C .适当增加U

D .适当减小

E 【解析】 离子所受的电场力

F =qE ,洛伦兹力f =q v B ,qU =12

m v 2,离子向上偏转,电场力大于洛伦兹力,故要使离子沿直线运动,可以适当增加U ,增加速度,洛伦兹力增大,C 正确;也可适当减小E ,电场力减小,D 正确.

【答案】 CD

6.(·武昌区调研)回旋加速器是用来加速带电粒子的装置,如图所示,它的核心部分是两个D 形金属盒,两盒相距很近,连接好高频交流电源后,两盒间的窄缝中形成匀强电场,使带电粒子每次通过窄缝都能得到加速.两盒放在匀强磁场中,磁场方向垂直盒面向下,带电粒子在磁场中做圆周运动,通过两盒间的窄缝时反复被加速,直到达到最大圆周半径时通过

特殊装置被引出,如果用同一回旋加速器分别加速氚核(31H)和α粒子(42He),

比较它们所需的高频交流电源的周期和获得的最大动能的大小,下列说法正确的是 (

)

A .加速氚核的交流电源的周期较大;氚核获得的最大动能较大

B .加速氚核的交流电源的周期较大;氚核获得的最大动能较小

C .加速氚核的交流电源的周期较小;氚核获得的最大动能较小

D .加速氚核的交流电源的周期较小;氚核获得的最大动能较大

【解析】 考查回旋加速器相关知识.对于粒子在匀强磁场中的运动,由R =m v qB

可知,随着粒子速度的增大,粒子的运动半径也逐渐增大,设氚核的质量为3m ,电荷量为e ,在窄

缝间被加速的次数为a ,则由123m v 2=aeU 和R =3m v eB

(其中R 为氚核在D 形盒中运动的最大圆周半径)可得,a =eB 2R 26mU ,同理,若α粒子在D 形盒中被加速的次数为b ,则b =eB 2R 24mU

,故a b =,故氚核的加速次数少于α粒子的加速次数,获得的动能较少;由T =2πm qB 可知,T 与m q

成正比,故加速氚核的交流电源的周期较大,获得的动能较小,B 正确.

【答案】 B

7.(2010·天津五校联考)如图所示,相距为d 的两平行金属板水平放置,开始开关S 1和S 2均闭合使平行板电容器带电.板间存在垂直纸面向里的匀强磁场.一个带电粒子恰能以水平速度v 向右匀速通过两板间.在以下方法中,有可能使带电粒子仍能匀速通过两板的是(不考虑带电粒子所受重力) (

)

A .保持S 1和S 2均闭合,减小两板间距离,同时减小粒子射入的速率

B .保持S 1和S 2均闭合,将R 1、R 3均调大一些,同时减小板间的磁感应强度

C.把开关S2断开,增大两板间的距离,同时减小板间的磁感应强度

D.把开关S1断开,增大板间的磁感应强度,同时减小粒子入射的速率

【解析】带电粒子恰能以水平速度v向右匀速通过两板间,说明电场力与洛伦兹力平衡.保持S1和S2均闭合,两板之间电压不变,减小两板间距离,由E=U/d可知两板之间的电场强度E增大,带电粒子所受电场力增大,减小粒子射入的速率,洛伦兹力减小,电场力与洛伦兹力不平衡,粒子不能够匀速通过两板,选项A错误;保持S1和S2均闭合,将R3调大一些,不影响两板之间电压,将R1调大一些,减小了两板之间电压,带电粒子所受电场力减小,同时减小板间的磁感应强度,带电粒子所受洛伦兹力减小,有可能使带电粒子仍能匀速通过两板,选项B正确;把开关S2断开,平等板电容器极板上带电荷量不变,增大两板间的距离,两板之间的电场强度不变,带电粒子所受电场力不变,同时减小板间的磁感应强度,洛伦兹力减小,电场力与洛伦兹力不平衡,粒子不能够匀速通过两板,选项C错误;把开关S1断开,带电的平行板电容器放电,带电粒子所受电场力消失,增大板间的磁感应强度,同时减小粒子入射的速率,不能使带电粒子匀速通过两板,选项D错误.

【答案】 B

8.如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直于纸面向里,一个带电微粒由a点进入电磁场并刚好能沿ab直线向上运动,下列说法正确的是()

A.微粒一定带负电

B.微粒动能一定减小

C.微粒的电势能一定增加

D.微粒的机械能一定增加

【解析】根据做直线运动的条件和受力情况可知,微粒一定带负电,且做匀速直线运动,A对B错.由于电场力向左对微粒做正功,电势能一定减小,C错.由能量守恒可知电势能减小,机械能一定增加,D正确.

【答案】AD

9.如图所示,质量为m、电荷量为q的微粒,在竖直向下的匀强电场、水平指向纸内的匀强磁场以及重力的共同作用下做匀速圆周运动,下列说法中正确的是()

A.该微粒带负电,电荷量q=mg/E

B.若该微粒在运动中突然分成比荷相同的两个粒子,分裂后只要速度不为零且速度方向仍与磁场方向垂直,它们均做匀速圆周运动

C.如果分裂后,它们的比荷相同,而速率不同,那么它们运动的轨道半径一定不同

D.只要一分裂,不论它们的比荷如何,它们都不可能再做匀速圆周运动

【解析】微粒在竖直向下的匀强电场、水平指向纸内的匀强磁场以及重力场的共同作用下做匀速圆周运动,洛伦兹力提供向心力,必有重力与电场力为平衡力,则q=mg/E,得q/m=g/E,Eq的方向向上,与电场的方向相反,故该微粒带负电;若该微粒在运动中突然分成比荷相同的两个粒子,则q=q1+q2,m=m1+m2,m v=m1v1+m2v2,只有粒子分裂后的比

5

荷与分裂前的比荷相同,才能做匀速圆周运动,此时r =m v Bq

,半径一定不同. 【答案】 AC

10.狄拉克曾经预言,自然界应该存在只有一个磁极的磁单极子,其周围磁感线呈均匀

辐射状分布(如图甲所示),距离它r 处的磁感应强度大小为B =k r 2(k 为常数),其磁场分布与负点电荷Q 的电场(如图乙所示)分布相似.现假设磁单极子S 和负点电荷Q 均固定,有带电小球分别在S 极和Q 附近做匀速圆周运动.则关于小球做匀速圆周运动的判断正确的是

(

)

A .若小球带正电,其运动轨迹平面可在S 的正上方,如图甲所示

B .若小球带正电,其运动轨迹平面可在Q 的正下方,如图乙所示

C .若小球带负电,其运动轨迹平面可在S 的正上方,如图甲所示

D .若小球带负电,其运动轨迹平面可在Q 的正下方,如图乙所示

【解析】 如图甲所示,在磁单极子上方平面内的小球,受到垂直磁感线斜向上的洛伦兹力(正电荷逆时针绕向,负电荷顺时针绕向都可使洛伦兹力斜向上)和重力的作用,合力提供向心力,故A 、C 选项正确;在负点电荷下方的平面,带正电小球受到沿电场线方向斜向上的电场力,可以做圆周运动,但带负电小球受到与电场线方向相反斜向下的电场的作用,不能做圆周运动,所以B 项正确D 错误.

