文档库 最新最全的文档下载
当前位置:文档库 › 汽车运动控制系统仿真

汽车运动控制系统仿真

一、摘要 2

二、课程设计任务 3

1.问题描述 3 2.设计要求 3

三、课程设计内容 4

1、系统的模型表示 4

2、利用Matlab进行仿真设计 4

3、利用Simulink进行仿真设计 9 总结与体会 10 参考文献 10

本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。

关键词:运动控制系统 PID仿真稳态误差最大超调量

一、课程设计任务

1. 问题描述

如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。

根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为:

???==+v

y u bv v m 系统的参数设定为:汽车质量m =1000kg ,

比例系数b =50 N ·s/m ,

汽车的驱动力u =500 N 。

根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为:

上升时间:t r <5s ;

最大超调量:σ%<10%;

稳态误差:e ssp <2%。

2.设计要求

1.写出控制系统的数学模型。

2.求系统的开环阶跃响应。

3.PID 控制器的设计

(1)比例(P )控制器的设计

(2)比例积分(PI )控制器的设计

(3)比例积分微分(PID )控制器的设计

利用Simulink 进行仿真设计。

二、课程设计内容

1.系统的模型表示

假定系统的初始条件为零,则该系统的Laplace 变换式为:

???==+)

()()()()(s V s Y s U s bV s msV 即 )()()(s U s bY s msY =+ 则该系统的传递函数为:b

ms s U s Y +=1)()( 如果用Matlab 语言表示该系统的传递函数模型,相应的程序代码如下: num=1;den=[1000,50];sys=tf(num,den)

同时,系统的数学模型也可写成如下的状态方程形式:

?????=+-=v

y u m v m b v 1

如果用Matlab 语言表示该系统状态空间模型,相应的程序代码如下:

A=-50/1000;B=1/1000;C=1;D=0;sys=ss(A,B,C,D)

2. 利用Matlab 进行仿真设计

I .求系统的开环阶跃响应

在Matlab 命令窗口输入相应的程序代码,得出该系统的模型后,接着输入下面的指令:

step(u*sys)

可得到该系统的开环阶跃响应曲线,如下图所示:

从图上可看出该系统不能满足系统设计所要求达到的性能指标,需要加上合适的控制器。

II .PID 控制器的设计

PID 控制器的传递函数为:

s

K s K s K s K s K K I P D D I P ++=++2在PID 控制中,比例(P )、积分(I )、微分(D )这三种控制所起的作用是不同的。

下面分别讨论其设计过程。

(1)比例(P )控制器的设计

增加比例控制器之后闭环系统的传递函数为:

)

()()(P P K b ms K s U s Y ++= 由于比例控制器可以改变系统的上升时间,现在假定Kp =100,观察一下系统的阶跃响应。在MATLAB 命令窗口输入指令: num=100;den=[1000,150];sys=tf(num,den);step(500*sys)

上升时间为40s 远远大于5s ,不能满足设计要求,稳态误差为(500-333)/500远远大于2%,因此系统不满足设计要求

若减小汽车的驱动力为10N ,重新进行仿真,仿真结果为:

num=100;den=[1000,150];sys=tf(num,den);step(10*sys)

如果所设计的比例控制器仍不能满足系统的稳态误差和上升时间的设计要求,则可以通过提高控制器的比例增益系数来改善系统的输出。例如把比例增益系数Kp从100提高到10000重新计算该系统的阶跃响应,结果为:

程序:num=10000;den=[1000,10050];sys=tf(num,den);step(10*sys)

此时系统的稳态误差接近为零,系统上升时间也降到了0.5s以下。这样做虽然满足了系统性能要求,但实际上该控制过程在现实中难以实现。因此,引入比例积分(PI)控制器来对系统进行调节。

(2)比例积分(PI )控制器的设计

采用比例积分控制的系统闭环传递函数可表示为:

I

P I P K s K b ms K s K s U s Y ++++=)()()(2 增加积分环节的目的是减小系统的稳态误差,假设比例系数Kp =600,积分系数K I =1,编写相应的MATLAB 程序代码如下:

num=[600,1];den=[1000,650,1];sys=(num,den)

可以调节控制器的比例和积分系数来满足系统的性能要求。例如选择比例系数K P =800,积分系数K I =40时,可得系统阶跃响应曲线为: num=[800,40];den=[1000,850,40];sys=(num,den);step(500*sys)

可见,此时的控制系统已经能够满足系统要求达到的性能指标设计要求。但

此控制器无微分项,而对于有些实际控制系统往往需要设计完整的PID 控制器,以便同时满足系统的动态和稳态性能要求。

(3)比例积分微分(PID )控制器的设计

采用PID 控制的系统闭环传递函数为:

I

P D I P d K s K b s K m K s K s K s U s Y ++++++=)()()()()(22 假设该控制器的比例系数K P =1,积分系数K I =1,微分系数K D =1,编写MATLAB 程序代码如下:num=[1,1,1];den=[1001,51,1];sys=(num,den)

