文档库 最新最全的文档下载
当前位置:文档库 › 2012届高考复习冲刺猜押物理信息试卷(一)_4

2012届高考复习冲刺猜押物理信息试卷(一)_4

2012届高考复习冲刺猜押物理信息试卷(一)_4
2012届高考复习冲刺猜押物理信息试卷(一)_4

2012届高考复习冲刺猜押物理信息试卷(一)

本卷分选择题和非选择题两部分组成,共13小题,计110分限时90分钟 第 I 卷(选择题共48分)

选择题:(本大题共8小题,每小题6分,满分48分,每小题给出四个答案中至少有一个是正确的,把正确答案全选出来,每小题全选对的得6分,选对但不全得3分,有选错或不答的得0分)

1、19世钇40年代前后,科学界已形成了一轴思想氛围,即用联系的观点去观察自然,这种思想促进了能量转化与守恒定律的建立。在能量转化与守恒定律建立的过程中,下列说法不符合史实的是: A. 焦耳测走热功当量的数值,建立了力和热的联系 B. 焦耳发现电流的热效应,建立了电和热的联系 C. 法拉第发现电流的磁效应,建立了电和磁的联系 D. 法拉第发现电磁感应现象,建立了磁和电的联系

2、如图所示,O 点有一粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电的粒子,它们的速度大小相等,速度方向均在xOy 平面内。在直线x= a 与x=2a 之间存在垂直于xOy 平面向外的磁感应强度为B 的匀强磁场,与y 轴正方向成60°角发射的粒子恰好垂直于磁场右边界射出。不计粒子的重力和粒子间的相互作用力。关于这些子的运动,下列说法正确的: A.粒子的速度大小为 B. 粒子的速度大小为

C. 与y 轴正方向成120°角射出的粒子在磁场中运动的时间最长

D. 与y 轴正方向成90°角射出的粒子在磁场中运动的时间最长 3、 如图所示,在两等量同种点电荷的电场中,MN 是两电荷连线

的中垂线,b 是直线ac 与MN

的交点,且a 与c 关于MN 对称,d 是两电荷连线上的一点。下列判断正确的是: A. b 点场强一定大于d 点场强 B. b 点场强一定小于d 点场强 C. a 、b 两点间的电势差

等于b 、c 两点间的电势差

D 试探电荷+g 在a 点的电势能等于在c 点的电势能

4、2011年9月29日,“天宫一号”顺利升空,11月1日,“神舟八号”随后飞上太空,11月3日凌晨“神八”与离地高度343km 轨道上的“天宫一号”对接形成组合体,中国载人航天首次空间交会对接试验获得成功,为建立太空实验室——空间站迈出了关键一步。设对接后的组合体在轨道上做匀速圆周运动,则下列说法中正确的是:

A .对接前,“神舟八号”欲追上“天宫一号”,可以在同一轨道上点火加速

B .对接后,“天宫一号”的速度大于第一宇宙速度

C .对接后,“天宫一号“的运行周期小于地球同步卫星的周期

D .今后在“天宫一号”内工作的宇航员因受力平衡而在其中悬浮或静止

5、如图所示,理想变压器原、副线圈的匝数比为10:1,b 是原线圈的中心接头,电压表V 和电流表A 均为理想电表,除滑动变阻器电阻R 以外其余电阻均不计,从某时刻开始在原线圈c 、d 两端加上交变电压,其瞬时值表达式为

t u π100sin 22201=(V)。下列说法中正确的是:

A .当单刀双掷开关与a 连接时,电压表的示数为20 V

B .

1

600=

t s

时,点c 、d 间的电压瞬时值为110V

C .当单刀双掷开关由a 扳向b 时,电压表和电流表的示数 均变大

D .单刀双掷开关与a 连接,滑动变阻器触头P 向上移动的 过程中,电压表和电流表的示数均变小

6、在光滑的水平地面上方,有两个磁感应强度大小均为B ,方向相反的水平匀强磁场,如图所示的PQ 为两个磁场的边界,

到直径刚好与边界线PQ 重合时,圆环的速度为υ21,则下列说法正确的是:

A .此时圆环中的电功率为R a

B 2

224υ

B .此时圆环的加速度为

mR

a B υ

224

C .此过程中通过圆环截面的电量为

R

Ba 2

π

D .此过程中回路产生的电能为2

75.0υm

7、.如下图所示,在坐标系xOy 中,有边长为L 的正方形金属线框abcd ,

其一条对角线ac 和y 轴重合、顶点a 位于坐标原点O 处.在y 轴的右侧的Ⅰ象限内有一垂直纸面向里的匀强磁场,磁场的上边界与线框的ab 边刚好完全重合,下边界与x 轴重合,右边界与y 轴平行.t =0时刻,线圈以恒定的速度v 沿垂直于磁场上边界的方向穿过磁场区域.取a →b →c →d →a 的感应电流方向为正,则在线圈穿越磁场区域的过程中,感应电流i 、ab 间的电势差Uab 随时间t 变化的图线是

下图中的: 8、如

图所示,abcd 为面积为S 、匝数为N 、总电阻为R 的矩形线圈.现让线圈绕与cd 边重合的轴OO'从图示位置开始匀速转动,角速度为ω,空间中只有OO'左侧存在垂直纸面向里的匀强磁场,磁感应强度大小为B .则:

A .线圈从图示位置转过90°的过程中线圈中产生的热量为

B .线圈中电流方向每秒钟改变次数为ω/π次

C .在线圈转动一圈的过程中,通过线圈某一截面的电荷量为2BS/R

D .此线圈中产生的交流电动势的有效值为

第I 卷选择题答题卡

1 2 3 4 5 6 7 8

[A] [A] [A] [A] [A] [A] [A] [A] [B] [B] [B] [B] [B] [B] [B] [B] [C] [C] [C] [C] [C] [C] [C] [C] [D] [D] [D] [D] [D] [D] [D] [D]

二、实验题(本题共2小题共15分)将答案填在横线上或作图和连线. 9、(6分)某同学用如图所示的装置“验证动量守恒定律”,其操作步骤如下: A .将操作台调为水平;

B .用天平测出滑块A 、B 的质量mA 、mB ;

C .用细线将滑块A 、B 连接,滑块A 、B 紧靠在操作台边缘,使A 、B 间的弹簧处于压缩状态;

D .剪断细线,滑块A 、B 均做平抛运动,记录A 、B 滑块的落地点M 、N ;

E .用刻度尺测出M 、N 距操作台边缘的水平距离x1、x2;

F .用刻度尺测出操作台面距地面的高度h 。 (1)上述步骤中,多余的步骤是 。

(2)如果动量守恒,须满足的关系是______________________(用测量量表示)。 10、(9分)二极管是一种半导体元件,电路符号

”,其特点是具有单向导电性,即电

流从正极流入时电阻比较小,而从负极流入时

电阻比较大。

①某实验兴趣小组对某种晶体二极管的伏安特性曲线进行测绘。因二极管外壳所印的标识模糊,为判断正负极,用多用电表电阻挡测二极管的正反向电阻。将选择开关旋至合适倍率,调整欧姆零点后,将黑表笔接触二极管的左端、红表笔接触右端时,指针偏角比较小;再将红、黑表笔位置

对调时,指针偏角比较大,由此判断 端为二极

管的正极。(选填“左”、“右”)