【答案】 ABC

二、论述、计算题(本题共3小题,共40分,解答时应写出必要的文字说明、计算公式和重要的演算步骤,只写出最后答案不得分,有数值计算的题,答案中必须明确数值和单位)11.(·辽宁、宁夏理综)如图所示,在第一象限有一匀强电场,场强大小为E ,方向与y 轴平行;在x 轴下方有一匀强磁场,磁场方向与纸面垂直.一质量为m 、电荷量为-q (q >0)的粒子以平行于x 轴的速度从y 轴上的P 点处射入电场,在x 轴上的Q 点处进入磁场,并从坐标原点O 离开磁场.粒子在磁场中的运动轨迹与y 轴交于M 点.已知OP =l ,OQ =23l .不计重力.求:

(1)M 点与坐标原点O 间的距离;

(2)粒子从P 点运动到M 点所用的时间.

【解析】

(1)带电粒子在电场中做类平抛运动,沿y 轴负方向上做初速度为零的匀加速运动,设加速度的大小为a ;在x 轴正方向上做匀速直线运动,设速度为v 0;粒子从P 点运动到Q 点所

用的时间为t 1,进入磁场时速度方向与x 轴正方向的夹角为θ,则

a =qE m

① t 1=2y 0a

② v 0=x 0t 1

③ 其中x 0=23l ,y 0=l .又有

tan θ=at 1v 0

④ 联立②③④式,得

θ=30° ⑤

因为M 、O 、Q 点在圆周上,∠MOQ =90°,所以MQ 为直径.从图中的几何关系可知, R =23l ⑥

MO =6l ⑦

(2)设粒子在磁场中运动的速度为v ,从Q 到M 点运动的时间为t 2,则有

v =v 0cos θ

⑧ t 2=πR v ⑨

带电粒子自P 点出发到M 点所用的时间t 为

t =t 1+t 2 ⑩

联立①②③⑤⑥⑧⑨⑩式,并代入数据得

t =(

32π+1)2ml qE

. 12.(·高考重庆理综)如图,离子源A 产生的初速度为零、带电荷量均为e 、质量不同的正离子被电压为U 0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直于边界MN 进入磁感应强度为B 的匀强磁场.已知HO =d ,HS =2d ,∠MNQ =90°.(忽略离子所受重力)

(1)求偏转电场场强E 0的大小以及HM 与MN 的夹角φ;

(2)求质量为4m 的离子在磁场中做圆周运动的半径;

(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处,S 1和S 2之间的距离以及能打在NQ 上的正离子的质量范围.

【解析】 (1)由

7

????? eU 0=12m v 21-0F =eE 0=ma 2d =v 1t d =12at 2

得E 0=U 0/d

由tan φ=v 1at

得φ=45°

(2)由????? v =v 21+v 2⊥=v 21+(at )2e v B =m v 2

R

得R =2mU 0eB 2

将4

m 代入上式得质量为4m 的离子在磁场中做圆周运动的半径为4

mU 0eB 2

(3)将4m 和16m 代入R ,得R 1、R 2,

由S =R 22-(R 2-R 1)2-R 1, 将R 1、R 2代入得S =4(3-1)

mU 0eB 2

由R ′2=(2R 1)2+(R ′-R 1)2 得R ′=52R 1 由12R 1

R 1 得m

着电场强度E =28

×106N/C 的匀强电场,方向竖直向上;第Ⅱ象限中的两个直角三角形区域内,分布着磁感应强度大小均为B =5.0×10-2T 的匀强磁场,方向分别垂直于纸面向外和向

里.质量为m =1.6×10-27kg 、电荷量为q =+3.2×10-19C 的带电粒子

(不计粒子的重力),从坐标点M (-4m ,2m)处,以2×107m/s 的速度平行于x 轴向右运动,并先后通过匀强磁场区域和匀强电场区域.

(1)求带电粒子在磁场中的运动半径r ;

(2)求粒子在两个磁场及电场区域偏转所用的总时间;

(3)在图中画出粒子从直线x =-4m 到x =4m 之间的运动轨迹,并求出轨迹与y 轴和直线x =4m 交点的纵坐标.

【解析】 (1)带电粒子在磁场中偏转,由洛伦兹力提供向心力q v B =m v 2r 解得r =m v qB

代入数据得r =2m

(2)带电粒子在磁场中的运动周期

T =2πr v =2πm qB

=6.28×10-7s 带电粒子在磁场中的运动时间t 1=T /4=1.57×10-7s

带电粒子在电场中的运动时间

t 2=Δx v =42×10

7s =22×10-7s =2.83×10-7s 带电粒子在磁场和电场中偏转所用的总时间

t =t 1+t 2=4.40×10-7s

(3)如图所示.

通过分析可知,粒子在方向向外的磁场中恰好沿顺时针方向运动了1/8周,下移了(2-1)m ;由对称性可知粒子在方向向里的磁场中恰好沿逆时针方向运动了1/8周,又下移了(2-1)m ;故轨迹与y 轴交点的纵坐标y 1=2-2(2-1)=2-2(m),在电场中竖直方向加速度a =qE m

=2/4×1014m/s 2 轨迹与直线x =4交点的纵坐标y 2=y 1+12at 22=(2-2)m +12×2/4×1014×(22×10-7)2m =2m

高中物理专题复习之运动学

高中物理专题复习——运动学 [知识要点复习] 1.位移(s):描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的直线长度。 2.速度(v):描述物体运动快慢和方向的物理量,是矢量。 做变速直线运动的物体,在某段时间内的位移与这段时间的比值叫做这段时间内平均速度。 它只能粗略描述物体做变速运动的快慢。 瞬时速度(v):运动物体在某一时刻(或某一位置)的速度,瞬时速度的大小叫速率,是标量。 3.加速度(a):描述物体速度变化快慢的物理量,它的大小等于 矢量,单位m/s2。 4.路程(L ):物体运动轨迹的长度,是标量。 5.匀速直线运动的规律及图像 (1)速度大小、方向不变 (2)图象 6.匀变速直线运动的规律 (1)加速度a 的大小、方向不变