运行上述程序,并且调整PID控制器的控制参数,直到控制器满足系统设计的性能指标要求为止。

num=[10,650,50];den=[1010,700,50];sys=tf(num,den);step(500*sys)

最后,选择K P=650,K I =50,K D=10,此时系统的阶跃响应曲线如下:

从图中可以看出该系统能够满足设计的总体性能要求。

3.利用Simulink进行仿真设计

I.求系统的开环阶跃响应

利用Simulink建立系统阶跃响应模型,如下图所示。双击Step模块,设置模块属性:跳变时间为0;初始值为0;终止值为10;采样时间为0。

单击◢按钮开始仿真,双击Scope模块,可得系统阶跃响应曲线。

II.PID控制器的设计

在Simulink的模型窗口建立一个包含PID控制器的闭环系统阶跃响应模型,如图所示:

分别双击Kp、Ki、Kd模块设定比例、积分、微分系数,点击◢按钮开始仿真,双击Scope模块,观察系统的阶跃响应曲线,直到满足要求为止。

最终选取K P= 680 ,K I= 50 ,K D= 15 ,此时控制器能满足系统设计所要求达到的性能指标,Simulink仿真的汽车运动PID控制系统的阶跃响应曲线如下:

总结与体会

通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab和Simulink进行系统仿真的基本方法。

从该设计我们可以看到,对于一般的控制系统来说,应用PID控制是比较有效的,而且基本不用分析被控对象的机理,只根据Kp,Ki和Kd的参数特性以及MATLAB绘制的阶跃响应曲线进行设计即可。在MATLAB环境下,我们可以根据仿真曲线来选择PID参数。根据系统的性能指标和一些基本的整定参数的经验,选择不同的PID参数进行仿真,最终确定满意的参数。这样做一方面比较直观,另一方面计算量也比较小,并且便于调整。

通过这次试验,我懂得了更多的知识,虽然刚开始时好多都不懂。但是经过和同学的讨论,在各位老师的悉心培育下,对MATLAB的Simulink仿真有了更深的理解。设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。然后再按照仿真结果进行PID控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。

通过此次课程设计,使我们对基本知识掌握的更加的扎实,掌握了一些控制仿真方面的知识,在做的过程中也遇到了一些问题,不断的尝试,不断的修改,努力做好此次课程设计。通过自己动手实验,使知识掌握的更加的牢固,更加方面自己理解。

参考文献

[1] 阮毅,陈伯时.电力拖动自动控制系统. 北京:机械工业出版社,2009

[2] 李国勇等.计算机仿真技术与CAD. 北京:电子工业出版社,2008

[3] 王正林等.MATLAB/Simulink与控制系统仿真,电子工业出版社,2012

[4] 涂植英等.自动控制原理.重庆大学出版社,2005

基于MATLAB的汽车运动控制系统设计仿真

课程设计 题目汽车运动控制系统仿真设计学院计算机科学与信息工程学院班级2010级自动化班 姜木北:2010133*** 小组成员 指导教师吴

2013 年12 月13 日 汽车运动控制系统仿真设计 10级自动化2班姜鹏 2010133234 目录 摘要 (3) 一、课设目的 (4) 二、控制对象分析 (4) 2.1、控制设计对象结构示意图 (4) 2.2、机构特征 (4) 三、课设设计要求 (4) 四、控制器设计过程和控制方案 (5) 4.1、系统建模 (5) 4.2、系统的开环阶跃响应 (5) 4.3、PID控制器的设计 (6) 4.3.1比例(P)控制器的设计 (7) 4.3.2比例积分(PI)控制器设计 (9) 4.3.3比例积分微分(PID)控制器设计 (10) 五、Simulink控制系统仿真设计及其PID参数整定 (11) 5.1利用Simulink对于传递函数的系统仿真 (11) 5.1.1 输入为600N时,KP=600、KI=100、KD=100 (12) 5.1.2输入为600N时,KP=700、KI=100、KD=100 (12) 5.2 PID参数整定的设计过程 (13) 5.2.1未加校正装置的系统阶跃响应: (13) 5.2.2 PID校正装置设计 (14) 六、收获和体会 (14) 参考文献 (15)

摘要 本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m 文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

计算机仿真课程设计报告

、 北京理工大学珠海学院 课程设计任务书 2010 ~2011 学年第 2学期 学生姓名:林泽佳专业班级:08自动化1班指导教师:钟秋海工作部门:信息学院一、课程设计题目 : 《控制系统建模、分析、设计和仿真》 本课程设计共列出10个同等难度的设计题目,编号为:[0号题]、[1号题]、[2号题]、[3号题]、[4号题]、[5号题]、[6号题]、[7号题]、[8号题]、[9号题]。 学生必须选择与学号尾数相同的题目完成课程设计。例如,学号为8xxxxxxxxx2的学生必须选做[2号题]。 二、课程设计内容 (一)《控制系统建模、分析、设计和仿真》课题设计内容|