②厂家提供的伏安特性曲线如右图。该小组只对

加正向电压时的伏安特性曲线进行了测绘,以验证与

厂家提供的数据是否一致,可选用的器材有:

A .直流电源,电动势3V ,内阻忽略不计;

B .0~20Ω的滑动变阻器一只;

C .量程5V 、内阻约50kΩ的电压表一只;

D .量程3V 、内阻约20kΩ的电压表一只;

E .量程0.6A 、内阻约0.5Ω的电流表一只;

F .量程50mA 、内阻约5Ω的电流表一只;

G .待测二极管一只; H .导线、电键等。

为了提高测量结果的准确度,电压表应选用______,电流表应选用_______。(填序号字母) ③为了达到测量目的,请在答题卡上虚线框内画出

正确的实验电路原理图。

④为了保护二极管,正向电流不要超过25mA ,请你对本实验的设计或操作提出一条合理的建议:

⑤该小组通过实验采集数据后描绘出了二极管的伏安特性曲线,通过对比,与厂家提供的曲线基本吻合。如果将该二极管与一阻值R=50Ω的电阻串联,再接至电动势E=1.5V 、内阻不计的电源上,二极管处于正向

导通状态。请你写出根据题中给出的伏安曲线求通过二极管电流的步骤:(不要求求出结果) 三、本大题共三小题共计47分.解答时请写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题.答案中必须明确写出数值和单位 11、(13分)

低空跳伞是一种极限运动,一般在高楼、悬崖、高塔等固定物上起跳。人在空中降落过程中所受空气阻力随下落速度的增大而变大,而且速度越大空气阻力增大得越快。因低空跳伞下落的高度有限,导致在空中调整姿态、打开伞包的时间较短,

时安全落地,并稳稳地站立在地面上。g取10m/s2,请根据此图象估算:

(1)起跳后2s内运动员(包括其随身携带的全部装备)所受平均阻力的大小。

(2)运动员从脚触地到最后速度减为0的过程中,若不计伞的质量及此过程中的

空气阻力,则运动员所需承受地面的平均冲击力多大。

(3)开伞前空气阻力对跳伞运动员(包括其随身携带的全部装备)所做的功(结果保留两位有效数字)。

12、(19分)如图所示,半圆有界匀强磁场的圆心O1在X轴上,OO1距离等于半圆磁场的半径,磁感应强度大小为B1。虚线MN,平行X轴且与半圆相切于P点。在MN上方是正交的匀强电场和匀强磁场,电场场强大小为E,方向沿X轴负向,磁场磁感应强度大小为B2。B1,B2方向均垂直纸面,方向如图所示。有一群相同的正粒子,以相同的速率沿不同方向从原点O射入第I象限,其中沿x轴正方向进入磁场的粒子经过P点射入MN后,

恰好在正交的电磁场中做直线运动,粒子质量为m,电荷量为q (粒子重力不计)。求:

(1)粒子初速度大小和有界半圆磁场的半径。

(2)若撤去磁场B2,则经过P点射入电场的粒子从y轴出电场时的坐标。(3)试证明:题中所有从原点O进入第I象限的粒子都能在正交的电磁场中做直线运动。

13、(15分)如图所示,A是质量mA=0.98kg的物块(可视为质点),B和C是完全相同的木板,长l=2.7m,质量m=1.0kg。已知木板与地面间的动摩擦因数μ=0.2,物块A与木板之间的动摩擦因数为μ1,设物块与木板以及木板与地面间的最大静摩擦力与滑动摩擦力大小相等。现有一质量m0=0.02kg的子弹以v=300m/s的速度击中物块A,并留在物块中,

(1)求子弹击中物块后,共同速度的大小;

(2)若要求物块A在B板上运动,使B、C板均相对地面不动;当物块A滑上C板时,C板开始运动,求μ1应满足的条件;

(3)若μ1=0.5,求物块A停留在C板上的位置。

参考答案及评分标准

一、1、C 2、AC 3、D 4、C 5、C6、AC 7、AD 8、BD

二、实验题(本题共2小题共15分)将答案填在横线上或作图和连线. 9、(6分)(1)F ;(3分)(2)(3分)mAx1=mBx2 10、(9分)① 右;(1分)② D 、F ;(2分)③分压式、电流表外接(2分)

④可能的答案:a 、在二极管支路串入一阻值合适的限流电阻起保护作用;b 、闭合开关前滑动触头停在最左端,向右移动滑动触头时应缓慢进行,同时仔细观察电流表示数变化,以防止电流超过25mA 。(只要回答合理均可)(2分) ⑤设二极管两端电压为U ,通过的电流为I ,由闭合电路欧姆定律得方程I U 505.1-=,在二极管伏安图象中作出该方程的直线,该直线与二极管伏安曲线相交,读出交点的纵坐标值即为I 。(2分) 三、本大题共四小题共计47分.解答时请写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题.答案中必须明确写出数值和单位 11、(13分)(1)由v-t 图可知,起跳后前2s 内运动员的运动近似是匀加速运动,其加速度 a=v1/t1=9.0m/s2………………(1分)

设运动员所受平均阻力为f ,根据牛顿第二定律有 m 总g-f=m 总a…………………(1分) 解得 f=m 总(g-a )=80N………………(2分)

(2)v-t 图可知,运动员脚触地时的速度v2=5.0m/s ,经时间t2=0.2s 速度减为0(1分) 设此过程中运动员所受平均冲击力大小为F ,根据牛顿第二定律有

F-mg=ma′………(1分) 0= v2- a′t2………………………………(1分)

解得 F=2.4×103N…………………………………………………………………(1分) 说明: F=2450N 也同样得分。

(3)由v-t 图可知,10s 末开伞时的速度v=40m/s ,开伞前10s 内运动员下落的高度约为h=30×10m=300m………………………………………………………………………(1分) 说明:此步骤得出280m ~320m 均可得分。

设10s 内空气阻力对运动员所做功为W ,根据动能定理有

m 总gh+W=21

m 总v2……(2分) 解得 W=-1.8×105J…………(2分)

说明:此步得出-1.6×105J ~-1.9×105J 均可得分,若没有写“-”扣1分。

12、(19分)(1)

Eq B qv =20 (1分)

20B E

v =

(1分)

由题意知粒子在磁场B1中圆周运动半径与该磁场半径相同,

R m v B qv 2

10=

(2分)

2110B qB mE

qB mv R =

=

(2分)

m

Eqt R x 22

=

= (2分)

212202

2B B qB mE Eq mR B E t v y ==

= (3分)

)21(2

112B B B qB mE R y y +=

+=' (2分)

(3)证明:设从O 点入射的任一粒子进入B1磁场时,速度方向与x 轴成θ角,粒子出B1磁场与半圆磁场边界交于Q 点,如图所示,找出轨迹圆心,可以看出四边形OO1O2Q 四条边等长是平行四边形,所以半径O2Q 与OO1平行。所以从Q 点出磁场速度与O2Q 垂直,即与x 轴垂直,所以垂直进入MN 边界。进入正交电磁场E 、B2中都有

Eq B qv =20故做直线运

动。 (6分) 13、(15分)(1)设子弹击中物块时的共同速度为v1,子弹与物块相互作用的时间极短,子弹和物块组成的系统动量守恒: 00()A m v m m v =+1