2)图像 7.自由落体运动只在重力作用下,物体从静止开始的自由运动。 8.牛顿第一运动定律一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止,这叫牛顿第一运动定律。 惯性:物体保持原匀速直线运动状态或静止状态的性质叫惯性,因此牛顿第一定律又叫惯性定律。惯性是物体的固有属性,与物体的受力情况及运动情况无关;惯性的大小由物体的质量决定,质量大,惯性大。 9.牛顿第二运动定律物体加速度的大小与所受合外力成正比,与物体质量成反比,加速度的方向与合外力的方向相同。 10.牛顿第三运动定律两个物体之间的作用力和反作用力总是大小相等、方向相反,作用在一条直线上。作用力与反作用力大小相等,性质相同,同时产生,同时消失,方向不同、作用在两个不同且相互作用的物体上,可概括为“三同,两不同”。 11.超重与失重:当系统具有竖直向上的加速度时,物体对支持物的压力或对悬挂物的拉力大于其重力的现象叫超重;当系统具有竖直向下的加速度时,物体对支持物的压力或对悬挂物的拉力小于其重力的现象叫失重。 12. 曲线运动的条件物体所受合外力的方向与它速度方向不在同一直线,即加速度方向与速度方向不在同一直线。 若用θ表示加速度a 与速度v0的夹角,则有:0°<θ<90°,物体做速率变大的曲线运动;θ=90°时,物体做速率不变的曲线运动;90° <θ<180°时,物体做速率减小的曲线运动。 13.运动的合成与分解 (1)合运动与分运动的关系 a.等时性:合运动与分运动经历的时间相等; b.独立性:一个物体同时参与了几个分运动,各分运动独立进行,不受其它分运动的影响。 c.等效性:各分运动叠加起来与合运动规律有完全相同的效果。 (2)运动的合成与分解的运算法则遵从平行四边形定则,运动的合成与分解是指位移、速度、加速度的合成与分解。 (3)运动分解的原则

高中物理二轮复习

专题二 一、选择题(1~6题只有一项符合题目要求,7~9题有多项符合题目要求) 1.物体a和b在同一条直线上向右运动,物体a在前且一直做匀速运动,物体b在后先做匀减速再做反方向匀加速运动,行驶中物体a和b相遇两次,用v-t图象表示两物体的速度随时间变化的关系,用x-t图象表示两物体的位移随时间变化的关系,则能正确反映物体a和物体b运动关系的图(取向右为正方向)是() 解析:图A中物体b的速度没有反向,A错;图B中,两物体不可能相遇,B错;图C中物体b不是先做匀减速运动再做匀加速运动,C错;图D满足题中所述运动,D对.答案: D 2.以24 m/s的速度行驶的汽车,紧急刹车后做匀减速直线运动,其加速度大小为6 m/s2,则刹车后() A.汽车在第1 s内的平均速度为24 m/s B.汽车在第1 s内的平均速度为12 m/s C.汽车在前2 s内的位移为36 m D.汽车在前5 s内的位移为45 m 解析:汽车刹车时间为t0=4 s,刹车位移为x0=242 2×6 m=48 m,到第4 s末汽车已停 止,汽车在5 s内位移为48 m,D错误,根据位移x=v0t-1 2at 2可知第1 s内的位移x1=21 m,平均速度v=21 m/s,A、B均错误;汽车在前2 s内位移为36 m,C正确.答案: C 3.(2014·西安市质检二)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()

高中物理运动学公式总结

高中物理运动学公式总结 The Standardization Office was revised on the afternoon of December 13, 2020

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度;t x V =定义式平均速率;t s V = 2、有用推理ax Vo Vt 222=- 3、中间时刻速度;202V Vt V Vt +==平 4、末速度Vt=V0+at 5、中间位置速度2 2220Vt V Vx += 6、位移 t 2t 2a t 0t t 2V V V s =+==平 7、加速度t V Vt a 0 +=(以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论;S1-S2=S3-S2=S4-S3= =?x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3 :Sn=1:3:5 :(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3 :tn=1:(12-0):(23-): :(1--n n ) 11、a=t n m Sn Sm 2--(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0= s m ;加速度a=s m 2;末速度Vt= s m 1s m =h k m 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度)位置向下计算从00(22V g h t = 4推论t 2V =2gh 注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。

高一物理复习运动学专题复习

高一物理运动学专题复习 知识梳理: 一、机械运动 一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等运动形式. 二、参照物 为了研究物体的运动而假定为不动的物体,叫做参照物. 对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,灵活地选取参照物会给问题的分析带来简便;通常以地球为参照物来研究物体的运动. 三、质点 研究一个物体的运动时,如果物体的形状和大小属于无关因素或次要因素,对问题的研究没有影响或影响可以忽略,为使问题简化,就用一个有质量的点来代替物体.用来代管物体的有质量的做质点.像这种突出主要因素,排除无关因素,忽略次要因素的研究问题的思想方法,即为理想化方法,质点即是一种理想化模型. 四、时刻和时间 时刻:指的是某一瞬时.在时间轴上用一个点来表示.对应的是位置、速度、动量、动能等状态量. 时间:是两时刻间的间隔.在时间轴上用一段长度来表示.对应的是位移、路程、冲量、功等过程量.时间间隔=终止时刻-开始时刻。 五、位移和路程 位移:描述物体位置的变化,是从物体运动的初位置指向末位置的矢量. 路程:物体运动轨迹的长度,是标量.只有在单方向的直线运动中,位移的大小才等于路程。 六、速度 描述物体运动的方向和快慢的物理量. 1.平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间内的平均速度,即V =S/t ,单位:m / s ,其方向与位移的方向相同.它是对变速运动的粗略描述.公式V =(V 0+V t )/2只对匀变速直线运动适用。 2.瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.瞬时速度的大小叫速率,是标量. 3.速率:瞬时速度的大小即为速率; 4.平均速率:质点运动的路程与时间的比值,它的大小与相应的平均速度之值可能不相同。 七、匀速直线运动 1.定义:在相等的时间里位移相等的直线运动叫做匀速直线运动. 2.特点:a =0,v=恒量. 3.位移公式:S =vt . 八、加速度 1.加速度的物理意义:反映运动物体速度变化快慢...... 的物理量。 加速度的定义:速度的变化与发生这一变化所用的时间的比值,即a = t v ??=t v v ?-1 2。 加速度是矢量。加速度的方向与速度方向并不一定相同。 2.加速度与速度是完全不同的物理量,加速度是速度的变化率。所以,两者之间并不存在“速度大加速度也大、速度为0时加速度也为0”等关系,加速度和速度的方向也没有必然相同的关系,加速直线运