! " [2 有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 (二)《控制系统建模、分析、设计和仿真》课题设计要求及评分标准【共100分】 , 1、求被控对象传递函数G(s)的MATLAB描述。(2分) 2、求被控对象脉冲传递函数G(z)。(4分) 3、转换G(z)为零极点增益模型并按z-1形式排列。(2分) 4、确定误差脉冲传递函数Ge(z)形式,满足单位加速度信号输入时闭环稳态误差为零和实际 闭环系统稳定的要求。(6分) 5、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dy(z)可实现、最少拍和实际闭环系统稳 定的要求。(8分)

6、根据4、5、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。 (12分) 7、求针对单位加速度信号输入的最少拍有波纹控制器Dy(z)并说明Dy(z)的可实现性。 (3分) ! 8、用程序仿真方法分析加速度信号输入时闭环系统动态性能和稳态性能。(7分) 9、用图形仿真方法(Simulink)分析单位加速度信号输入时闭环系统动态性能和稳态性能。 (8分) 10、确定误差脉冲传递函数Ge(z)形式,满足单位速度信号输入时闭环稳态误差为零和实际 闭环系统稳定的要求。(6分) 11、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dw(z)可实现、无波纹、最少拍和实际 闭环系统稳定的要求。(8分) 12、根据10、11、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。 (12分) 13、求针对单位速度信号输入的最少拍无波纹控制器Dw(z)并说明Dw(z)的可实现性。(3分) 14、用程序仿真方法分析单位速度信号输入时闭环系统动态性能和稳态性能。(7分) 15、用图形仿真方法(Simulink)分析单位速度信号输入时闭环系统动态性能和稳态性能。 & (8分) 16、根据8、9、14、15、的分析,说明有波纹和无波纹的差别和物理意义。(4分) 三、进度安排 6月13至6月14:下达课程设计任务书;复习控制理论和计算机仿真知识,收集资料、熟悉仿真工具;确定设计方案和步骤。 6月14至6月16:编程练习,程序设计;仿真调试,图形仿真参数整定;总结整理设计、 仿真结果,撰写课程设计说明书。 6月16至6月17:完成程序仿真调试和图形仿真调试;完成课程设计说明书;课程设计答 辩总结。 [ 四、基本要求

控制系统仿真课程设计报告.

控制系统仿真课程设计 (2011级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2014年6月

控制系统仿真课程设计一 ———交流异步电机动态仿真 一 设计目的 1.了解交流异步电机的原理,组成及各主要单元部件的原理。 2. 设计交流异步电机动态结构系统; 3.掌握交流异步电机调速系统的调试步骤,方法及参数的整定。 二 设计及Matlab 仿真过程 异步电机工作在额定电压和额定频率下,仿真异步电机在空载启动和加载过程中的转速和电流变化过程。仿真电动机参数如下: 1.85, 2.658,0.2941,0.2898,0.2838s r s r m R R L H L H L H =Ω=Ω===, 20.1284Nm s ,2,380,50Hz p N N J n U V f =?===,此外,中间需要计算的参数如下: 21m s r L L L σ=-,r r r L T R =,22 2 s r r m t r R L R L R L +=,10N m TL =?。αβ坐标系状态方程: 其中,状态变量: 输入变量: 电磁转矩: 2p m p s r s L r d ()d n L n i i T t JL J βααωψψβ=--r m r r s r r d 1d L i t T T ααβαψψωψ=--+r m r r s r r d 1d L i t T T ββαβψψωψ=-++22s s r r m m m s r r s s 2r r r r d d i R L R L L L L i u t L T L L ααβαα σψωψ+=+-+22 s s r r m m m s r r s s 2 r r r r d d i R L R L L L L i u t L T L L ββαββ σψωψ+=--+[ ] T r r s s X i i αβαβωψψ=[ ] T s s L U u u T αβ=()p m e s s s s r n L T i i L βααβ ψψ=-

Simulink系统仿真课程设计

《信息系统仿真课程设计》 课程设计报告 题目信息系统课程设计仿真 院(系): 信息科学与技术工程学院 专业班级:通信工程1003 学生姓名: 学号: 指导教师:吴莉朱忠敏 2012年1 月14 日至2012年1 月25 日 华朴中科技大学武昌分校制 信息系统仿真课程设计任务书

20 年月日 目录 摘要 (5)

一、Simulink 仿真设计 (6) 1.1 低通抽样定理 (6) 1.2 抽样量化编码 (9) 二、MATLA仿真设计 (12) 2.1 、自编程序实现动态卷积 (12) 2.1.1 编程分析 (12) 2.1.2 自编matlab 程序: (13) 2.1.3 仿真图形 (13) 2.1.4 仿真结果分析 (15) 2.2 用双线性变换法设计IIR 数字滤波器 (15) 2.2.1 双线性变换法的基本知识 (15) 2.2.2 采用双线性变换法设计一个巴特沃斯数字低通滤波器 (16) 2.2.3 自编matlab 程序 (16) 2.2.4 仿真波形 (17) 2.2.5 仿真结果分析 (17) 三、总结 (19) 四、参考文献 (19) 五、课程设计成绩 (20) 摘要 Matlab 是一种广泛应用于工程设计及数值分析领域的高级仿真平台。它功能