00=

6.0m/s

()

A m v

v m m =+1 (4分)

(2)物块A (含子弹)在木板上滑行时,它对木板的摩擦力 10()A f m m g μ=+

当A 在B 板上滑行时: 地面对B 的摩擦力10()A f m m m g μ=++ 地面对C 的摩擦力2f mg μ= 当A 在C 板上滑行时:

地面对C 的摩擦力30()A f m m m g μ=++ 由题意可知:312f f f f <≤+

即 0100()()(2)A A A m m m g m m g m m m g μμμ++<+≤++ 所以 10.40.6μ<≤ (5分) (3)当μ1=0.5时,物块A 与木板的运动情况如右图所示。

当物块A 在B 板上运动时,B 、C 板均相对地面不动,A 做匀减速直线运动,其加

速度

2

5.0m/s A f a m m ==-+-

设A 滑上C 板时的速度为v2,则有

22212v v al -= 所以 2 3.0m/s v =

当物块A 在C 板上运动时,B 板留在原地,C 板开始做匀加速运动,A 继续做匀减速运动,当它们达到共同速度v3

时,A 相对C 静止。

设这段时内C 的加速度为aC ,根据牛顿第二定律有

设这段时间内,A 的位移为x1,C 的位移为x2,则

对A : 32v v t a -= 3212v v x t

+=?

对B : 3

C

v t a =

3

22v x t =

?

可求得 120.5s

0.875m

0.125m t x x ===

则 12075m x x x ?=-=.

(6分)

2.2020年高考物理冲刺押题卷(解析版)

猜题卷(二) 2020届高三物理全真模拟卷 一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.)1.下列说法正确的是() A.在探究太阳对行星的引力规律时,我们引用了公式=k,这个关系式是开普勒第三定律,是可以在实验室中得到证明的 B.在探究太阳对行星的引力规律时,我们引用了公式,这个关系式实际上是牛顿第二定律,是可以在实验室中得到验证的 C.在探究太阳对行星的引力规律时,我们引用了公式,这个关系式实际上是匀速圆周运动的速度定义式 D.在探究太阳对行星的引力规律时,使用的三个公式,都是可以在实验室中得到证明的 【解答】解:A、在探究太阳对行星的引力规律时,我们引用了公式=k,这个关系式是开普勒第三定律,是通过研究行星的运动数据推理出的,不能在实验室中得到证明,故A错误; B、在探究太阳对行星的引力规律时,我们引用了公式,这个关系式是向心力公式,实际上是牛 顿第二定律,是可以在实验室中得到验证的,故B正确; C、在探究太阳对行星的引力规律时,我们引用了公式,这个关系式不是匀速圆周运动的速度定 义式,匀速圆周运动的速度定义式为v=,故C错误; D、通过ABC的分析可知D错误; 故选:B。 2.有些元素的原子核有可能从很靠近它的核外电子中“俘获”一个电子形成一个新原子(例如从离原子核最近的K层电子中俘获电子,叫“K俘获”),发生这一过程后,新原子核() A.带负电 B.是原来原子的同位素 C.比原来的原子核多一个质子

D.比原来的原子核多一个中子 【解答】解:A、原子核带正电,故A错误; BCD、原子核俘获一个电子后,一个质子变成中子,质子数减少一个,中子数多一个, 新原子核的质子数发生变化,新原子与原来的原子不是同位素,故BC错误,D正确; 故选:D。 3.如图所示,一不可伸长的光滑轻绳,其左端固定于O点,右端跨过位于O′点的固定光滑轴悬挂一质量为m A的物体A.OO′段水平,长度为L,绳上套一可沿绳滑动的轻环。现在轻环上悬挂一质量为m B的钩码,平衡后,物体A上升L.则() A.m A:m B=:3 B.m A:m B=:1 C.m A:m B=:1 D.m A:m B=:2 【解答】解:重新平衡后,绳子形状如下图: 由几何关系知:绳子与竖直方向夹角θ为30°,则环两边绳子的夹角为60°, 则根据平衡条件可得:2m A gcosθ=m B g 解得m A:m B==:3,故A正确、BCD错误。 故选:A。 4.如图,abc是竖直面内的光滑固定轨道,ab水平,长度为3R;bc是半径为R的四分之一的圆弧,与ab 相切于b点。一质量为m的小球。始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动,重力加速度大小为g。小球从a点开始运动到其他轨迹最高点,机械能的增量为()

高考物理模拟卷20

1.(2015普通高中学科教学质量检测;计算题;光的折射定律;34(2)) (10分) 直角三角形的玻璃砖ABC放置于真空中,∠B=30°,CA的延长线上S点有一点光源,发出的一条光线由D点射入玻璃砖,如图所示。光线经玻璃砖折射后垂直BC边射出,且此光束经过SD用时和在玻璃砖的传播时间相等。已知光在真空中的传播速度为c,BD=√2d,∠ASD=15°。求: ①玻璃砖的折射率; ②S、D两点间的距离。 解析: ①由几何关系可知入射角i=45°,折射角r=30°(2分) n=sini sinr (2分) 可得n=√2(1分) ②在玻璃砖中光速v=c n (2分) 光束经过SD和玻璃砖的传播时间相等,有 SD c =BDsin30° v (2分) 可得SD=d(1分) 答案:①√2②d 2.(2015呼和浩特高三第二次质量普查调研考试;计算题;光的折射定律;34(2))(10分) 如图所示,山区盘山公路的路面边上一般都等间距地镶嵌一些小玻璃球,当夜间行驶的汽车的车灯照上后显得非常醒目,以提醒司机注意。若小玻璃球的半径为R,折射率是√3,今有一束平行光沿直径AB方向照在小玻璃球上,试求距离AB多远的入射光线经玻璃折射→表面反射→玻璃折射后,能够射出后沿与原方向平行返回,即实现“逆向反射”? 解析: 光路如图所示。由几何关系知θ1=2θ2(2分) n=sinθ1 sinθ2=sin2θ2 sinθ2 =2cos θ2=√3(3分)

解得cos θ2=√3 2 ,θ2=30°(2分) θ1=60°,sin θ1=√3 2 d=R sin θ1=√3 2 R(3分) 答案:√3R 3.(2015东北三省四市高三第一次联合考试;作图题,计算题;光的折射定律;34(2))(10分) 如图为一平行玻璃砖,折射率为n=√3,下表面有镀银反射面。一束单色光与界面的夹角θ=30°射到玻璃表面上,结果在玻璃砖右边竖直光屏上出现相距h=4.0 cm的光点A和B(图中未画出)。 ①请在图中画出光路示意图; ②求玻璃砖的厚度d。 解析:①光路图如图所示(光线无箭头不得分) (2分) ②设第一次折射时折射角为γ 则有n=sin(90°-θ) sinγ (1分) 解得γ=30°(1分) 设第二次折射时折射角为α,则有sinγ sinα=1 n (1分) 解得α=60°(1分) 由几何关系得h=2d tan γ·cot 60°(2分) d=6 cm(2分) 答案:①见解析②6 cm 4.(2015乌鲁木齐地区高三第二次诊断性测验;计算题;光的折射定律;18(2)) (9分)半径为R的半圆柱形玻璃,O为半圆柱形玻璃横截面的圆心,B为半圆柱形玻璃的顶点。一条平行OB的光线垂直于玻璃界面入射,从A点射出玻璃,出射光线交OB的延长线于C点,AO=AC,∠ACO=α。已知真空中光速为c,求: ①玻璃的折射率; ②光在玻璃中的传播时间。 解析:①由光路图可知 入射角i=α,折射角r=2α(1分) n=sinr sini (2分) 解得n=2cos α(2分) ②光在玻璃过的路程s=R cos α(1分) 传播时间t=s v (1分) 光在玻璃中的传播速度v=c(1分)

