文档库 最新最全的文档下载
当前位置:文档库 › 数据网络测试仪介绍

数据网络测试仪介绍

Jerry.Li@https://www.wendangku.net/doc/b74790848.html,

崂应3012H型自动烟尘(气)测试仪作业指导书)

崂应3012H型自动烟尘(气)测试仪 操作与维护作业指导书 1 适用范围 1.1各种锅炉、工业炉窑的烟尘排放浓度、折算浓度和排放总量的测定。 1.2测试仪器配上油烟采样器,可以进行油烟采样。 1.3各类除尘设备效率的测定。 1.4烟道排气参数(动压、静压、温度、流速、标干流量等)的测定。 1.5烟气含氧量、空气过剩系数的测定。 1.6烟气含湿量的测定。 1.7烟气连续性测量仪器准确度的评估和校准。 1.8各种锅炉、工业炉窑的SO2/NO/CO/NO2/H2S/CO2等有害气体的排放浓度、折算浓度、和排放总量的测定。 1.9其他适用场合。 2编制依据 《崂应3012H型自动烟尘(气)测试仪使用说明书》 《环境监测仪器设备操作与维护保养规则》 3采样前准备 3.1 滤筒前清理和称重:用铅笔将滤筒编号,在105~110℃烘箱内烘烤1小时,取出放入干燥器中冷却至室温。用感量0.1㎎天平称量,放入专用容器中保存。 3.2 干燥剂的装填 将高效气水分离器底盖旋开,加入约3/4 体积的具有充分干燥能 力的变色硅胶(颗粒状),然后将干燥筒盖旋紧,应保持不漏气。

3.3 检查仪器功能 确认电源为交流220V 后,连接好电源线,打开电源开关,工作 指示灯亮,检查显示器、键盘、采样泵等是否正常。 3.4 开机 确认连接正常后,打开仪器电源开关,面板上的工作指示灯点亮,测试仪进入初始状态,进行自检。自检结束后,自动进入主菜单。 3.5 参数设置 在主菜单状态,进入“①设置”菜单,可进行必要的参数设置, 包括日期、时间、测试类别、眼纹类型、大气压类别、皮托管系数、防倒吸功能。 3.6 采样布点 在主菜单状态,移动光标至“②布点”菜单,按“OK”键进入烟 道布点界面,按提示选择烟道类型,按”OK“键即可进入烟道类型设置界面。 3.7 工况测量 在主菜单状态,移动光标至“③工况”菜单,按“OK”键进入工 况测量界面,连接好气路及信号线,并将取样管置于空气中。选中“①自动调零”菜单,按“OK”键进入自动调零界面,当所有压力数值均回到零且保持不变时,按“OK”键结束调零。 4 采样 4.1 预测流速 将取样管插入烟道,全压测孔必须正对气流方向,密封烟道测孔,保证不漏气。进入“②预测流速”菜单,待每个测点的动压值基本稳

RFC2544以太网性能测试规程

1RFC2544 概述 IP网络设备是IP网络的核心,其性能的好坏直接影响IP网网络规模、网络稳定性以 及网络可扩展性。 由于IETF没有对特定设备性能测试作专门规定,一般来说只能按照 RFC2544( Benchmarking Methodology for Network Interconnect Devices)作测试。以太网交换机测试标准则参照RFC2889(Benchmarking Methodology for LAN Sw itching Devices)。但是由于网络互联设备除了通用性能测试以外通常还有一些特定的性能指标。例如路由器区别于一般简单的网络互连设备,在性能测试时还应该加上路由器特有的性能测试。例如路有表容量、路由协议收敛时间等指标。 网络互联设备例如路由器性能测试应当包括下列指标: 吞吐量(Throughput): 测试路由器包转发的能力。通常指路由器在不丢包条件下每秒转发包的极限。一般可以采用二分发查找该极限点。 时延(Latency): 测试路由器在吞吐量范围内从收到包到转发出该包的时间间隔。时延测试应当重复20 次然后去其平均值。 丢包率(Packet loss rate): 测试路由器在不同负荷下丢弃包占收到包的比例。不同负荷通常指从吞吐量测试到线速(线路上传输包的最高速率),步长一般使用线速的10%。 背靠背帧数(Back-to-back frame): 测试路由器在接收到以最小包间隔传输时不丢包条件下所能处理的最大包数。该测试实际考验路由器缓存能力。如果路由器具备线速能力(吞吐量=接口媒体线速),则该测试没有意义。 系统恢复时间(System recovery): 测试路由器在过载后恢复正常工作的时间。测试方法可以采用向路由器端口发送吞吐量110%和线速间的较小值持续60秒后将速率下降到50%的时刻到最后一个丢包的时间间隔。 如果路由器具备线速能力,则该测试没有意义。 系统复位(Reset): 测试路由器从软件复位或关电重启到正常工作的时间间隔。正常工作指能以吞吐量转发数据。 在测试上述RFC2544中规定的指标时应当考虑下列因素: 帧格式:建议按照RFC2544所规定的帧格式测试。 帧长:从最小帧长到MTU顺序递增。例如在以太网上采用64, 128, 256, 512, 1024, 1280, 1518字节。 认证接收帧:排除收到的非测试帧。例如控制帧,路由更新等帧。 广播帧:验证广播帧对路由器性能的影响。上述测试后在测试帧中夹杂1%广播帧再测