强大、简单易学、编程效率高,目前已发展成为由MATLAB 语言、MATLAB 工作环境、MATLAB 图形处理系统、MATLAB 数学函数库和MATLAB 应用程序接口五大部分组成的集数值计算、图形处理、程序开发为一体的功能强大的系统。本次课程设计主要包括MATLAB 和SIMULINKL 两个部分。首先利用SIMULINKL 实现了连续信号的采样及重构,通过改变抽样频率来实现过采样、等采样、欠采样三种情况来验证低通抽样定理,绘出原始信号、采样信号、重构信号的时域波形图。然后利用SIMULINKL 实现抽样量化编码,首先用一连续信号通过一个抽样量化编码器按照A 律13折线进量化行,观察其产生的量化误差,其次利用折线近似的PCM 编码器对一连续信号进行编码。最后利用MATLAB 进行仿真设计,通过编程,在编程环境中对程序进行调试,实现动态卷积以及双线性变换法设计IIR 数字滤波器。 本次课程设计加深理解和巩固通信原理、数字信号处理课上所学的有关基本概念、基本理论和基本方法,并锻炼分析问题和解决问题的能力。

实验七-对汽车控制系统的设计与仿真

实验七 对汽车控制系统的设计与仿真 一、实验目的: 通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab 和Simulink 进行系统仿真的基本方法。 二、实验学时:4 个人计算机,Matlab 软件。 三、实验原理: 本实验是对一个汽车运动控制系统进行实际设计与仿真,其方法是先对汽车运动控制系统进行建摸,然后对其进行PID 控制器的设计,建立了汽车运动控制系统的模型后,可采用Matlab 和Simulink 对控制系统进行仿真设计。 注意:设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。然后再按照仿真结果进行PID 控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。 1. 问题的描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ? ??==+v y u bv v m & 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2、系统的模型表示

matlab课程设计报告书

《计算机仿真及应用》课程设计报告书 学号:08057102,08057127 班级:自动化081 姓名陈婷,万嘉

目录 一、设计思想 二、设计步骤 三、调试过程 四、结果分析 五、心得体会 六、参考文献

选题一、 考虑如下图所示的电机拖动控制系统模型,该系统有双输入,给定输入)(t R 和负载输入)(t M 。 1、 编制MATLAB 程序推导出该系统的传递函数矩阵。 2、 若常系数增益为:C 1=Ka =Km =1,Kr =3,C2=0.8,Kb =1.5,时间常数T 1=5, T 2=0.5,绘制该系统的根轨迹、求出闭环零极点,分析系统的稳定性。若)(t R 和)(t M 分别为单位阶跃输入,绘制出该系统的阶跃响应图。(要求C 1,Ka ,Km ,Kr ,C2,Kb , T 1,T 2所有参数都是可调的) 一.设计思想 题目分析: 系统为双输入单输出系统,采用分开计算,再叠加。 要求参数均为可调,而matlb 中不能计算未赋值的函数,那么我们可以把参数设置为可输入变量,运行期间根据要求赋值。 设计思路: 使用append 命令连接系统框图。 选择‘参数=input('inputanumber:')’实现参数可调。 采用的方案: 将结构框图每条支路稍作简化,建立各条支路连接关系构造函数,运行得出相应的传递函数。 在得出传递函数的基础上,使用相应的指令求出系统闭环零极点、画出其根轨迹。 通过判断极点是否在左半平面来编程判断其系统是否稳定。 二.设计步骤 (1)将各模块的通路排序编号

(2)使用append命令实现各模块未连接的系统矩阵 (3)指定连接关系 (4)使用connect命令构造整个系统的模型 三.调试过程 出现问题分析及解决办法: 在调试过程出现很多平时不注意且不易寻找的问题,例如输入的逗号和分号在系统运行时不支持中文格式,这时需要将其全部换成英文格式,此类的程序错误需要细心。 在实现参数可调时初始是将其设为常量,再将其赋值进行系统运行,这样参数可调性差,后用‘参数=input('inputanumber:')’实现。 最后是在建立通路连接关系时需要细心。 四.结果分析 源代码: Syms C1 C2 Ka Kr Km Kb T1 T2 C1=input('inputanumber:') C2=input('inputanumber:') Ka=input('inputanumber:') Kr=input('inputanumber:') Km=input('inputanumber:') Kb=input('inputanumber:') T1=input('inputanumber:') T2=input('inputanumber:') G1=tf(C1,[0 1]); G2=tf(Ka*Kr,[0 1]); G3=tf(Km,[T1 1]); G4=tf(1,[T2 1]); G5=tf(1,[1 0]); G6=tf(-C2,1); G7=tf(-Kb,1); G8=tf(-1,1); Sys=append(G1,G2,G3,G4,G5,G6,G7,G8) Q=[1 0 0;2 1 6;3 2 7;4 3 8;5 4 0;6 5 0;7 4 0;8 0 0;]; INPUTS1=1; OUTPUTS=5; Ga=connect(Sys,Q,INPUTS1,OUTPUTS) INPUTS2=8; OUTPUTS=5; Gb=connect(Sys,Q,INPUTS2,OUTPUTS) rlocus(Ga)