高三物理模拟考试检测试题

高三线上自我检测 物理试题 一、单项选择题:本题共8小题,每小题3分,共24分。在每小题给出的四个选项中,只 有一项是符合题目要求的。 1.关于固体、液体、气体和物态变化,下列说法中正确的是 A .晶体一定具有各向异性的特征 B .液体表面张力是液体内部分子间的相互作用 C .0℃的铁和0℃的铜,它们的分子平均速率相同 D .一定质量的某种理想气体状态改变时,内能不一定改变 2.下列说法正确的是 A .阴极射线的本质是高频电磁波 B .玻尔提出的原子模型,否定了卢瑟福的原子核式结构学说 C .贝克勒尔发现了天然放射现象,揭示了原子核内部有复杂结构 D .23994Pu 变成20782Pb ,经历了4次β衰变和6次α衰变 3.如图所示,a 、b 、c 、d 为椭圆的四个顶点,一带电量为+Q 的点电荷处在椭圆的一个焦点上,另有一带负电的点电荷仅在与+Q 之间的库仑力的作用下沿椭圆运动,则下列说法中正确的是 A .负电荷在a 、c 两点的电势能相等 B .负电荷在a 、c 两点所受的电场力相同 C .负电荷在b 点的速度小于在d 点速度 D .负电荷在b 点的电势能大于在d 点的电势能 4.如图所示,完全相同的两个光滑小球A 、B 放在一置 于水平桌面上的圆柱形容器中,两球的质量均为m ,两球心的连线与竖直方向成 30角,整个装置处于静止状态。则下列说法中正确的是 A .A 对 B 的压力为mg 332B .容器底对B 的支持力为mg C .容器壁对B 的支持力为mg 6 3D .容器壁对A 的支持力为 mg 6 3

5.如图所示,图中曲线为两段完全相同的六分之一圆弧连接而成的金属线框(金属线框处于纸 面内),每段圆弧的长度均为L ,固定于垂直纸面向外、大小为B 的匀强磁场中。若给金属线框通以由A 到C 、大小为I 的恒定电流,则金属线框所受安培力的大小和方向为 A .IL B ,垂直于A C 向左 B .2ILB ,垂直于A C 向右 C . 6ILB π,垂直于AC 向左D .3ILB π ,垂直于AC 向左6.如图所示,理想变压器原、副线圈的匝数之比为10:1,原线圈接有正弦交流电源u =2202sin314t (V),副线圈接电阻R ,同时接有理想交流电压表和理想交流电流表。则下列说法中正确的是 A .电压表读数为V B .若仅将原线圈的匝数减小到原来的一半,则电流表的读数会增加到原来的2倍 C .若仅将R 的阻值增加到原来的2倍,则变压器输入功率增加到原来的4倍 D .若R 的阻值和副线圈的匝数同时增加到原来的2倍,则变压器输入功率不变7.2024年我国或将成为全球唯一拥有空间站的国家。若我国空间站离地面的高度是同步卫 星离地面高度的n 1,同步卫星离地面的高度为地球半径的6倍。已知地球的半径为R ,地球表面的重力加速度为g ,则空间站绕地球做圆周运动的周期的表达式为 A .2 B .2 C .2 D .28.B 超检测仪可以通过探头发送和接收超声波信号,经过电子电路和计算机的处理形成图 像。下图为仪器检测到发送和接收的超声波图像,其中实线为沿x 轴正方向发送的超声波,虚线为一段时间后遇到人体组织沿x 轴负方向返回的超声波。已知超声波在人体内传播速度为1200m/s ,则下列说法中正确的是A .根据题意可知此超声波的频率为1.2×105Hz

【物理】高考必刷题物理图像法解决物理试题题

【物理】高考必刷题物理图像法解决物理试题题 一、图像法解决物理试题 1.如图是某质点运动的速度图象,由图象得到的正确结果是 A .0~1 s 内的平均速度是2 m/s B .0~2 s 内的位移大小是4 m C .0~1 s 内的运动方向与2 s ~4 s 内的运动方向相反 D .0~1 s 内的加速度大小大于2 s ~4 s 内加速度的大小 【答案】D 【解析】0~1s 内质点做匀加速直线运动,其平均速度为初末速度之和的一半即: ,故A 错误;在v-t 图象中,图线与坐标轴所围的面积大小等于位移:,故B 错误;速度的正负表示速度的方向,则知0~1s 内的运动方向与2~4s 内的运动方向相同,故C 错误;速度图象的斜率等于加速度,则知0~1s 内的加速度大于2~4s 内的加速度,故D 正确。所以D 正确,ABC 错误。 2.如图所示,分别为汽车甲的位移-时间图象和汽车乙的速度-时间图象,则( ) A .甲的加速度大小为25/m s B .乙的加速度大小为25/m s C .甲在4s 内的位移大小为40 m D .乙在4 s 内的位移大小为20 m 【答案】B 【解析】 A 、在x t -图象中,斜率表示速度,由图象可知:甲做匀速直线运动,加速度为0,故A 错误; B 、在速度-时间图象中,斜率表示加速度,乙的加速度大小为 a 2220/5/4 v a m s m s t ===,故B 正确; C 、甲在4s 内的位移大小为20020x m m =-=,故C 错误; D 、由v t -图象与时间轴围成的面积表示位移可知:乙在4s 内的位移大小为

204402x m m ?==,故D 错误. 点睛:本题的关键要明确x t -图象与v t -图象的区别,知道v-t 图象的斜率表示加速度,x t -图象的斜率表示速度,两种图象不能混淆. 3.从1907 年起,密立根就开始测量金属的遏止电压C U (即图1 所示的电路中电流表G 的读数减小到零时加在电极K 、A 之间的反向电压)与入射光的频率ν,由此算出普朗克常量h ,并与普朗克根据黑体辐射得出的h 相比较,以检验爱因斯坦光电效应方程的正确性.按照密立根的方法我们利用图示装置进行实验,得到了某金属的 C U ν-图像如图2 所 示.下列说法正确的是 A .该金属的截止频率约为4.27× 1014 Hz B .该金属的截止频率约为5.50× 1014 Hz C .该图线的斜率为普朗克常量 D .该图线的斜率为这种金属的逸出功 【答案】A 【解析】 【分析】 【详解】 试题分析:设金属的逸出功为0W ,截止频率为 c ν,因此0W h ν=;光电子的最大初动能Ek 与遏止电压UC 的关系是k c E eU =,光电效应方程为0k E h W ν=-;联立两式可得: 0C W h U e e ν=-,因此图像的斜率为h e ,CD错误;当C 0U =可解得144.310c Hz νν==?,即金属的截止频率约为 Hz ,在误差允许范围内,可以认 为A 正确;B 错误. 考点:光电效应. 4.甲、乙两车在平直的公路上向相同的方向行驶,两车的速度v 随时间t 的变化关系如图所示,其中阴影部分面积分别为S 1、S 2,下列说法正确的是