县级数据中心与网络建设 参 考 方 案

县级数据中心与网络建设参考方案 湖南省国土资源厅信息化工作办公室 二○○八年七月

1.前言 根据国土资源部和厅党组对于信息化建设的总体要求,在2008年底前实现部省市县四级联网,基本形成全省国土资源信息交换体系,为全省电子政务的运行提供硬件环境。据此,制定湖南省县级国土资源局数据中心与网络建设方案。 2.总体设计规划 2.1 设计目标 该设计旨在指导建立县级国土资源数据中心和覆盖县局的国土资源网络体系,为国土资源政务管理的网络化运行搭好硬件环境,为政务信息和基础数据的远程交换与共享打好基础,以满足国土资源管理和社会公众的需求。 2.2 设计原则 根据我省各县市级国土资源局具体情况,在系统的规划、设计和实施中遵循以下原则: 1网络安全性 网络中应有多种技术从内部和外部同时控制用户对网络资源的访问。可以用物理隔离、VLAN划分、MAC地址绑定等技术有效地保护内部信息,防止非法侵入和信息泄漏。有条件的还要利用防火墙控制外部对网络的访问。 2可扩展性 由于各个县局的发展情况和发展阶段不同,因此要求随着用户应

用规模的不断扩大,网络可以方便地扩充容量,支持更多的用户及应用。随着技术的不断发展,网络必须能够平滑地过渡到新的技术和设备,保证用户现有的投资。 3 实用性 设计能基本满足县级国土资源局目前对硬件环境的应用要求,同时对发展条件较好的县市提出进一步发展的方向。 4 节省性原则 在充分满足以上要求的前提下,尽可能地节约投资,花好每一分钱,提供性价比最高的解决方案。 5 统一性原则 在系统的设计过程中,坚持“三个统一”,即统一规划,统一标准,统一出口。 统一规划:即系统的设计依据县级国土资源局长期发展目标并结合时代发展的需要进行综合考虑,统筹规划。 统一标准:采用统一的网络协议和接口等技术标准。 统一出口:设计统一的信息对外出口,各类信息由专门部门控制和负责,保证内部的数据安全。 3.需求分析 根据国家金土工程和湖南省金土工程建设的要求,在国土资源信息化建设的总体框架下,在2008年底前实现部省市县四级联网,基本形成全省国土资源信息交换体系,为全面实现电子政务的网上运行打好基础。 通过调查了解,各县国土资源局信息化建设情况不一,条件较好的县局已经建设好了两套物理隔离的局域网,部分县局由电信布设了一套外网线路,个别县局则暂还未开展信息化相关建设。本方案根据

集团云数据中心基础网络-详细规划设计

集团云数据中心基础网络详细规划设计

目录 1前言 (2) 1.1背景 (2) 1.2文档目的 (2) 1.3适用范围 (2) 1.4参考文档 (2) 2设计综述 (3) 2.1设计原则 (3) 2.2设计思路 (5) 2.3建设目标 (7) 3集团云计算规划 (8) 3.1整体架构规划 (8) 3.2网络架构规划 (8) 3.2.1基础网络 (9) 3.2.2云网络 (70)