课程设计之matlab仿真报告

西安邮电大学 专业课程设计报告书 院系名称:电子工程学院学生姓名:李群学号05113096 专业名称:光信息科学与技术班级:光信1103 实习时间:2014年4月8日至2014年4月 18日

一、课程设计题目: 用matlab 仿真光束的传输特性。 二、任务和要求 1、用matlab 仿真光束通过光学元件的变换。 ① 设透镜材料为k9玻璃,对1064nm 波长的折射率为1.5062,镜片中心厚度为3mm ,凸面曲 率半径,设为100mm ,初始光线距离透镜平面20mm 。用matlab 仿真近轴光线(至少10条)经过平凸透镜的焦距,与理论焦距值进行对比,得出误差大小。 ② 已知透镜的结构参数为101=r ,0.11=n ,51=d ,5163.121==' n n (K9玻璃), 502-=r ,0.12=' n ,物点A 距第一面顶点的距离为100,由A 点计算三条沿光轴夹角分别为10、20、 30的光线的成像。试用Matlab 对以上三条光线光路和近轴光线光路进行仿真,并得出实际光线的球差大小。 ③ 设半径为1mm 的平面波经凸面曲率半径为25mm ,中心厚度3mm 的平凸透镜。用matlab 仿 真平面波在透镜几何焦平面上的聚焦光斑强度分布,计算光斑半径。并与理论光斑半径值进行对比,得出误差大小。(方法:采用波动理论,利用基尔霍夫—菲涅尔衍射积分公式。) 2、用MATLAB 仿真平行光束的衍射强度分布图样。(夫朗和费矩形孔衍射、夫朗和费圆孔衍射、夫朗和费单缝和多缝衍射。) 3、用MATLAB 仿真厄米—高斯光束在真空中的传输过程。(包括三维强度分布和平面的灰度图。) 4、(补充题)查找文献,掌握各类空心光束的表达式,采用费更斯-菲涅尔原理推导各类空心光束在真空中传输的光强表达式。用matlab 对不同传输距离处的光强进行仿真。 三、理论推导部分 第一大题 (1)十条近轴光线透过透镜时,理想情况下光线汇聚透镜的焦点上,焦点到像方主平面的距离为途径的焦距F ,但由于透镜的折射率和厚度会影响光在传输过程中所走的路径(即光程差Δ)。在用MATLAB 仿真以前先计算平行光线的传输路径。,R 为透镜凸面的曲率半径,h 为入射光线的高度,θ1为入射光线与出射面法线的夹角,θ2为出射光线与法线的夹角,n 为透镜材料的折射率。设透镜的中心厚度为d ,则入射光线经过透镜的实际厚度为:L=(R-d) 光线的入射角为:sinq1=h/R 折射角度满足:sinq2=nsinq1 而实际的光束偏折角度为:θ2-θ1。 由此可以看出,当平行光线照射透镜时,在凸面之前光线平行于光轴,在凸面之后发生了偏折,于光轴交汇一点,这一点成为焦点f ,折线的斜率为(-tan(θ2-θ1))。 (2)根据题意可得,本题所讨论的是与光轴夹角不同的三条光线,经过透镜的两次反射后的成像问题。利用转面公式计算。

控制系统仿真课程设计

控制系统仿真课程设计 (2010级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2013年7月

控制系统仿真课程设计(一) ——锅炉汽包水位三冲量控制系统仿真1.1 设计目的 本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。 1.2 设计原理 锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。 常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。 图1-1 锅炉汽水系统图

在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示: (1)汽包水位在给水流量作用下的动态特性 汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为 ()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性 在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ (1.2) 常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。为此,可将给水流量信号引入,构成三冲量调节系统,如图1-2所示。图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。

汽车运动控制方案

南京工程学院 课程设计说明书 题目汽车运动控制系统的 / 设计与仿真 课程名称MATLAB 的控制系统 院(系、部、中心) 专业) 班级 学生姓名 学号 设计时间 ? 设计地点基础实验楼B114 指导教师 \

2012年1月南京 目录 一、课设目的 (3) ^ 二、控制对象分析 (3) 、控制设计对象结构示意图 (3) 、机构特征 (3) 三、课设设计要求 (4) 四、控制器设计过程和控制方案 (4) 、系统建模 (4) 、PID控制器的设计 (4) 五、控制系统仿真结构图 (5) — 六、仿真结果及指标 (6) 对于二阶传递函数的系统仿真 (6) 输入为500N时,K P=700、K I=100、K D=100。 (6) 输入为50N时,K P=700、K I=100、K D=100 (7) PID校正的设计过程 (7) 未加校正装置的系统阶跃响应: (7) PID校正装置设计 (8)