原子物理知识点汇总

高考考点:原子物理考 点分析一、历史人物及相关成就 1、汤姆生:发现电子,并提出原子枣糕模型——说明原子可再分 2、卢瑟福: 粒子散射实验— —说明原子的核式结构模型 发现质子 3、查德威克:发现中子 4、约里奥.居里夫妇:发现正电子 5、贝克勒尔:发现天然放射

现象——说明原子核可再分6、爱因斯坦:质能方程2mc E=, 2 mc E? = ? 7、玻尔:提出玻尔原子模型,解释氢原子线状光谱8、密立根:油滴实验——测 量出电子的电 荷量 二、核反应的 四种类型 类型可 控 性 核反应 例 衰 变 α衰 变 自 发 β衰 变 自 发

人工转变人 工 控 制 H o He N1 1 17 8 4 2 14 7 + → +卢 瑟福 发现质子 n C He Be1 12 6 4 2 9 4 + → +查 德威 克发现中子 n P He l1 30 15 4 2 27 13 A+ → +约里 奥.居里夫妇 e Si P0 1 30 14 30 15 + →发

重核裂变比较容易进行人工控制 轻核聚除 变氢 弹 外 无 法 控 制 提醒: 1、核反应过程一般都是不可逆的,所以核反

应方程只能用单箭头表示反应方向,不能用等号连接。2、核反应的生成物一定要以实验事实为基础,不能凭空只依据两个守恒定律杜撰出生成物来写出核 反应方程 3、核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒 三、三种射线比较 种 类

速 度 0.1c 0.99c C 在电磁场中偏转与a射 线反向 偏转 不偏转 贯穿本领最弱, 用纸能 挡住 较强, 穿透几 毫米的 铝板 最强, 穿透几 厘米的 铅板 对 空 气 的 电 离 作 用 很强较弱

2020届高考物理仿真冲刺卷(三)(含答案)

仿真冲刺卷(三) (建议用时:60分钟满分:110分) 二、选择题(本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得 0分) 14.2019年4月1日,在中国核能可持续发展论坛上,生态环境部介绍2019年会有核电项目陆续开工建设.某核电站获得核能的核反应方程为U n Ba+Kr+n,已知铀核U的质量为m1,钡核Ba的质量为m2,氪核Kr 的质量为m3,中子n的质量为m4,下列说法中正确的是( ) A.该核电站通过核聚变获得核能 B.铀核U的质子数为235 C.在上述核反应方程中x=3 D.一个铀核U发生上述核反应,释放的能量为(m1-m2-m3-m4)c2 15.如图所示,A,B,C,D是真空中一正四面体的四个顶点,每条棱长均为l.在正四面体的中心固定一电荷量为-Q的点电荷,静电力常量为k,下列说法正确的是( )

A.A,B两点的电场强度相同 B.A点电场强度大小为 C.A点电势高于C点电势 D.将一正电荷从A点沿直线移动到B点的过程中,电场力一直不做功 16.如图所示,水平面O点左侧光滑,O点右侧粗糙且足够长,有10个完全相同且质量均为m的小滑块(可视为质点)用轻细杆相连,相邻小滑块间的距离为L,滑块1恰好位于O点,滑块2,3……依次沿直线水平向左排开,现将水平恒力F作用于滑块1,经观察发现,在第3个小滑块进入粗糙地带后到第4个小滑块进入粗糙地带前这一过程中,小滑块做匀速直线运动,已知重力加速度为g,则下列说法正确的是( ) A.粗糙地带与滑块间的动摩擦因数μ= B.匀速运动过程中速度大小为 C.第一个滑块进入粗糙地带后,第二个滑块进入前各段轻杆的弹力大 小相等 D.在水平恒力F作用下,10个滑块全部可以进入粗糙地带

高考物理模拟试卷及答案

2015年高考物理模拟试卷(1) 一、单项选择题 (本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,只有一个选项 是正确的) 13.下列说法正确的是 A .C 146经一次α衰变后成为N 14 7 B .氢原子的核外电子从半径较小的轨道跃迁到半径较大的轨道时,原子的能量增大 C .温度升高能改变放射性元素的半衰期 D .核反应方程应遵循质子数和中子数守恒 14.一铁架台放于水平地面上,其上有一轻质细线悬挂一小球,开始时细线竖直,现将水平力F 作用于 小球上,使其缓慢地由实线位置运动到虚线位置,铁架台始终保持静止,在这一过程中,下列说法正确的是 A .水平拉力F 是恒力 B .铁架台对地面的压力一定不变 C .铁架台所受地面的摩擦力不变 D .铁架台对地面的摩擦力始终为零 15.甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是 A .乙的速度大于第一宇宙速度 B . 甲的运行周期小于乙的周期 C .甲的加速度小于乙的加速度 D .甲有可能经过北极的正上方 16.如图,一重力不计的带电粒子以一定的速率从a 点对准圆心射人一圆形 匀强磁场,恰好从b 点射出.若增大粒子射入磁场的速率,下列判断正确的是 A .该粒子带正电 B .从bc 间射出 C .从ab 间射出 D .在磁场中运动的时间不变 二.双项选择题 (本大题共5小题,每小题6分,共30分.在每小题给出的四个选项中,只有两个选项 正确,只选一项且正确得3分) 17.对悬挂在空中密闭的气球从早晨到中午过程(体积变化忽略不计),下列描 述中正确的是 A .气球内的气体从外界吸收了热量,内能增加 B .气球内的气体温度升高、体积不变、压强减小 C .气球内的气体压强增大,所以单位体积内的分子增加,单位面积的碰撞频率增加 D .气球内的气体虽然分子数不变,但分子对器壁单位时间、单位面积碰撞时的作用力增大 18.如图所示,小船自A 点渡河,到达正对岸B 点,下 列措施可能满足要求的是 A .航行方向不变,船速变大 B .航行方向不变,船速变小 C .船速不变,减小船与上游河岸的夹角a D .船速不变,增大船与上游河岸的夹角a 19.为保证用户电压稳定在220V ,变电所需适时进行调压,图甲为调压变压器示意图.保持输入电压 F α B A

江苏新高考物理模拟试题

2008年江苏名校高三物理考前模拟试卷 命题人:如皋中学物理教研组 一、单项选择题:本题共5小题,每小题3分,共15分.每小题只有一个....选项符合题意 1.如图所示,直角形支架,垂直固定放置,竖直杆AC 光滑,水平杆OB 粗糙。另有质量相等的小球PQ 固定在轻杆两端并分别套在AO 、BO 杆上。当轻杆与水平方向的夹角为θ时,处于静止状态,若θ减小些,但PQ 仍静止,则下列说法错误的是( ) A .竖直杆受到P 的压力增大 B .水平杆受到的压力增大 C .小球P 受到轻杆的支持力增大 D .小球受到的摩擦力增大 2.如图所示,粗糙的斜面体M 放在粗糙的水平面上,物块m 恰好能 在斜面体上沿斜面匀速下滑,斜面体静止不动,斜面体受地面的摩擦 力为F 1;若用平行力与斜面向下的力F 推动物块,使物块加速下滑, 斜面体仍静止不动,斜面体受地面的摩擦力为F 2;若用平行于斜面向上的力F 推动物块,使物块减速下滑,斜面体还静止不动,斜面体受地面的摩擦力为F 3。则( ) A .F 2>F 3>F 1 B .F 3>F 2>F 1 C . F 1=F 2=F 3 D . F 2>F 1>F 3 3.某人从手中竖直向上抛出的小球与水平天花板碰撞后,又落回到手中,设竖直向上的方向为正方向,小球与天花板碰撞时间极短,若不计空气阻力和碰撞过程中动能损失,则下列图像中能够正确描述小球从抛出到落回手中的整个过程运动规律的是( ) 4. 如图 所示,图1、2分别表示门电路输入端A 、B 的电势随时间变化的关系,图3是表示门电路输出端Y 的电势 随时间变化的 关系,则应选用 哪一个门电路 ( )