1前言 1.1背景 集团信息中心中心引入日趋成熟的云计算技术,建设面向全院及国网相关单位提供云计算服务的电力科研云,支撑全院各个单位的资源供给、数据共享、技术创新等需求。实现云计算中心资源的统一管理及云计算服务统一提供;完成云计算中心的模块化设计,逐渐完善云运营、云管理、云运维及云安全等模块的标准化、流程化、可视化的建设;是本次咨询规划的主要考虑。 1.2文档目的 本文档为集团云计算咨询项目的咨询设计方案,将作为集团信息中心云计算建设的指导性文件和依据。 1.3适用范围 本文档资料主要面向负责集团信息中心云计算建设的负责人、项目经理、设计人员、维护人员、工程师等,以便通过参考本文档资料指导集团云计算数据中心的具体建设。 1.4参考文档 《集团云计算咨询项目访谈纪要》 《信息安全技术信息系统安全等级保护基本要求》(GB/T 22239-2008) 《信息系统灾难恢复规范》(GB/T20988-2007) 《OpenStack Administrator Guide》(https://www.wendangku.net/doc/b74790848.html,/) 《OpenStack High Availability Guide》(https://www.wendangku.net/doc/b74790848.html,/) 《OpenStack Operations Guide》(https://www.wendangku.net/doc/b74790848.html,/) 《OpenStack Architecture Design Guide》(https://www.wendangku.net/doc/b74790848.html,/)

几款网络分析仪的介绍

ENA射频网络分析仪 Agilent E5071C 9 KHz至8.5 GHz 详细说明: Agilent E5071C ENA系列网络分析仪 频率范围: 频率范围端口选件 E5071C 9KHz-4.5GHz 2/4 240/440 9KHz-8.5GHz 2/4 280/480 100KHz-4.5GHz 2/4 245/445 100KHz-8.5GHz 2/4 285/485 系统动态范围: 频率IF 带宽技术指标 SPD

主要特性: ?宽动态范围:在测试端口上的动态范围> 123 dB(典型值) ?极快的测量速度:39 ms(进行完全双端口校准,扫描1601点时) ?低迹线噪声:0.004 dB rms(70 kHz IFBW时) ?集成的2和4端口,带有平衡测量能力 选件: E5071C—008 频率偏置模式 E5071C—010 时域分析能力 E5071C—790 测量向导助手软件 E5071C—1E5 高稳定度时基 E5071C—240 双端口测试仪9KHz-4.5GHz 不带偏置T型接头 E5071C—245 双端口测试仪100KHz-4.5GHz 带偏置T型接头 E5071C—440 4端口测试仪9KHz-4.5GHz 不带偏置T型接头 E5071C—445 4端口测试仪100KHz-4.5GHz 带偏置T型接头 E5071C—280 双端口测试仪9KHz-8.5GHz 不带偏置T型接头 E5071C—285 双端口测试仪100KHz-8.5GHz 带偏置T型接头 E5071C—480 4端口测试仪9KHz-8.5GHz 不带偏置T型接头 E5071C—485 4端口测试仪100KHz-8.5GHz 带偏置T型接头 附件: 校准件 HP85033D/E (3.5mm) 校准件HP85032B (N型) ?宽动态范围:在测试端口上的动态范围> 123 dB(典型值) ?极快的测量速度:39 ms(进行完全双端口校准,扫描1601点时) ?低迹线噪声:0.004 dB rms(70 kHz IFBW时) ?集成的2和4端口,带有平衡测量能力 ?提供频率选件:从9 kHz/100 kHz(带有偏置T型接头)到4.5 GHz/8.5 GHz E5071C网络分析仪具有广泛的频率范围和众多功能,在同类产品中具有最高的射频性能和最快的测试速度。它是制造工程师和研发工程师测量9 kHz至8.5 GHz射频元器件和电路的最佳工具。

数据中心网络系统设计方案范本

数据中心网络系统 设计方案

数据中心高可用网络系统设计 数据中心作为承载企业业务的重要IT基础设施,承担着稳定运行和业务创新的重任。伴随着数据的集中,企业数据中心的建设及运维给信息部门带来了巨大的压力,“数据集中就意味着风险集中、响应集中、复杂度集中……”,数据中心出现故障的情况几乎不可避免。因此,数据中心解决方案需要着重关注如何尽量减小数据中心出现故障后对企业关键业务造成的影响。为了实现这一目标,首先应该要了解企业数据中心出现故障的类型以及该类型故障产生的影响。影响数据中心的故障主要分为如下几类: 硬件故障 软件故障 链路故障 电源/环境故障 资源利用问题 网络设计问题 本文针对网络的高可用设计做详细的阐述。 高可用数据中心网络设计思路

数据中心的故障类型众多,但故障所导致的结果却大同小异。即数据中心中的设备、链路或server发生故障,无法对外提供正常服务。缓解这些问题最简单的方式就是冗余设计,能够经过对设备、链路、Server提供备份,从而将故障对用户业务的影响降低到最小。 可是,一味的增加冗余设计是否就能够达到缓解故障影响的目的?有人可能会将网络可用性与冗余性等同起来。事实上,冗余性只是整个可用性架构中的一个方面。一味的强调冗余性有可能会降低可用性,减小冗余所带来的优点,因为冗余性在带来好处的同时也会带来一些如下缺点: 网络复杂度增加 网络支撑负担加重 配置和管理难度增加 因此,数据中心的高可用设计是一个综合的概念。在选用高可靠设备组件、提高网络的冗余性的同时,还需要加强网络构架及协议部署的优化,从而实现真正的高可用。设计一个高可用的数据中心网络,可参考类似OSI七层模型,在各个层面保证高可用,最终实现数据中心基础网络系统的高可用,如图1所示。