七、收获和体会 (9) >

Matlab 与控制系统仿真设计 一、课设目的 针对具体的设计对象进行数学建模,然后运用经典控制理论知 识 设计控制器,并应用Matlab 进行仿真分析。通过本次课程设计,建立理论知识与实体对象之间的联系,加深和巩固所学的控制理论知识,增加工程实践能力。 二、控制对象分析 、控制设计对象结构示意图 : 图1. 汽车运动示意图 、机构特征 汽车运动控制系统如图1所示。忽略车轮的转动惯量,且假定汽 车受到的摩擦阻力大小与运动速度成正比,方向与汽车运动方向相反。 根据牛顿运动定律,该系统的模型表示为: ?? ?==+v y u bv v m (1) 其中,u 为汽车驱动力(系统输入),m 为汽车质量,b 为摩擦阻 力与运动速度之间的比例系数,v 为汽车速度(系统输出),v 为汽车加速度。 假定kg m 1000=,m s N b /50?=,N u 500=。

基于Simulink仿真双闭环系统综合课程设计报告书

课程设计 双闭环直流调速系统设计及仿真验证 学院年级:工程学院08级 组长:陈春明学号200830460102 08自动化1班成员一:陈木生学号 200830460103 08自动化1班 指导老师: 日期: 2012-2-28 华南农业大学工程学院

摘要 转速、电流双闭环调速系统是应用最广的直流调速系统,由于其静态性能良好,动态响应快,抗干扰能力强,因而在工程设计中被广泛地采用。现在直流调速理论发展得比较成熟,但要真正设计好一个双闭环调速系统并应用于工程设计却有一定的难度。 Matlab是一高性能的技术计算语言,具有强大的科学数据可视化能力,其中Simulink具有模块组态简单、性能分析直观的优点,方便了系统的动态模型分析。应用Simulink来研究双闭环调速系统,可以清楚地观察每个时刻的响应曲线,所以可以通过调整系统的参数来得出较为满意的波形,即良好的性能指标,这给分析双闭环调速系统的动态模型带来很大的方便。 本研究采用工程设计方法,并利用Matlab协助分析双闭环调速系统,依据自动控制系统快、准、稳的设计要求,重点分析系统的起动过程。 关键词:双闭环直流调速 Simulink 自动控制

目录 1、直流电机双闭环调速系统的结构分析....................... 1.1 双闭环调速系统的组成............................... 1.2 双闭环调速系统的结构.................................... 2 、建立直流电机双闭环调速系统的模型............................ 2.1 小型直流调速系统的指标及参数......................... 2.2 电流环设计............................................... 2.3 转速环设计................................................ 3、直流电动机双闭环调速系统的MATLAB仿真.................... 3.1 系统框图的搭建............................................. 3.2 PI控制器参数的设置...................................... 3.3 仿真结果.................................................... 4、结论与总结....................................................... 5、参考资料.......................................................

控制系统设计与仿真实验报告

阅读使人充实,会谈使人敏捷,写作使人精确。——培根 控制系统设计与仿真上机实验报告 学院:自动化学院 班级:自动化 姓名: 学号: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 一、第一次上机任务 1、熟悉matlab软件的运行环境,包括命令窗体,workspace等,熟悉绘图命令。 2、采用四阶龙格库塔法求如下二阶系统的在幅值为1脉宽为1刺激

下响应的数值解。 2?,??n10?0.5,??(s)G n22?????2ss nn3、采用四阶龙格库塔法求高阶系统阶单位跃响应曲线的数值解。 2?,,??5T?n100.5,???Gs)( n22???1)?s(?2s)(Ts?nn4、自学OED45指令用法,并求解题2中二阶系统的单位阶跃响应。 程序代码如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根

;曲线如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 二、第二次上机任务 试用simulink方法解微分方程,并封装模块,输出为。得到各、1x i 状态变量的时间序列,以及相平面上的吸引子。 ?x?x??xx?3121? ??xx?x???322 ??xx?xx??x??32321参数入口为的值以及的初值。(其中,以及??????x28?10,?8/,,3,?i1模块输入是输出量的微分。)初值分别为提示:0.001xxx?0,?0,?312s:Simulink

汽车运动控制系统仿真

一、摘要 2 二、课程设计任务 3 1.问题描述 3 2.设计要求 3 三、课程设计内容 4 1、系统的模型表示 4 2、利用Matlab进行仿真设计 4 3、利用Simulink进行仿真设计 9 总结与体会 10 参考文献 10

本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

一、课程设计任务 1. 问题描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ???==+v y u bv v m 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2.设计要求 1.写出控制系统的数学模型。 2.求系统的开环阶跃响应。 3.PID 控制器的设计 (1)比例(P )控制器的设计 (2)比例积分(PI )控制器的设计 (3)比例积分微分(PID )控制器的设计 利用Simulink 进行仿真设计。 二、课程设计内容 1.系统的模型表示