(物理)高考必刷题物理生活中的圆周运动题

(物理)高考必刷题物理生活中的圆周运动题 一、高中物理精讲专题测试生活中的圆周运动 1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求: (1)子弹射入小球的过程中产生的内能; (2)当小球运动到圆形轨道的最低点时,木板对水平面的压力; (3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围. 【答案】(1)2038mv (2) 2 164mv mg R + (3)042v gR ≤或04582gR v gR ≤≤【解析】 本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111 422 Q mv mv =-? 代入数值解得:2038 Q mv = (2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式 得2 11(3)(3)m m v F m m g R +-+= 以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2 木板对水平面的压力的大小20 2164mv F mg R =+ (3)小球不脱离圆形轨有两种可能性: ①若小球滑行的高度不超过圆形轨道半径R 由机械能守恒定律得: ()()211 332 m m v m m gR +≤+

高中物理光学原子物理知识要点精编WORD版

高中物理光学原子物理知识要点精编W O R D 版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

光学 一、光的折射 2.光在介质中的光速:n=n/n 1.折射定律:n=nnn大角 nnn小角 3.光射向界面时,并不是全部光都发生折射,一定会有一部分光发生反射。 4.真空/空气的n等于1,其它介质的n都大于1。 5.真空/空气中光速恒定,为n=3×108m/s,不受光的颜色、参考系影响。光从真空/空气中进入介质中时速度一定变小。 6.光线比较时,偏折程度大(折射前后的两条光线方向偏差大)的光折射率n大。 二、光的全反射 1.全反射条件:光由光密(n大的)介质射向光疏(n小的)介质;入射角大于或等于临界角C,其求法为nnn n=n 。 n 2.全反射产生原因:由光密(n大的)介质,以临界角C射向空气时,根据折射定律,空气中的sin角将等于1,即折射角为90°;若再增大入射角,“sin空气角”将大于1,即产生全反射。 3.全反射反映的是折射性质,折射倾向越强越容易全反射。即n越大,临界角C越小,越容易发生全反射。 4.全反射有关的现象与应用:水、玻璃中明亮的气泡;水中光源照亮水面某一范围;光导纤维(n大的内芯,n小的外套,光在内外层界面上全反射)

三、光的本质与色散 1.光的本质是电磁波,其真空中的波长、频率、光速满足n=nn(频率也可能用n表示),来源于机械波中的公式n=n/n。 2.光从一种介质进入另一种介质时,其频率不变,光速与波长同时变大或变小。 3.将混色光分为单色光的现象成为光的色散。不同颜色的光,其本质是频率不同,或真空中的波长不同。同时,不同颜色的光,其在同一介质中的折射率也不同。 4.色散的现象有:棱镜色散、彩虹。 5.红光和紫光的不同属性汇总如下:

高考物理冲刺复习 物理精练38.doc

物理精练(38) 题: A 的质量是m ,A 、B 始终相对静止,共同沿水平面向右运动。当a 1=0时和a 2=0.75g 时,B 对A 的作用力F B 各多大? 解析:一定要审清题:B 对A 的作用力F B 是B 对A 的支持力和摩擦力的合力。而A 所受重力G =mg 和F B 的合力是F =ma 。 当a 1=0时,G 与 F B 二力平衡,所以F B 大小为mg 当a 2=0.75g A 所受合力F 的大小和方向,再根据平行四边形定则画出F B F B =1.25mg ,方向与竖直方向成37o 角斜向右上方。 例题: 轻绳AB 总长l ,用轻滑轮悬挂重G 固定,将B 端缓慢向右移动d 而使绳不断,求d 的最大可能值。 解析:以与滑轮接触的那一小段绳子为研究对象,在任何一个平衡位置都在滑轮对它的压力(大小为G )和绳的拉力F 1、F 2共同作用下静止。而同一根绳子上的拉力大小F 1、F 2总是相等的,它们的合力N 是 压力G 的平衡力,方向竖直向上。因此以F 1、F 2为分力做力的合成的 平行四边形一定是菱形。利用菱形对角线互相垂直平分的性质,结合相似形知识可得d ∶l =15∶4,所以d 最大为l 4 15 1、平衡条件的推论 推论(1):若干力作用于物体使物体平衡,则其中任意一个力必与其他的力的合力等大、反向. 推论(2):三个力作用于物体使物体平衡,若三个力彼此不平行.则这三个力必共点(作用线交于同一点). 推论(3):三个力作用于物体使物体平衡,则这三个力的作用线必构成封闭的三角形. 2、三力汇交原理:物体在作用线共面的三个非平行力作用处于平衡状态时,这三个力的作用线必相交于一点. 3、解答平衡问题的常用方法 (1)拉密原理:如果在共点的三个力作用下物体处于平衡状态,那么各力的大小分别与另外两个力夹角的正弦成正比,其表达式为 .sin sin sin 3 322 11θθθF F F == (2)相似三角形法. (3)正交分解法:共点力作用下物体的平衡条件(∑F =0)是合外力为零,求合力需要应用平行四边形定则,比较麻烦,通常用正交分解法把矢量运算转化为标量运算。 4、动态平衡问题: 动态平衡问题是指通过控制某一物理量,使物体的状态发生缓慢变化,而在这变化过程中,物体又始终处于一系列的平衡状态.

2020年广东省深圳市高考物理冲刺试卷解析版

高考物理冲刺试卷 题号一二三四总分 得分 一、单选题(本大题共5小题,共30.0分) 1.关于原子物理知识的叙述,下列说法正确的是() A. 在核反应堆中,为了使快中子的速度减慢,可用重水作为慢化剂 B. 在光电效应实验中,用同种频率的光照射不同的金属表面,从金属表面逸出的 光电子最大初动能越大,则这种金属的逸出功W0越大 C. 平均结合能大的原子核转变为平均结合能小的原子核时,释放的核能等于结合 能的减少 D. 氢原子吸收一个光子后能量增大,核外电子的加速度增大 2.图为某应急供电系统原理图。若发电机内部线圈面积为S,匝数为N,磁感应强度 为B,输电线电阻为R0,发电机线圈转动角速度恒为ω,则() A. 图示位置,发电机中线圈的磁通量最大 B. 用户得到的交变电压的频率为 C. 发电机线圈感应电动势的有效值为NBSω D. 当用户数目增多时,为使用户电压保持不变,滑动触头P应向上滑动 3.如图所示,象棋子压着纸条,放在光滑水平桌面上。第一次沿水平方向将纸条抽出, 棋子落在地面上的P点。将棋子、纸条放回原来的位置,仍沿原水平方向将纸条抽出,棋子落在地面上的Q点,与第一次相比() A. 棋子受到纸条的摩擦力较大 B. 棋子落地速度与水平方向夹角较大 C. 纸条对棋子的摩擦力做功较多 D. 棋子离开桌面至落地过程中动能增量较大 4.如图所示,以O为圆心、半径为R的虚线圆位于足够大的 匀强电场中,圆所在平面与电场方向平行,M、N为圆周 上的两点。带电粒子只在电场力作用下运动,在M点速度