崂应3012H型自动烟尘(气)测试仪作业指导书

崂应3012H型自动烟尘(气)测试仪操作 作业指导书 崂应3012H型烟尘采样仪操作规程 一、仪器名称:崂应3012H型动压平衡自动跟踪等速烟尘采样仪 二、适用范围:各种锅炉、工业炉窑的烟尘浓度、烟尘、烟气排放量的测定。各类除尘设备、除尘效率的测定,含湿量、含氧量、过量空气系数的测定,油烟浓度和排放量的测定。 三、具体步骤及注意事项 1、仪器连接方法: ①仪器选择干燥地方放置,打开仪器右侧门,可见配接板。 ②将采样管分别与配接板接嘴上的色标—红、黄、白、黑一一对应,用Φ8×1的硅胶管对接。 ③测尘时主气路管联接:采样管——干燥瓶下嘴——干燥瓶上嘴——仪器进气口——仪器出气口——泵; 测气时:采气管——干燥瓶——仪器测气口——仪器出气口——泵; 测湿时:采气管——仪器测湿口——仪气湿出气口——干燥瓶——泵; ④电源线接法:输入电源接220V,输出电源接抽气泵。 ⑤测烟气温度时,仪器插上烟气测温探头。 ⑥安装滤筒:拧开采样管头部锁紧环,用镊子夹起滤筒小心对正放入滤筒托内,旋紧采样管压紧环。注意:安装采样嘴“弯钩”时,保持皮托管位于滤筒座右侧,采样嘴口与白色标记皮托管口朝向一致,以保证采样管与仪器配接板色标一致。 2、确认连接正常后,打开仪器电源开关显示屏出现仪器自检准备,自检完成后,自动进入菜单。通过仪器下方的(选择键)、(移位键)、确认键、取消退出键对主菜单上的各项功能进行操作,并按照仪器对用户的提示进行每项操作。 3、采样现场一般环境条件较差,通常为高空作业,注意人身安全和仪器安全。 4、采样管插入烟道后,要有棉纱团堵塞采样孔,特别是正压管道,更要注意防止有害气体喷出伤人,堵住烟道采样孔,还可以防止气流扰动对采样带来的影响。 5、手持采样管和堵塞采样孔时要戴防护手套,防止烫伤。 6、现场接电源时,请勿用仪器试电,确认220V交流电后接通仪器电源,防止误接其它工业用电,损坏仪器。 7、对静电干扰的烟道,电源一定要有安全地。 8、干燥剂(硅胶)变色约三分之二时,应及时更换,以保证干燥能力。更换硅胶后,干燥瓶上盖要旋紧,保证气路的气密性。 9、采样管与仪器配接板要正确连接,保证正常采样和防止传感器损坏。

数据中心建设架构设计

数据中心架构建设计方案建议书 1、数据中心网络功能区分区说明 功能区说明 图1:数据中心网络拓扑图 数据中心网络通过防火墙和交换机等网络安全设备分隔为个功能区:互联网区、应用服务器区、核心数据区、存储数据区、管理区和测试区。可通过在防火墙上设置策略来灵活控制各功能区之间的访问。各功能区拓扑结构应保持基本一致,并可根据需要新增功能区。 在安全级别的设定上,互联网区最低,应用区次之,测试区等,核心数据区和存储数据区最高。 数据中心网络采用冗余设计,实现网络设备、线路的冗余备份以保证较高的可靠性。 互联网区网络 外联区位于第一道防火墙之外,是数据中心网络的Internet接口,提供与Internet高速、可靠的连接,保证客户通过Internet访问支付中心。 根据中国南电信、北联通的网络分割现状,数据中心同时申请中国电信、中国联通各1条Internet线路。实现自动为来访用户选择最优的网络线路,保证优质的网络访问服务。当1条线路出现故障时,所有访问自动切换到另1条线路,即实现线路的冗余备份。