计算机仿真课程设计

附件1: 北京理工大学珠海学院 《计算机仿真》课程设计说明书题目: 控制系统建模、分析、设计和仿真 学院:信息学院 专业班级: 学号: 学生姓名: 指导教师: 2012年6 月16 日 附件2: 北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第2学期 学生姓名:专业班级: 指导教师:工作部门:信息学院 一、课程设计题目 《控制系统建模、分析、设计和仿真》 本课程设计共列出10个同等难度的设计题目,编号为:[0号题]、[1号题]、[2号题]、[3号题]、[4号题]、[5号题]、[6号题]、[7号题]、[8号题]、[9号题]。 学生必须选择与学号尾数相同的题目完成课程设计。例如,学号为8xxxxxxxxx2的学生必须选做[2号题]。

[0号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [1号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用一阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [2号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [3号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用一阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [4号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [5号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用一阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹 控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [6号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取秒,分别设计一单位加速度信号输入时的最少拍有波纹 控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 [7号题] 控制系统建模、分析、设计和仿真

MATLAB仿真课程设计报告

北华大学 《MATLAB仿真》课程设计 姓名: 班级学号: 实习日期: 辅导教师:

前言 科学技术的发展使的各种系统的建模与仿真变得日益复杂起来。如何快速有效的构建系统并进行系统仿真,已经成为各领域学者急需解决的核心问题。特别是近几十年来随着计算机技术的迅猛发展,数字仿真技术在各个领域都得到了广泛的应用与发展。而MATLAB作为当前国际控制界最流行的面向工程和科学计算的高级语言,能够设计出功能强大、界面优美、稳定可靠的高质量程序,而且编程效率和计算效率极高。MATLAB环境下的Simulink是当前众多仿真软件中功能最强大、最优秀、最容易使用的一个系统建模、仿真和分析的动态仿真环境集成工具箱,并且在各个领域都得到了广泛的应用。 本次课程设计主要是对磁盘驱动读取系统校正部分的设计,运用自动控制理论中的分析方法,利用MATLAB对未校正的系统进行时域和频域的分析,分析各项指标是否符合设计目标,若有不符合的,根据自动控制理论中的校正方法,对系统进行校正,直到校正后系统满足设计目标为止。我组课程设计题目磁盘驱动读取系统的开环传递函数为是设计一个校正装置,使校正后系统的动态过程超调量δ%≤7%,调节时间ts≤1s。 电锅炉的温度控制系统由于存在非线性、滞后性以及时变性等特点,常规的PID控制器很难达到较好的控制效果。考虑到模糊控制能对复杂的非线性、时变系统进行很好的控制, 但无法消除静态误差的特点, 本设计将模糊控制和常规的PI D控制相结合, 提出一种模糊自适应PID控制器的新方法。并对电锅炉温度控制系统进行了抗扰动的仿真试验, 结果表明, 和常规的PI D控制器及模糊PI D复合控制器相比,模糊自适应PI D控制改善了系统的动态性能和鲁棒性, 达到了较好的控制效果。

Matlab汽车运动控制系统设计

1绪论 1.1选题背景与意义 汽车已经成为人们日常生活不可缺少的代步交通工具,在汽车发达国家,旅客运输的60%以上,货物运输的50%以上由汽车来完成,汽车工业水平和家庭平均拥有汽车数量已经成为衡量一个国家工业发达程度的标志。进行汽车运动性能研究时.一般从操纵性、稳定性和乘坐舒适性等待性着手。但近年来.随着交通系统的日趋复杂,考虑了道路环境在内的汽车运动性能开始受到关注。因此,汽车运动控制系统的研究也显得尤为重要,在文中,首先对汽车的运动原理进行分析,建立控制系统简化模型,确定期望的静态指针(稳态误差)和动态指针(超调量和上升时间)。然后对汽车运动控制系统进行设计分析。从而确定系统的最佳静态和动态指针。 2 论文基本原理分析 2.1.1汽车运动横向控制 (1)绝对位置的获得方法 汽车横向方向的控制使用GPS(全球定位系统)的绝对位置信息。GPS信息的精度与采样周期、时间滞后等有关。为提高GPS的数据精度和平滑数据.采用卡尔曼滤波对采样数据进行修正。GPS的采样周期为200ms相对应控制的周期采用50ms。另外考虑通信等的滞后、也需要进行补偿,采用航位推测法(dead reckoning)解决此问题。通过卡尔曼滤波和航位推测法推算出的值作为汽车的绝对位置使用来控制车速、横摆角速度等车辆的状态量。GPS 的数据通过卡尔曼滤波减少偏差、通过航位推测法进行误差和迟滞补偿.提高了位置数据推算的精度。 (2)前轮转角变化量的算出方法 这里对前轮目标转角变化量(?δ)的算出方法作简要说明,横方向控制采用预见控制,可以从现在汽车的状态预测经过时间t p秒后的汽车位置,由t p秒后的预测位置和目标路径