高中物理《运动学》练习题

高中物理《运动学》练习题 一、选择题 1.下列说法中正确的是() A .匀速运动就是匀速直线运动 B .对于匀速直线运动来说,路程就是位移 C .物体的位移越大,平均速度一定越大 D .物体在某段时间内的平均速度越大,在其间任一时刻的瞬时速度也一定越大 2.关于速度的说法正确的是() A .速度与位移成正比 B .平均速率等于平均速度的大小 C .匀速直线运动任何一段时间内的平均速度等于任一点的瞬时速度 D .瞬时速度就是运动物体在一段较短时间内的平均速度 3.物体沿一条直线运动,下列说法正确的是() A .物体在某时刻的速度为3m/s ,则物体在1s 内一定走3m B .物体在某1s 内的平均速度是3m/s ,则物体在这1s 内的位移一定是3m C .物体在某段时间内的平均速度是3m/s ,则物体在1s 内的位移一定是3m D .物体在发生某段位移过程中的平均速度是3m/s ,则物体在这段位移的一半时的速度一定是3m/s 4.关于平均速度的下列说法中,物理含义正确的是() A .汽车在出发后10s 内的平均速度是5m/s B .汽车在某段时间内的平均速度是5m/s ,表示汽车在这段时间的每1s 内的位移都是5m C .汽车经过两路标之间的平均速度是5m/s D .汽车在某段时间内的平均速度都等于它的初速度与末速度之和的一半 5.火车以76km/h 的速度经过某一段路,子弹以600m /s 的速度从枪口射出,则() A .76km/h 是平均速度 B .76km/h 是瞬时速度 C .600m/s 是瞬时速度 D .600m/s 是平均速度 6.某人沿直线做单方向运动,由A 到B 的速度为1v ,由B 到C 的速度为2v ,若BC AB =,则这全过程的平均速度是() A .2/)(21v v - B .2/)(21v v + C .)/()(2121v v v v +- D .)/(22121v v v v + 7.如图是A 、B 两物体运动的速度图象,则下列说法正确的是() A .物体A 的运动是以10m/s 的速度匀速运动 B .物体B 的运动是先以5m /s 的速度与A 同方向 C .物体B 在最初3s 内位移是10m D .物体B 在最初3s 内路程是10m 8.有一质点从t =0开始由原点出发,其运动的速度—时间图象如图所示,则() A .1=t s 时,质点离原点的距离最大 B .2=t s 时,质点离原点的距离最大 C .2=t s 时,质点回到原点 D .4=t s 时,质点回到原点 9.如图所示,能正确表示物体做匀速直线运动的图象是() 10.质点做匀加速直线运动,加速度大小为2 m/s 2,在质点做匀加速运动的过程中,下列说法正确的是()

高中物理二轮复习《直流电与交流电》

P UI P EI U E η== =外 专题四 电路和电磁感应 第一讲 直流电路与交流电路 何洁 知识主干 一、电功和电热 电功W =qU =UIt ;电热Q =I 2Rt. (1)对纯电阻电路,电功等于电热,即电流流经纯电阻电路,消耗的电能全部转化为内 能,所以W =Q =UIt =I 2Rt =U 2R t. (2)对非纯电阻电路(如电动机和电解槽),电能一部分转化为内能,另一部分转化为其他形式的能(如机械能或化学能等),所以电功必然大于电热,即W>Q ,这时电功只能用W =UIt 计算,电热只能用Q =I 2Rt 计算,两式不能通用. (3)电流流经纯电阻电路,消耗的电能全部转化为内能;流经非纯电阻电路,消耗的电能一部分转化为内能,另一部分转化为其他形式的能. (4)电源的功率与效率 ①电源的功率P :也称为电源的总功率,是电源将其他形式的能转化为电能的功率,计算式为:P= IE ②电源内阻消耗功率P 内:是电源内阻的热功率,也称为电源的损耗功率,计算式为:P 内= I 2r . ③电源的输出功率P 外:外电路上消耗的功率,计算式为:P 外= IU 外 . ④电源的效率: ⑤电源的输出功率与外电阻R 的关系: 因此可知当电源内外电阻相等时,输出功率最大。 当R >r 时,随着R 的增大输出功率越来越小. 当R <r 时,随着R 的增大输出功率越来越大. 当R 由小于r 增大到大于r 时,随着R 的增大输出功率先增大后减小(非单调变化). 4.含容电路的分析技巧 电容器两极板间的电压等于与电容器并联的电阻两端的电压,与电容器串联的电阻两端的电压一定为零(有阻无流,则无电压). 二、交变电流 22 2 2()()4RE E P UI R r R r r R ===-++外

高中物理运动学经典习题30道 带答案

一.选择题(共28小题) 1.(2014?陆丰市校级学业考试)某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该物体加速度的理解 D 9.(2015?沈阳校级模拟)一物体从H高处自由下落,经时间t落地,则当它下落时,离地的高度为() D 者抓住,直尺下落的距离h,受测者的反应时间为t,则下列结论正确的是()

∝ ∝ 光照射下,可观察到一个下落的水滴,缓缓调节水滴下落的时间间隔到适当情况,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,一般要出现这种现象,照明光源应该满足(g=10m/s2)() 地时的速度之比是 15.(2013秋?忻府区校级期末)一观察者发现,每隔一定时间有一滴水自8m高的屋檐落下,而且看到第五滴水 D

17.(2014秋?成都期末)如图所示,将一小球从竖直砖墙的某位置由静止释放.用频闪照相机在同一底片上多次曝光,得到了图中1、2、3…所示的小球运动过程中每次曝光的位置.已知连续两次曝光的时间间隔均为T,每块砖的厚度均为d.根据图中的信息,下列判断正确的是() 小球下落的加速度为 的速度为 :2 D: 2 D O点向上抛小球又落至原处的时间为T2在小球运动过程中经过比O点高H的P点,小球离开P点至又回到P 23.(2014春?金山区校级期末)一只气球以10m/s的速度匀速上升,某时刻在气球正下方距气球6m处有一小石 2

v0v0D 27.(2013?洪泽县校级模拟)一个从地面竖直上抛的物体,它两次经过同一较低a点的时间间隔为T a,两次经 g(T a2﹣T b2)g(T a2﹣T b2)g(T a2﹣T b2)D g(T a﹣T b) 28.(2013秋?平江县校级月考)在以速度V上升的电梯内竖直向上抛出一球,电梯内观者看见小球经t秒后到 h=