但随着移动互联网的迅猛发展,将来一定会有中国移动接入的需求,互联区网络为未来增加中国移动(铁通)链路接入提供了硬件准备,无需增加硬件便可以接入更多互联网接入链路。 外联区网络设备主要有:2台高性能链路负载均衡设备F5 LC1600,此交换机不断能够支持链路负载,通过DNS智能选择最佳线路给接入用户,同时确保其中一条链路发生故障后,另外一条链路能够迅速接管。互联网区使用交换机可以利用现有二层交换机,也可以通过VLAN方式从核心交换机上借用端口。 交换机具有端口镜像功能,并且每台交换机至少保留4个未使用端口,以便未来网络入侵检测器、网络流量分析仪等设备等接入。 建议未来在此处部署应用防火墙产品,以防止黑客在应用层上对应用系统的攻击。 应用服务器区网络 应用服务器区位于防火墙内,主要用于放置WEB服务器、应用服务器等。所有应用服务器和web服务器可以通过F5 BigIP1600实现服务器负载均衡。 外网防火墙均应采用千兆高性能防火墙。防火墙采用模块式设计,具有端口扩展能力,以满足未来扩展功能区的需要。 在此区部署服务器负载均衡交换机,实现服务器的负载均衡。也可以采用F5虚拟化版本,即无需硬件,只需要使用软件就可以象一台虚拟服务器一样,运行在vmware ESXi上。 数据库区

网络性能参数测试仪校准规范

网络性能参数测试仪校准规范 1范围 本规范规定了大数据专用网络性能参数测试仪(以下简称网络性能参数测试仪)的计量特性、校准条件、校准项目、校准方法、校准结果的处理和复校时间间隔。 本规范适用于新制造(或新购置)、使用中、修理后的网络性能参数测试仪的校准。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件;凡是不注明日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 RFC 768 用户数据报协议(User Datagram Protocol) RFC 791 互联网协议(Internet Protocol) RFC 792 网络控制消息协议(Internet Control Message Protocol) RFC 793 传输控制协议(Transmission Control Protocol) RFC 826 以太网地址解析协议(Ethernet Address Resolution Protocol) RFC 1661 点对点协议(The Point-to-Point Protocol (PPP)) RFC 2544 网络互连设备的基准测试方法(Benchmarking Methodology for Network Interconnection Devices) RFC 2889局域网(LAN)交换设备基准(测试)方法(Benchmarking Methodology for LAN Switching Devices) 3术语和定义 下列术语和定义适用于本规范。 3.1吞吐量 throughput 被测设备在不丢帧(包)的情况下,最大转发速率。用帧(包)/秒(fps)、比特/秒(bit/s)以及与线速率的百分比(%)来表示。 3.2丢帧(包)率packetloss 被测设备在固定负载下,由于资源不足而导致的没有被转发的帧(包)数占应转发的帧(包)数的百分比。 3.3背对背 backtoBack 当被测设备收到一组具有固定长度和速率的帧(包)时,由空闲状态到开始转发的时间周期内,按此速率所能转发的帧(包)数,该参数反映了被测设备数据缓存能力。以突发某一帧(包)长的帧(包)数来表示。 3.4时延latency 分为存储转发时延(store forwarding latency)和按位转发时延(bit forwarding latency)。存

数据中心建设模式分析

数据中心建设模式分析

目录 前言 (5) 第一章数据中心发展现状与趋势 (5) 1.1 国内数据中心现状 (5) 1.2 数据中心发展趋势 (9) 第二章数据中心可持续发展能力 (13) 2.1 什么是数据中心可持续发展能力...................................................................... 错误!未定义书签。 2.2 数据中心的生命周期.......................................................................................... 错误!未定义书签。 2.3 数据中心可持续发展能力分析.......................................................................... 错误!未定义书签。 3.1 数据中心业务定位 ............................................................................................. 错误!未定义书签。 3.2 数据中心建设规模 ............................................................................................. 错误!未定义书签。 3.3 数据中心建设标准 ............................................................................................. 错误!未定义书签。 3.4 数据中心指标体系 ............................................................................................. 错误!未定义书签。 3.5 数据中心选址 ..................................................................................................... 错误!未定义书签。 3.6 数据中心技术要求 ............................................................................................. 错误!未定义书签。第四章数据中心的节能与能效评价 ........................................................................... 错误!未定义书签。 4.1 数据中心的能耗审计.......................................................................................... 错误!未定义书签。 4.2 数据中心能耗测量指标...................................................................................... 错误!未定义书签。 4.3 数据中心节能目标 ............................................................................................. 错误!未定义书签。 4.4 节能技术方案举例 ............................................................................................. 错误!未定义书签。