方向如图所示,经过M、N两点时速度大小相等。已知M点电势高于O点电势,且电势差为U,下列说法正确的是() A. 粒子带负电 B. 粒子由M点运动到N点,电势能先增大后减小 C. 粒子在电场中可能从M点沿圆弧运动到N点 D. 该匀强电场的电场强度大小为 5.2018年6月14日11时06分,探月工程嫦娥四号任务“鹊 桥”中继星成为世界首颗成功进入地月拉格朗日L2点的 Halo使命轨道的卫星,为地月信息联通搭建“天桥”。 如图所示,该L2点位于地球与月球连线的延长线上,“鹊 桥”位于该点,在几乎不消耗燃料的情况下与月球同步 绕地球做圆周运动,已知地球、月球和“鹊桥”的质量 分别为M e、M m、m,地球和月球之间的平均距离为R,L2点离月球的距离为x,则() A. “鹊桥”的线速度小于月球的线速度 B. “鹊桥”的向心加速度小于月球的向心加速度 C. x满足+=(R+x) D. x满足+=(R+x) 二、多选题(本大题共5小题,共28.0分) 6.如图所示,轻质弹簧的下端固定在光滑斜面的底部,一个质量为m的物块以平行斜 面的初速度v向弹簧运动。已知弹簧始终处于弹性限度范围内,则下列判断正确的是() A. 物块从接触弹簧到最低点的过程中,加速度大小先变小后变大 B. 物块碰到弹簧后立刻开始做减速运动 C. 物块从出发点到最低点过程中,物块减少的重力势能小于增加的弹性势能 D. 物块的动能最大时,物块的重力势能最小 7.如图所示,磁感应强度为B的有界匀强磁场的宽度为L, 一质量为m、电阻为R、边长为d(d<L)的正方形金 属线框竖直放置。线框由静止释放,进入磁场过程中做 匀速运动,完全离开磁场前已做匀速运动。已知重力加 速度为g,则线框() A. 进、出磁场过程中电流方向相同 B. 进、出磁场过程中通过线框某一横截面的电荷量相等 C. 通过磁场的过程中产生的焦耳热为mg(L+d) D. MN边离开磁场时的速度大小为 8.如图所示,质量为m1的木块和质量为m2的长木板叠放在水平地面上。现对木块施 加一水平向右的拉力F,木块在长木板上滑行,长木板始终静止。已知木块与长木板间的动摩擦因数为μ1,长木板与地面间的动摩擦因数为μ2,且最大静摩擦力与滑动摩擦力相等。则()

高三模拟试卷物理

xx 年江苏省 高三物理模拟试卷(附答案) 本试卷分Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟. 第Ⅰ卷(选择题 共40分) 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一 个选项正确,有的小题有多个选项正确,全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1、下列说法中正确的有 A 、任何材料的电阻率都随温度的升高而增加 B 、尽管分子的运动十分混乱,但对大量分子的整体来说,分子的运动速率表现出“中间 多,两头少”的分布规律 C 、因为第二类永动机不遵循能的转化及守恒定律,故不能制成 D 、一定质量理想气体,若体积增大,则气体分子间作用力将增大,气体内能将增大 2、一个静止的放射性原子核处于匀强磁场之中,由于发生了衰变而在磁场中形成了如图所示的两个圆形轨迹,两圆半径之比为1:16,下列判断中正确的是 A 、该原子核发生了α衰变 B 、反冲原子核在小圆上做逆时针运动 C 、原先静止的核,其原子序数为15 D 、放射的粒子与反冲核运动周期相同 3、原子中的核外电子从离核较远的轨道跃迁到离核较近的轨道上时 A 电子的电势能变小 B 电子的动能能变大 C 原子的能量变小 D 原子吸收光子 4、在波的传播方向上有两个质点P 和Q ,并且波由P 向Q 传播.它们的平衡位置相距s=1.2m ,且小于一个波长,此波的传播速度为 v=2m/s.P 和Q 的振动图线如图所示,则波的振动周期为 A 、0.6s B 、1.2s C 、2.4s D 、4.8s 5、如图所示是健身用的“跑步机”示意图,质量为m 的运动踩在与水平面成α角的静止皮带上,运动员用力蹬皮带,皮带运动过程中受到的阻力恒为f,使皮带以速度v 匀速向右运动,在运动过程中,下列说法正确的是 A 、人脚对皮带的摩擦力方向与皮带运动方向相反 B 、人对皮带做功为 2 1mv 2 C 、人对皮带不做功 D 、人对皮带做功的功率为f ·v

高考物理必刷题(一)

精品题库试题 用户:Call Me 大学霸生成时间:2015.08.29 14:45:14物理 1.(2015课标Ⅰ,18,6分)一带有乒乓球发射机的乒乓球台如图所示。水平台面的长和宽分别为L1和L2,中间球网高度为h。发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h。不计空气的作用,重力加速度大小为g。若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是() A.

A.足球位移的大小x= B.足球初速度的大小v0= C.足球末速度的大小v= D.足球初速度的方向与球门线夹角的正切值tan θ= 3.(2015福建理综,17,6分)如图,在竖直平面内,滑道ABC关于B点对称,且A、B、C三点在同一水平线上。若小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用的时间为t2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则() A.t1t2 D.无法比较t1、t2的大小 4.(2015浙江理综,19,6分)(多选)如图所示为赛车场的一个水平“U”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r和2r。一辆质量为m的赛车通过AB线经弯道到达A'B'线,有如图所示的①、②、③三条路线,其中路线③是以O'为圆心的半圆,OO'=r。赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max。选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则() A.选择路线①,赛车经过的路程最短

(完整版)高中物理知识点总结和知识网络图(大全)