重点高中物理运动学专题

重点高中物理运动学专题

————————————————————————————————作者:————————————————————————————————日期:

运动学 第一讲基本知识介绍 一.基本概念 1.质点 2.参照物 3.参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点) 4.绝对运动,相对运动,牵连运动:v 绝=v 相 +v 牵 二.运动的描述 1.位置:r=r(t) 2.位移:Δr=r(t+Δt)-r(t) 3.速度:v=lim Δt→0 Δr/Δt.在大学教材中表述为:v=d r/dt, 表示r对t 求导数 4.加速度a=a n +a τ。 a n :法向加速度,速度方向的改变率,且a n =v2/ρ,ρ叫 做曲率半径,(这是中学物理竞赛求曲率半径的唯一方法)a τ : 切向加速度,速度大小的改变率。a=d v/dt 5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。) 6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较 好 三.等加速运动 v(t)=v 0+at r(t)=r +v t+1/2 at2 一道经典的物理问题:二次世界大战中物理学家曾 经研究,当大炮的位置固定,以同一速度v 沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的 包络线。此抛物线为在大炮上方h=v2/2g处,以v 平抛物体的轨迹。) 练习题: 一盏灯挂在离地板高l 2,天花板下面l 1 处。灯泡爆裂,所有碎片以同样大小 的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。) 四.刚体的平动和定轴转动 1.我们讲过的圆周运动是平动而不是转动 2.角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt 3.有限的角位移是标量,而极小的角位移是矢量 4.同一刚体上两点的相对速度和相对加速度 两点的相对距离不变,相对运动轨迹为圆弧, V A =V B +V AB ,在AB连线上

高中物理运动学公式word版(带答案)可编辑

匀变速直线运动公式: 加速度的定义式:a=速度与时间的关系:v= 位移与时间的关系:X=平均速度与中间时刻瞬时速度的关系:末速度与初速度的平方差关系:等时相邻的两段位移差的关系:ΔX=a 某段时间内中间时刻的瞬时速度:经过某段位移中点时的瞬时速度: 初速为零的匀加速直线运动的比例关系: ①前1秒、前2秒、前3秒……前n秒末的速度之比为: 1 : 2 : 3 : …… : n ②第1秒、第2秒、第3秒……第n秒末的速度之比为: 1 : 2 : 3 : …… : n ③前1秒、前2秒、前3秒……前n秒内的位移之比为: 1 : 4 : 9 : …… : ④第1秒、第2秒、第3秒……第n秒内的位移之比为: 1 : 3 : 5 : …… : (2n-1) ⑤前1米、前2米、前3米……前n米所用的时间之比为: 1 : : : …… : ⑥第1米、第2米、第3米……第n米所用的时间之比为: 1 : : : …… : ⑦第1米、第2米、第3米……第n米末的速度之比为: 1 : : : …… : 自由落体运动规律: 加速度:a=速度与时间的关系:v= 下落高度与时间的关系:h=平均速度与中间时刻瞬时速度的关系:末速度与下落高度的关系:等时相邻的两段高度差的关系:Δh=g 某段时间内中间时刻的瞬时速度:经过某段下落高度中点时的瞬时速度:落地时间:t= 竖直上抛运动规律: 运动性质:上升时为_匀减速直线运动__,下落时为自由落体运动 . 加速度:a=速度与时间的关系:v= 上升的时间:回到抛出点的时间:

位移与时间的关系(位移的初位置在抛出点):X= 上升时的平均速度与初速度的关系: . 最高点离抛出点的高度:h m=落回抛出点的速度为v=- 平抛运动 1、实质:水平方向做匀速直线运动,竖直方向做自由落体运动。 2、水平分运动:水平分速度:水平位移: 3、竖直分运动:竖直分速度:竖直位移:。 4、合运动:位移:X=速度:V=。 5、下落时间:t= 6、任意时刻:速度与水平面夹角α的正切值: 位移与水平面夹角β的正切值: 7、某时刻速度、位移与初速度方向的夹角α、β的关系为 8、平抛运动的物体,任意时刻随时速度的反向延长线一定通过水平位移的中点。 顺着斜面平抛物体,物体又重新落在斜面上 1、落在斜面上时速度方向与斜面加角恒定 . 2、物体在斜面上运动时间: 3、运动过程中距离斜面的最大距离: 4、运动过程中离斜面距离最大的时间:t= 5、水平位移和竖直位移的关系: 6、物体的位移:X=

高三物理第一轮复习运动学部分专题

一.平均速度:任意运动的平均速度公式和匀变速直线运动的平均速度公式的理解 ①t s ??= 一v 普遍适用于各种运动;②v =20t V V +只适用于加速度恒定的匀变速直线运动 ③t V V S t 2 0+= 仅适用于匀变速直线运动 1.物体由A 沿直线运动到B ,在前一半时间内是速度为v 1的匀速运动,在后一半时间内是速度为v 2的匀速运动.则物体在这段时间内的平均速度为( ) A .221v v + B .21v v + C .21212v v v v + D .2 121v v v v + 2.一个物体做变速直线运动,前一半路程的平均速度是v 1,后一半路程的平均速度是v 2,则全程的平均速度是( ) A .221v v + B .21212v v v v + C .21212v v v v ++ D .2 121v v v v + 3.一辆汽车以速度v 1行驶了1/3的路程,接着以速度v 2=20km/h 跑完了其余的2/3的路程,如果汽车全程的平均速度v=27km/h ,则v 1的值为( ) A .32km/h B .345km/h C .56km/h D .90km/h 4.甲乙两车沿平直公路通过同样的位移,甲车在前半段位移上以v 1=40km/h 的速度运动,后半段位移上以v 2=60km/h 的速度运动;乙车在前半段时间内以v 1=40km/h 的速度运动,后半段时间以v 2=60km/h 的速度运动,则甲、乙两车在整个位移中的平均速度大小的关系是 A .V 甲=V 乙 B .V 甲 < V 乙 C .V 甲 > V 乙 D .因不知位移和时间故无法确定 二.加速度公式的理解:a=(v t -v 0 )/t 公式中各个部分物理量的理解 匀加速运动:速度随时间均匀增加,v t >v 0,a 为正,此时加速度方向与速度方向相同。 匀减速运动:速度随时间均匀减小,v t <v 0,a 为负,此时加速度方向与速度方向相反。 1.对于质点的运动,下列说法中正确的是( ) A .质点运动的加速度为零,则速度变化量也为零 B .质点速度变化率越大,则加速度越大 C .物体的加速度越大,则该物体的速度也越大 D .质点运动的加速度越大,它的速度变化量越大 2.下列说法正确的是( ) A .加速度增大,速度一定增大 B .速度改变△V 越大,加速度就越大 C .物体有加速度,速度就增加 D .速度很大的物体,其加速度可能很小 3.关于加速度与速度,下列说法中正确的是( ) A .速度为零,加速度可能不为零 B .加速度为零时,速度一定为零 C .若加速度方向与速度方向相反,则加速度增大时,速度也增大 D .若加速度方向与速度方向相同,则加速度减小时,速度反而增大 4.一物体做匀变速直线运动,某时刻速度的大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的( ) A .位移的大小可能小于4m B .位移的大小可能大于10m C .加速度的大小可能小于4m/s 2 D .加速度的大小可能大于10m/s 2