云计算数据中心网络性能测试

云计算数据中心网络性能测试 云计算数据中心的网络测试主要包含虚拟化测试、安全测试、高可靠测试和性能测试四个部分。前三者重点在于对数据中心网络的功能设计进行测试验证,性能测试则是度量整个云网络的关键,用以确认其能够提供的服务能力基线。云计算技术目前很多应用在大型的高性能计算(超算)数据中心中,在此类数据中心内部,性能处于业务保障的第一关键位置。本文重点关注性能测试的部分,从测试设计方面进行探讨。 测试设计 数据中心网络性能测试手段很多,业务仿真测试是最能体现实际应用情况的测试方法。业务仿真测试往往需要利用大量服务器和存储设备,通过部署仿真应用环境来测试网络针对此类型应用的转发性能。但此方法受成本和测试复杂度影响,一般只在超大型且应用较为单一的数据中心测试时使用,如百度/SOHU 搜索业务仿真、QQ/MSN实时通讯业务仿真、石油勘探/气象预报计算业务仿真等。 除了上述专用测试方法外,还可以通过测试仪器模拟一些基本的应用流量来测试其主要性能。此方式由于实施简便、通用型强,在数据中心网络性能测试中应用较多。受当前整个Internet应用使用情况影响,测试仪模拟的网络应用以TCP的HTTP为主,有时会根据具体的实际业务情况添加Mail、FTP和HTTPS 进行补充,这种测试设计也符合当前云计算数据中心的实际应用情况。 测试环境 在测试数据中心网络性能时,通常使用成对的测试仪器端口,连接到数据中心网络两端,将整个网络视为黑盒进行端到端的性能结果测试。典型测试组网设计如图1所示。 图1 数据中心性能典型测试组网

图1中的数据中心网络结构采用典型的3层双冗余结构。核心层设备采用高端交换设备进行三层路由转发,其与汇聚层设备间通过OSPF动态路由协议互连,以提供多路冗余保障,同时通过只发布缺省路由到汇聚层设备的方式来减轻汇聚层设备的路由压力;汇聚层设备作为模拟服务器设备的网关提供三层转发功能,使能VRRP等网关冗余协议来保证双机热备,并通过VLANTRUNK方式与接入层设备相连;接入层设备部署为二层转发模式,通过MSTP协议确保多VLAN环境下的冗余链路备份功能。 测试仪器通过多个接口分别与核心层设备和接入层设备连接,并模拟Client和Server进行有状态的流量转发性能测试。测试模拟的协议类型尽量与使用环境贴近,最常见的是使用HTTP协议进行基于L7的业务流量模拟。 另外为了确保数据中心测试的仿真度,还需要模拟大量的路由、VLAN和流数量。例如测试的为一个大型的企业云数据中心,则需要定义以下背景环境参量: 1. 首先设置背景路由,在核心设备上模拟发布1万条OSPF散列路由,其发起源为50个Router,路由模拟调配比例为NetworkLSA:SummaryLSA:ExternalLSA=1:3:16 2. 然后设置背景VLAN与模拟服务器,在汇聚层与接入层设备上部署8个MSTP的Instance,每个Instance中包含8个VLAN,使用测试仪器在每个VLAN中模拟100个HostServer,总共64个VLAN,6400个Server。 3. 最后构造测试流量,定义1万个Client源IP地址一一对应到模拟的1万条散列OSPF路由中,目的IP地址64个,分别为模拟的64个VLAN中每个VLAN随机抽取的各一个HostServer地址。总共为64万条IP测试流。 上述测试参数定义均可通过测试仪器配置完成。 当测试环境部署完毕后,即可使用测试仪器进行整网性能指标的测试执行工作。 关键指标及测试方法 衡量云计算数据中心的网络性能根据使用的网络设备不同拥有很多指标。常见的关键性能指标包括以下几项: 1. L4新建速率(CPS) 2. L4并发数(CC) 3. L7吞吐量(GoodPut) 4. L7响应时间(ResponseTime)