力学知识结构图

匀变速直线运动 基本公式:V t =V 0+at S=V 0t+21 at 2 as V V t 22 02 += 2 0t V V V += 运动的合成与分解 已知分运动求合运动叫运动的合成,已知合运动求分运动叫运动的分解。运动的合成与分解遵守平行四边形定则 平抛物体的运动 特点:初速度水平,只受重力。 分析:水平匀速直线运动与竖直方向自由落体的合运动。 规律:水平方向 Vx = V 0,X=V 0t 竖直方向 Vy = gt ,y = 22 1gt 合 速 度 V t = ,2 2y x V V +与x 正向夹角tg θ= x y V v 匀速率圆周运动 特点:合外力总指向圆心(又称向心力)。 描述量:线速度V ,角速度ω,向心加速度α,圆轨道半径r ,圆运动周期T 。 规律:F= m r V 2=m ω2r = m r T 2 2 4π 物 体 的 运 动 A 0 t/s X/cm T λx/cm y/cm A 0 V 天体运动问题分析 1、行星与卫星的运动近似看作匀速圆周运动 遵循万有引力提供向心力,即 =m =m ω2R=m( )R 2、在不考虑天体自转的情况下,在天体表面附近的物体所受万有引力近似等于物体的重力,F 引=mg,即?=mg,整理得GM=gR 2。 3、考虑天体自传时:(1)两极 (2)赤道 平均位移:02 t v v s vt t +== 模 型题 2.非弹性碰撞:碰撞过程中所产生的形变不能够完全恢复的碰撞;碰撞过程中有机械能损失. 非弹性碰撞遵守动量守恒,能量关系为: 12m 1v 21+12m 2v 22>12m 1v 1′2+1 2 m 2v 2′2 3.完全非弹性碰撞:碰撞过程中所产生的形变完全不能够恢复的碰撞;碰撞过程中机械能损失最多.此种情况m 1与m 2碰后速 度相同,设为v ,则:m 1v 1+m 2v 2=(m 1+m 2)v 系统损失的动能最多,损失动能为 ΔE km =12m 1v 21+12m 2v 22-12 (m 1+m 2)v 2 1 .弹性碰撞:碰撞过程中所产生的形变能够完全恢复的碰撞;碰撞过程中没有机械能损失.弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等,即 12m 1v 21+12m 2v 22=12m 1v 1′2+1 2 m 2v 2′2 特殊情况:质量m 1的小球以速度v 1与质量m 2的静止小球发生弹性正碰,根据动量守恒和动能守恒有m 1v 1=m 1v 1′+m 2v 2′,1 2m 1v 21= 12m 1v 1′2+1 2m 2v 2′2.碰后两个小球的速度分别为: v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1 m 1+m 2v 1 动 量碰撞 如图所示,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。现让A 球以v 0=2 m/s 的速 度向B 球运动, A 、 B 两球碰撞后粘在一起继续向右运动并与 C 球碰撞,C 球的最终速度v C =1 m/s 。问: om (1)A 、B 两球与C 球相碰前的共同速度多大? (2)两次碰撞过程中一共损失了多少动能? 【答案】(1)1 m/s (2)1.25 J .线球模型与杆球模型:前面是没有支撑的小球,后两幅图是 有支撑的小球 过最高点的临界条件 由mg=mv 2/r 得v 临=? 由小球恰能做圆周运动即可 得 v 临=0 .车过拱桥问题分析 对甲分析,因为汽车对桥面的压力F N'=mg-?,所以(1)当v=?时,汽车对桥面的压力F N'=0; (2)当0≤v?时,汽车将脱离桥面危险。 对乙分析则:F N-mg=m , 甲 1.做平抛(或类平抛)运动的物体 任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点 2. 自由落体

2020年高考物理模拟试题及答案

2020高考理综物理试题及答案 14.如图所示为氢原子的能级图,一群处在n=4激发态的氢原子向低能级跃迁, 用所辐射的光子照射某金属,能打出的光电子的最大初动能为10.25eV ,则 氢原子辐射的光子中能使该金属发生光电效应的光子种数为 A .2 B .3 C .4 D .5 15.如图所示为甲、乙两个质点沿同一方向做直线运动的位移—时间图像(x-t 图 像),甲做匀速直线运动,乙做匀加速直线运动,t=4s 时刻图像乙的切线交时间轴t=1.5s 点处,由此判断质点乙在t=0时刻的速度是质点甲速度的 A .15倍 B .25倍 C .38倍 D .58倍16.空间存在竖直向下的匀强磁场,磁场的磁感应强度大小为B 0,两根长直导线A 、B 垂直于纸面水平放置,两导线中通入大小相等方向相反的恒定电流,a 点为A 、B 连线的中点,a 、b 两点关于B 对称,若a 、b 两点的磁感应强度大小分别为B 1、B 2,方向均竖直向下,则撤去匀强磁场和长直导线B 以后,a 、b 两点的磁感应强度大小分别为 A .102 B B -,120232 B B B -+B . 102B B +,120232B B B +-C .102B B -,120232B B B +-D .102B B +,120232B B B -+17.如图所示,小球B 用细线悬挂静止,将小球A 从图示位置斜向上抛出的同时将细线剪断,不计空气阻力,结果两个球在空中相遇,已知两球开始时的位置连线与水平方向的夹角为θ,小球A 抛出时的初速度与水 平方向的夹角为α,则下列说法正确的是 A .αθ >B .αθ

(物理)高考必刷题物理动量定理题

(物理)高考必刷题物理动量定理题 一、高考物理精讲专题动量定理 1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211 222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上. 2.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=?,右侧斜面的中间用阻值为2R =Ω的电阻连接。在左侧斜面区域存在垂直斜面向下的匀强磁

2019高考物理考前冲刺全辑 (1)

九、磁场板块 基础回扣 1.磁场、磁感应强度、磁通量 (1)基本特性:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用。 (2)方向:小磁针的N极所受磁场力的方向。 2.磁感应强度:B=(通电导线垂直于磁场)。 3.匀强磁场特点:匀强磁场中的磁感线是疏密程度相同的、方向相同的平行直线。 4.磁通量:Φ=BS。单位为Wb,1 Wb=1 T·m2。适用于匀强磁场,线圈平面与磁感线垂直,与线圈匝数无关。 5.安培力、安培力的方向 (1)安培力的方向用左手定则判定。 (2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面。 (3)安培力的大小:磁场和电流垂直时:F=BIL;磁场和电流平行时:F=0。 安培力公式写为F=ILB,适用条件为磁场与电流方向垂直。式中L是有效长度。弯曲导线的有效长度L等于两端点所连线段的长度(如图所示);相应的电流方向,沿L由始端流向末端,因为任意形状的闭合线圈,其有效长度L=0,所以通电后在匀强磁场中,受到的安培力的矢量和一定为零。 6.洛伦兹力的方向 (1)判定方法:左手定则。方向特点:F⊥B,F⊥v,即F垂直于B和v决定的平面(注意:洛伦兹力不做功)。 (2)洛伦兹力的大小:F=qvB sin θ。v∥B时,洛伦兹力F=0(θ=0°或180°);v⊥B时,洛伦兹力F=qvB(θ=90°);v=0时,洛伦兹力F=0。 7.不计重力的带电粒子在磁场中的运动 (1)匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动。

(2)匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动。 质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨迹半径为R,运动的周期为T,则 有:qvB=m=mRω2=mvω=mR()2=mR(2πf)2。 R=,T=(与v、R无关),f==。 (3)对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点。 ①粒子运动轨迹圆的圆心的确定 a.若已知粒子在圆周运动中的两个具体位置及通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为轨迹圆的圆心,如图甲所示。 b.若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为轨迹圆的圆心,如图乙所示。 c.若已知做圆周运动的粒子通过某一具体位置的速度方向及轨迹圆的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为轨迹圆的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图丙所示。 ②粒子轨迹圆的半径的确定 a.可直接运用公式R=来确定。 b.画出几何图形,利用半径R与题中已知长度的几何关系来确定。在利用几何关系时,要注意一个重要的几何特点,即:粒子速度的偏向角φ等于对应轨迹圆弧的圆心角α,并等于弦切角θ的2倍,如图所示。

相关文档
相关文档 最新文档