高中物理运动学公式总结

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度;t x V =定义式平均速率;t s V = 2、有用推理ax Vo Vt 222=- 3、中间时刻速度;202V Vt V Vt +==平 4、末速度Vt=V0+at 5、中间位置速度2 2220Vt V Vx += 6、位移 t 2t 2a t 0t t 2V V V s =+==平 7、加速度t V Vt a 0 +=(以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论;S1-S2=S3-S2=S4-S3=ΛΛ=?x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3ΛΛ:Sn=1:3:5ΛΛ:(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3ΛΛ:tn=1:(12-0):(23-):ΛΛ:(1--n n ) 11、a=t n m Sn Sm 2--(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0= s m ;加速度a=s m 2;末速度Vt=s m 1s m =h k m 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度)位置向下计算从00(22 V g h t = 4推论t 2V =2gh 注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。

2a=g=s 2m ≈10s 2m (重力加速度在赤道附近较小,在高山处比平底小,方向竖直向下)3) 竖直上抛运动 1位移S=Vot-22 gt 2末速度Vt=Vo-gt 3有理推论02 2V Vt -=-2gs 4上升最大高度Hm= g Vo 22(从抛出到落回原位置的时间) 5往返时间g t Vo 22= 注; 1全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 2分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 称性上升与下落过程具有对3:1如在同点,速度等值反向。 2上升过程经过两点所用时间与下落过程经过这两点所 用时间相等。 物理规律汇总 1)相互作用力 1重力 【1】方向竖直向下,但不一定与接触面垂直,不一定指向地心。(除赤道与两级) 【2】重力是由地球的引力而产生,但重力≠引力(除两级) 2弹力 【1】绳子的拉力方向总是沿着绳,且指向绳子收缩的方向。、 【2】同一根绳子上的力相同。 【3】杆的力可以是拉力,也可以是推力。方向可以沿各个方向。 3摩擦力 【1】摩擦力不一定是阻力,也可以使动力。 【2】受滑动摩擦力的物体也可能是静止的。 【3】受静摩擦力的物体也可能是运动的。 2)牛顿运动定律 1力是改变物体运动状态的原因, 2力是产生加速度的原因, 3物体具有加速度,则物体一定具有加速度,物体具有加速度,则一定受力。 4质量是惯性大小的唯一量度, 5物体具有向下的加速度时,物体处于失重状态, 6物体具有向上的加速度时,物体处于超重状态。 打点计时器

高中物理运动学专题

运动学 第一讲基本知识介绍 一.基本概念 1.质点 2.参照物 3.参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点) 4.绝对运动,相对运动,牵连运动:v 绝=v 相 +v 牵 二.运动的描述 1.位置:r=r(t) 2.位移:Δr=r(t+Δt)-r(t) 3.速度:v=lim Δt→0 Δr/Δt.在大学教材中表述为:v=d r/dt, 表示r对t 求导数 4.加速度a=a n +a τ。 a n :法向加速度,速度方向的改变率,且a n =v2/ρ,ρ叫 做曲率半径,(这是中学物理竞赛求曲率半径的唯一方法)a τ : 切向加速度,速度大小的改变率。a=d v/dt 5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。) 6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较 好 三.等加速运动 v(t)=v 0+at r(t)=r +v t+1/2 at2 一道经典的物理问题:二次世界大战中物理学家曾经 研究,当大炮的位置固定,以同一速度v 沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包 络线。此抛物线为在大炮上方h=v2/2g处,以v 平抛物体的轨迹。) 练习题: 一盏灯挂在离地板高l 2,天花板下面l 1 处。灯泡爆裂,所有碎片以同样大小 的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。) 四.刚体的平动和定轴转动 1.我们讲过的圆周运动是平动而不是转动 2.角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt 3.有限的角位移是标量,而极小的角位移是矢量 4.同一刚体上两点的相对速度和相对加速度 两点的相对距离不变,相对运动轨迹为圆弧,V A =V B +V AB , 在AB连线上

高中物理运动学公式总结

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度; t x V = 定义式平均速率; t s V = 2、有用推理ax Vo Vt 22 2 =- 3、中间时刻速度;2 2V Vt V Vt += =平 4、末速度Vt=V0+at 5、中间位置速度2 2 2 2 Vt V Vx += 6、位移 t 2t 2 a t 0t t 2 V V V s = +==平 7、加速度t V Vt a 0 += (以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论; S1-S2=S3-S2=S4-S3= =? x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3 :Sn=1:3:5 :(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3 :tn=1:(12-0):(23- ): :( 1-- n n ) 11、a= t n m Sn Sm 2 --(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0=s m ;加速度a=s m 2 ;末速度Vt= s m 1 s m =3.6 h km 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度 ) 位置向下计算 从00(2 2 V g h t = 4推论t 2 V =2gh