数据中心和网络机房基础设施规划指南

避免数据中心和网络机房基础设施因过度规划造成的资金浪费

典型数据中心和网络机房基础设施最大的、可以避免的成本就是过度规划设计成本。数据中心或 网络机房中的物理和供电基础设施利用率通常在50%-60%左右。未被利用的容量就是一种原本可以避免的投资成本,这还代表着可以避免的维护和能源成本。 本文分为三个部分。首先,介绍与过度规划设计有关的情况和统计数据。接下来,讨论发生这种情况的原因。最后,介绍避免这些成本的新的架构和实现方法。 任何从事信息技术和基础设施产业的人都曾见过未被利用的数据中心空间、功率容量以及数据中心中其他未加利用的基础设施。为了对这种现象进行量化,对讨论中用到的术语进行定义是很重要的。 表1中定义了本文中有关过度规划设计的术语: 建模假设 为了收集并分析过度规划设计的相关数据,施耐德电气对用户进行了调查,并开发了一个简化模型来描述数据中心基础设施容量规划。该模型假设: ?数据中心的设计寿命为 10 年; ?数据中心规划有最终的设计容量要求和估计启动IT 负载要求; ?在数据中心典型生命周期过程中,预期负载从预期的启动负载开始呈线性增长,在预期生命周期一半的时候,达到预期最终容量。 由以上定义的模型得出下面图 1 显示的规划模型。我们假定,它是具有代表性的“一步到位”模式的系统规划模型。 简介有关过度规划设计的情况和统计数据表1 过度规划的相关定义

上图显示了一个典型的规划周期。在传统的设计方案中,供电和冷却设备的安装容量与设计容量相等。换句话说,系统从一开始就完全建成。根据计划,数据中心或网络机房的预期负载将从30% 开始,逐步增加到最终预期负载值。但是,实际启动负载通常小于预期启动负载,并且逐步增长到最终实际负载;最终实际负载有可能大大小于安装容量(注意:由于冗余或用户希望的额定值降低余量,实际安装设备的额定功率容量会大于计划安装容量)。 第143号白皮书《数据中心项目:成长模型》详细讨论了数据中心的规划以及制定一个有效的成长计划战略的关键要素。 实际安装数据收集 为了了解实际安装的情况,施耐德电气从许多客户那里收集了大量数据。这些数据是通过实际安装设备调查和客户访谈获得的。结果发现,预期启动负载通常只有最终设计容量的 30%,预期最终负载只有预期设计容量的80%-90%(留有安全余量)。进一步发现,实际启动负载通常只有最终设计负载的20%,而且实际最终负载通常为设计容量的 60% 左右。图 1 汇总了这些数据。根据设计值,通常的数据中心最终的容量设计比实际需要大 1.5 倍。在刚刚安装或调试过程中,超大规模设计甚至更加显著,通常在 5 倍左右。 与过度规划设计相关的额外成本 与过度规划设计相关的生命周期成本可以分为两个部分:投资成本和运营成本。 图 1 阴影部分指出了与投资相关的额外成本。阴影部分代表平均安装设备中未利用的系统设计容量的部分。额外容量可直接导致额外的投资成本。额外投资成本包括额外供电设备和冷却设备的成本,以及包括布线和管路系统的设计开销和安装成本。 对于一个典型的 100 kW 数据中心,供电和冷却系统有550万人民币(55元人民币/W )左右的资本成本。分析表明,这个投资的 40% 左右被浪费掉了,相当于 220万人民币。在使用早期,这个浪费甚至更大。算进资金周转的时间成本之后,由于过度规划设计导致的损失几乎等于数据中心50%的投资成本。也就是说,单单原始资本的利息几乎就能够满足实际资本一般的需求。 与过度规划设计有关的额外生命周期成本还包括设施运行的开支。这些成本包括维护合同、消耗品和电力。如果设备按制造商的说明进行维护,年维护费用一般是系统成本(投资成本)的10%左右,因此,数据中心或网络机房的生命周期过程中的维护成本几乎等于投资成本。由于过度规划设计会产生未充分利用的设备,而且这些设备必须加以维护,所以会浪费很大一部分的维护成本。以 100 kW 数据中心为例,系统生命周期过程中浪费的成本约为 950万人民币。 0% 20% 40% 60%80%100%120% 012345678910 容量百分比数据中心运行年份 图1 数据中心生命周期过程中的设计容量和预期负载要 求