MATLAB计算机仿真设计

《计算机仿真技术》 课程设计 姓名: 学号: 班级: 1 专业: 学院: 2016年12月24日

目录 一、设计目的 (1) 二、设计任务 (1) 三、具体要求 (1) 四、设计原理概述 (1) 五、设计内容 (2) 六、设计方案及分析 (2) 1、观察原系统性能指标 (2) 2、手动计算设计 (6) 3、校正方案确定 (8) 七、课程设计总结 (14)

模拟随动控制系统的串联校正设计 一、设计目的 1、通过课程设计熟悉频域法分析系统的方法原理。 2、通过课程设计掌握滞后-超前校正作用与原理。 3、通过在实际电路中校正设计的运用,理解系统校正在实际中的意义。 二、设计任务 控制系统为单位负反馈系统,开环传递函数为) 1025.0)(11.0()(G ++=s s s K s ,设计校正装置,使系统满足下列性能指标:开环增益100K ≥;超调量30%p σ<; 调节时间ts<0.5s 。 三、具体要求 1、使用MATLAB 进行系统仿真分析与设计,并给出系统校正前后的 MATLAB 仿真结果,同时使用Simulink 仿真验证; 2、使用EDA 工具EWB 搭建系统的模拟实现电路,分别演示并验证校正前 和校正后的效果。 四、设计原理概述 校正方式的选择:按照校正装置在系统中的链接方式,控制系统校正方式分 为串联校正、反馈校正、前馈校正和复合校正4种。串联校正是最常用的一种校 正方式,这种方式经济,且设计简单,易于实现,在实际应用中多采用这种校正 方式。串联校正方式是校正器与受控对象进行串联链接的。本设计按照要求将采 用串联校正方式进行校正。 校正方法的选择:根据控制系统的性能指标表达方式可以进行校正方法的确 定。本设计要求以频域指标的形式给出,因此采用基于Bode 图的频域法进行校 正。 几种串联校正简述:串联校正可分为串联超前校正、串联滞后校正和滞后- 超前校正等。 超前校正的目的是改善系统的动态性能,实现在系统静态性能不受损的前提

仿真课设报告

仿真课程设计报告 题目: 柔性生产线仿真案例 班级:物流 姓名: 学号: 指导教师: 2015年9月23日

目录 一、课程设计目的 (3) 二、课程设计内容 (3) 三、设计步骤 (3) 3.1案例分析 (3) 3.1.1案例说明 (3) 3.1.2建模步骤 (5) 3.1.3主要技术设计 (5) 3.2模型搭建 (6) 3.2.1基础空间总体布局 (6) 3.2.2Track设计 (6) 3.2.3加工设备的设计 (7) 3.2.4工件和AGV的属性设计 (9) 3.2.5表的设计 (10) 3.2.6工件生成器和消灭器的设计 (12) 3.2.7Method和Variable的设计 (12) 3.3仿真实现 (13) 3.3.1工件加工流程及时间设计 (13) 3.3.2任务队列设计 (13) 3.3.3小车的运行规则设计 (14) 3.3.4其它控制方法 (17) 四、仿真分析 (20) 4.1设备利用率 (20) 4.2轨道利用率 (21) 4.3加工总时间 (22) 五、模型优化 (22) 5.1订单投产优化 (22) 5.2小车优化 (23) 5.3其它优化 (26) 六、课设总结 (29)

一、课程设计目的 本课程设计是与物流工程专业教学配套的实践环节之一,结合《现代生产管理》、《设施布置与规划》、《离散系统建模与仿真》等课程的具体教学知识点开展。在完成以上课堂教学的基础上,进行一次全面的实操性锻炼。设计采用企业的实际案例数据,要求完成生产线物流仿真建模和生产线物流优化方案设计两大方面的实际设计内容。 通过本环节的设计锻炼,我们可以加深对本课程理论与方法的掌握,同时具备分析和解决生产运作系统问题的能力,改变传统的理论教学与生产实际脱节的现象。 二、课程设计内容 以某企业柔性制造系统(FMS)为对象,按该企业的生产实际资料为设计依据。对该柔性制造系统进行建模和仿真,通过模拟该制造系统的物流状况,寻找优化的物流方案进行产能平衡,并针对优化后的方案再次进行仿真,对比两个仿真结果在交货期要求,设备利用率等方面的不同,并制定该柔性制造系统生产作业计划。 三、设计步骤 3.1案例分析 3.1.1案例说明 1.柔性制造系统状况: 某企业柔性制造系统共有5台加工中心,定义加工中心名称分别为CNC_1、CNC_2、CNC_3、CNC_4、CNC_5。该制造系统内有一辆AGV小车,运行速度为1米/秒,可控制其实现不同的运送策略。每台设备入口和出口前有容量为4的缓冲,工件在由设备完成加工前后必须经过入口缓冲和出口缓冲,每台设备由一工人负

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

相关文档
相关文档 最新文档