注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。 2a=g=9.8s 2 m ≈10s 2 m (重力加速度在赤道附近较小,在高山处比平底小,方向竖直向下) 3)竖直上抛运动 1位移S=V o t- 22 gt 2末速度Vt=V o-gt 3有理推论0 2 2 V Vt -=-2gs 4上升最大高度H m= g Vo 22 (从抛出到落回原位置的时间) 5往返时间g t Vo 2 2= 注; 1全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 2分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 称性上升与下落过程具有对 3:1如在同点,速度等值反向。 2上升过程经过两点所用时间与下落过程经过这两点所 用时间相等。 物理规律汇总 1)相互作用力 1重力 【1】方向竖直向下,但不一定与接触面垂直,不一定指向地心。(除赤道与两级) 【2】重力是由地球的引力而产生,但重力≠引力(除两级) 2弹力 【1】绳子的拉力方向总是沿着绳,且指向绳子收缩的方向。、 【2】同一根绳子上的力相同。 【3】杆的力可以是拉力,也可以是推力。方向可以沿各个方向。 3摩擦力 【1】摩擦力不一定是阻力,也可以使动力。 【2】受滑动摩擦力的物体也可能是静止的。 【3】受静摩擦力的物体也可能是运动的。 2)牛顿运动定律 1力是改变物体运动状态的原因, 2力是产生加速度的原因, 3物体具有加速度,则物体一定具有加速度,物体具有加速度,则一定受力。 4质量是惯性大小的唯一量度, 5物体具有向下的加速度时,物体处于失重状态, 6物体具有向上的加速度时,物体处于超重状态。

高中物理 专题01 运动学专题

直线运动规律及追及问题 一 、 例题 例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A.位移的大小可能小于4m B.位移的大小可能大于10m C.加速度的大小可能小于4m/s D.加速度的大小可能大于10m/s 析:同向时2201/6/14 10s m s m t v v a t =-=-= m m t v v s t 71210 4201=?+=?+= 反向时2202/14/14 10s m s m t v v a t -=--=-= m m t v v s t 312 10 4202-=?-=?+= 式中负号表示方向跟规定正方向相反 答案:A 、D 例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( ) A 在时刻t 2以及时刻t 5两木块速度相同 B 在时刻t1两木块速度相同 C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同 D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同 解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相 等,因此其中间时刻的即时速度 相等,这个中间时刻显然在t 3、t 4之间 答案:C 例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空 中动作的时间是多少?(g 取10m/s 2 结果保留两位数字) 解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7

(新)高中物理二轮复习功能关系专题

一、动能定理 动能定理的推导 物体只在一个恒力作用下,做直线运动 w =FS =m a ×a V V 22 122- 即 21222121mv mv w -= 推广: 物体在多个力的作用下、物体在做曲线运动、物体在变力的作用下 结论: 合力所做的功等于动能的增量 ,合力做正功动能增加,合力做负功动能减小 合力做功的求法: 1、受力分析求合力,合力乘以在合力方向的位移(合力是恒力,位移相对地的位移) 2、合力做的功等于各力做功的代数和 二.应用动能定理解题的步骤 (1)确定研究对象和研究过程。 (2)对研究对象受力分析,判断各力做功情况。 (3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负) (4)写出物体的初、末动能。按照动能定理列式求解。 【例】如图所示,质量为m 的钢珠从高出地面h 处由静止自由下落,落到地面进入沙坑h/10停止,则 (1)钢珠在沙坑中受到的平均阻力是重力的多少倍? (2)若让钢珠进入沙坑h/8,则钢珠在h 处的动能应为多少?设钢珠在沙坑中所受平均阻 力大小不随深度改变。 三、高中物理接触到的几种常用的功能关系 1、 重力做功等于重力势能的减小量 2、 弹力做功等于弹性势能的减小量 3、 电场力做功等于电势能的减小量 4、 合外力做功等于动能的变化量(动能定理) 5、 除重力以外其它力做功等于机械能的变化量 6、 摩擦力乘以相对位移代表有多少机械能转化为内能用于发热 7、 电磁感应中克服安培力做功量度多少其他形式能转化为电能用于发热 8、能量守恒思路

1.(2013·长春模拟)19世纪初,科学家在研究功能关系的过程中,具备了能量转化和守恒的思想,对生活中有关机械能转化的问题有了清晰的认识,下列有关机械能的说法正确的是( ) A .仅有重力对物体做功,物体的机械能一定守恒 B .仅有弹力对物体做功,物体的机械能一定守恒 C .摩擦力对物体做的功一定等于物体机械能的变化量 D .合外力对物体做的功一定等于物体机械能的变化量 2.(2013·东北四市联考)在高度为h 、倾角为30°的粗糙固定的斜面上,有一质量为m 、与一轻弹簧拴接的物块恰好静止于斜面底端。物块与斜面的动摩擦因数为33,且最大静摩擦力等于滑动摩擦力。现用一平行于斜面的力F 拉动弹簧的A 点,使m 缓慢上行到斜面顶端。此过程中( ) A .F 对该系统做功为2mgh B .F 对该系统做功大于2mgh C .F 对该系统做的功等于物块克服重力做功与克服摩擦力做功之和 D .F 对该系统做的功等于物块的重力势能与弹簧的弹性势能增加量之和 3.(2013·山东泰安一模)如图所示,在竖直平面内有一个半径为R ,粗细不计的圆管轨道。半径OA 水平、OB 竖直,一个质量为m 的小球自A 正上方P 点由静止开始自由下落,小球恰能沿管道到达最高点B ,已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( ) A .重力做功2mgR B .机械能减少mgR C .合外力做功mgR D .克服摩擦力做功12 mgR 4.(2013吉林摸底)如图所示,足够长的传送带以恒定速率顺时针运行。将一个物体轻轻 放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送 带相对静止,匀速运动到达传送带顶端。下列说法中正确的是( ) A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功 B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加 C .第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加 D .物体从底端到顶端全过程机械能的增加等于全过程物体与传送带间的摩擦生热 5.如图所示长木板A 放在光滑的水平地面上,物体B 以水平速度冲上A 后,由于摩擦力作用,最后停止在木板A 上,则从B 冲到木板A 上到相对板A 静止的过程中,下述说法中正确是( ) A .物体 B 动能的减少量等于系统损失的机械能 B .物体B 克服摩擦力做的功等于系统内能的增加量 C .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和 D .摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量

高一物理运动学经典题型归纳分析

巧解运动学问题的方法练习 题1:中国北方航空公司某架客机安全准时降落在规定跑道上,假设该客机停止运动之前在跑道上一直做匀速直线运动,客机在跑道上滑行距离为s ,从降落到停下所需时间为t ,由此可知客机降落时的速度为() A .s/t B .2s/t C .s/2t D.条件不足,无法确定 题2:设飞机着陆后做匀减速直线运动,初速度为60m /s 2,加速度大小为6.0m/s 2 ,球飞机着陆后12s 内的位移大小。 题4:已知0、a 、b 、c 为同一直线上的四点,ab 间的距离L1,bc 间的距离为L2,一物体自0点由静止出发,沿此直线做匀速加速运动,依次经过a 、b 、c 三点。已知物体通过ab 段与bc 段所用的时间相等。求o 与a 的距离。 基础知识应用 1下列关于速度和加速度的说法中,正确的是 ( ) A .物体的速度越大,加速度也越大 B .物体的速度为零时,加速度也为零 C .物体的速度变化量越大,加速度越大 D .物体的速度变化越快,加速度越大 2以下各种运动的速度和加速度的关系可能存在的是 A .速度向东,正在减小,加速度向西,正在增大 B .速度向东,正在增大,加速度向西,正在减小 C .速度向东,正在增大,加速度向西,正在增大 D .速度向东,正在减小,加速度向东,正在增大 3一足球以12m/s 的速度飞来,被一脚踢回,踢出时的速度大小为24m/s ,球与脚接触时间为0.1s ,则此过程中足球的加速度为:( ) A 、120m/s 2 ,方向与中踢出方向相同 B 、120m/s 2 ,方向与中飞来方向相同 C 、360m/s 2 ,方向与中踢出方向相同 D 、360m/s 2 ,方向与中飞来方向相同 4.如图所示为某质点做直线运动的速度—时间图象,下列说法正确的是( ) A .质点始终向同一方向运动 B .在运动过程中,质点运动方向发生变化 C .前2 s 内做加速直线运动 D .后2 s 内做减速直线运动 分段模拟图应用 5.一个小球从5 m 高处落下,被水平地面弹回,在4 m 高处被接住,则小球在整个过程中(取向下为正 方向) ( ) A .位移为9 m B .路程为-9 m C .位移为-1 m D .位移为1 m 6.一质点做匀变速直线运动,已知前一半位移内平均速度为V 1,后一半位移的平均速度V 2为,则整个过程中的平均速度为( ) A.(v 1+v 2)/2 B.21v v ? C. 2 12 221v v v v ++ D. 2 1212v v v v + 7.在同一张底片上对小球运动的路径每隔0.1 s 拍一次照,得到的照片如图所示,则小球在拍照的时间内, 运动的平均速度是 ( ) A .0.25 m/s B .0.2 m/s C .0.17 m/s D .无法确定 8.如图甲所示,某一同学沿一直线行走,现用频闪照相机记录 了他行走过程中连续9个位置的图片,仔细观察图片,指出在图乙中能接近真实反映该同学运动的v -t 图象的是( ) 9、一辆长途汽车,在一条公路上单向直线行驶,以20 m/s 速度行驶全程的4 1,接着以30 m/s 的速度行 驶完其余的 4 3 ,求汽车在全程内的平均速度大小? 灵活使用平均速度 10.我国飞豹战斗机由静止开始启动,在跑动500m 后起飞,已知5s 末的速度为10m/s ,10s 末的速度为15m/s ,在20s 末飞机起飞。问飞豹战斗机由静止到起飞这段时间内的平均速度为( ) A .10m/s B .12.5m/s C .15m/s D .25m/s 11一辆汽车从车站以初速度为零匀加速直线开去,开出一段时间之后,司机发现一乘客未上车,便紧急刹车做匀减速运动.从启动到停止一共经历t =10 s ,前进了15m ,在此过程中,汽车的最大速度为( ) A .1.5 m/s B .3 m/s C .4 m/s D .无法确定 12.在军事演习中,某空降兵从飞机上跳下,先做自由落体运动,在t 1时刻,速度达较大值v 1时打开降落伞,做减速运动,在t 2时刻以较小速度v 2着地。他的速度图像如图所示。下列关于该空降兵在0~t 1或t 1~t 2时间内的的平均速度v 的结论正确的是( ) A . 0~t 1 12 v v < B . 0~t 1 2 1v v > C . t 1~t 2 12 2 v v v +< D . t 1~t 2, 2 2 1v v v +> 13.质点做初速度为零的匀加速直线运动,若运动后在第3s 末到第5s 末质点的位移为40m ,求质点在前4s 内的位移是多少? 甲 乙

高中物理二轮复习资料

高中物理二轮复习资料 1 物体带电的标志:能够吸引轻小物体。(带电体的性质) 2 摩擦起电:用摩擦的方法使物体带电,叫摩擦起电。 3 摩擦起电的原因:不同物质的原子核束缚电子的能力不同,在摩擦时,束缚电子能力强的物质就得到电子带负电,束缚电子能力差的物质就失去电子带正电。 4 正电荷:绸子摩擦过的玻璃棒上带的电荷叫做正电荷。 负电荷:毛皮摩擦过的橡胶棒上带的电荷叫做负电荷。 5 电荷的相互作用规律:同种电荷相互排斥,异种电荷相互吸引。 6 验电器的作用:用来检验物体是否带电。 验电器的工作原理:利用同种电荷相互排斥的原理工作的。 7 电量:电荷的多少叫做电量。电量的单位是库仑,简称库。 8 电子电量:一个电子所带的电量叫电子电量。它是*10-19库。 9 中和:放在一起的等量异种电荷完全抵消的现象,叫做中和。 10 1897年英国科学家汤姆逊发现了电子。 11 电流方向:把正电荷移动的方向规定为电流的方向。

电子移动方向与它正好相反。 12 导体:容易导电的物体叫导体。如金属、石墨、人体、大地及酸碱盐水液。 绝缘体:不容易导电的物体叫绝缘体。如橡胶、玻璃、陶瓷、塑料、油等。 13 电源:能够提供持续电流的装置。在干电池中电能是以化学能的形式存在。 14 自由电子:在金属导体中能脱离原子核束缚而在金属内部自由移动的电子。 15 电路:把用电器、电源、开关用导线连接起来的电流路径。 电路图:用符号表示电路连接情况的图。 16 通路:处处接通的电路。开路:某处断开的电路。 短路:不经过用电器直接把导线接在电源两端的电路。 17 串联电路:把电路元件逐个顺次连接起来的电路。特点:电流依次通过每个用电器。 并联电路:把电路元件并列连接起来的电路。特点电流在某处分支,再在某处会合。 对于定滑轮,动滑轮和滑轮组明确以下5个关系对于分析问题是很重要的(以竖直向上提升重物的滑轮、滑轮组为例) (1)当不考虑动滑轮重及绳与滑轮之间摩擦时,拉力与

相关文档
相关文档 最新文档