ilentEC网络分析仪测试方法

i l e n t E C网络分析仪测 试方法 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

Agilent E5071C网络分析仪测试方法-李S 买卖仪器没找到联系方式请搜索《欧诺谊-李海凤》进入查看联系方式,谢谢! E5071C网络分析仪测试方法 一.面板上常使用按键功能大概介绍如下: Meas 打开后显示有:S11 S21 S12 S22 (S11 S22为反射,S21 S12 为传输)注意:驻波比和回波损耗在反射功能测试,也就是说在S11或者S22里面测试。 Format 打开后显示有:Log Mag———SWR———-里面有很多测试功能,如上这两种是我们常用到的,Log Mag为回波损耗测试,SWR 为驻波比测试。 Display打开后显示有:Num of Traces (此功能可以打开多条测试线进行同时测试多项指标,每一条测试线可以跟据自己的需求选择相对应的指标,也就是说一个产品我们可以同时测试驻波比和插入损耗或者更多的指标) Allocate Traces (打开此功能里面有窗口显示选择,我们可以跟据自己的需求选择两个窗口以上的显示方式) Cal 此功能为仪器校准功能:我们常用到的是打开后在显示选择:Calibrate (校准端口选择,我们可以选择单端口校准,也可以选择双端口校准) Trace Prev 此功能为测试线的更换设置 Scale 此功能为测试放大的功能,打开后常用到的有:Scale/Div 10DB/Div 为每格测试10DB,我们可以跟据自己的产品更改每格测量的大小,方便我们看测试结果 Reference Value 这项功能可以改变测试线的高低,也是方便我们测试时能清楚的看到产品测试出来的波型。 Save/Recall 此功能为保存功能,我们可以把产品设置好的测试结果保存在这个里面进去以后按下此菜单Save State 我们可以保存到自己想保存的地方,如:保存在仪器里面请按 Recall State 里面会有相对应的01到08,我们也可以按SaveTrace Data 保存在外接的U盘里面,方便的把我们产品的测试结果给客户看。 二.仪器测试的设置方法 1.频率设置:在仪器面板按键打开 Start 为开始频率,Stop 为终止频率。如我们要测量到,我们先按 Start 设置为,再按 Stop 设置为 2.传输与反射测试功能设置:在仪器面板按键打开Meas 打开后显示菜单里面会有 S11 S21 S12 S22 (S11 S22为反射,S21 S12 为传输)注意:驻波比和回波损耗在反射功能测试,也就是说在S11或者S22 里面测试,S11和S21为第一个测试端口测试,S22和S12为第二个端口测试。

烟尘烟气测试仪操作指引教材

锅炉烟气烟尘检测是一项较复杂的工作,要求检测人员熟练掌握仪器操作技能,不断丰富现场经验,编辑此锅炉烟气烟尘检测的简要流程,需要检测人员凭此在实际检测中不断摸索,不断完善。(表格中的数据只是举例,不作检测及计算参考) 1、检测仪器设备的准备和检查 1.1、滤筒前处理和称重 用铅笔将滤筒编号,在105~110℃的烘箱内烘烤1小时,取出放于干燥箱内冷却至室温,再用最小读数为0.0001g的天平称量,两次重量误差不超过0.5mm,放于专用容器中保存; 1.2、干燥剂的填装 将干燥筒密封盖旋开,加于约3/4体积的具有充分干燥能力的变色硅胶(颗粒状),然后旋紧密封盖; 1.3、取样管与主机的联接 1.3.1、主机面板上的两个“△P”接嘴用橡胶管(¢4×7)与取样管上的“皮托管接嘴”相 连,皮托管面向气流方向的连接到“+”端,背向气流方向的连接到“-”端; 1.3.2、干燥筒的出气嘴与面板上标有“烟尘”的接嘴用橡胶管(¢8×14,0.4米)相连,缓 冲筒的进气嘴用橡胶管(¢8×14,6米)与烟尘取样管的气路接嘴相连,干燥筒与缓冲筒橡胶管(¢8×14,0.4米)相连; 1.3.4、加装滤筒:记下滤筒编号,将滤筒装入取样管,旋紧压盖。

2、开机自检,进入主画面 确认连接好后,打开仪器电源开关,仪器进入初始状态,进行自检,稍等片刻,显示如下: 移动光标,选择相应菜单,按“确认”键执行。 3、参数设置 3.1、基本设置 移动光标至“1 进行必要的参数设置后,按“确认”键保存。

3.2、锅炉参数设置 3.2.1、移动光标至“2 画面直接显示的上一次进行采样的锅炉参数,如果本次采样的是同一个锅炉可不作修改,直接执行“4.读入” 3.2.2、执行“4 通过“上寻”与“下寻”可找到本次采样锅炉的标识,将储存的锅炉参数读入本次采

网络分析仪工作原理及使用要点

网络分析仪工作原理及使用要点 本文简要介绍41所生产的AV362O矢量网络分析的测量基本工作原理以及正确使用矢量网络分析测量电缆传输及反射性能的注意事项。 1.DUT对射频信号的响应 矢量网络分析仪信号源产生一测试信号,当测试信号通过待测件时,一部分信号被反射,另一部分则被传输。图1说明了测试信号通过被测器件(DUT)后的响应。 图1 DUT 对信号的响应 2.整机原理: 矢量网络分析仪用于测量器件和网络的反射特性和传输特性,主要包括合成信号源、S参数测试装置、幅相接收机和显示部分。合成信号源产生30k~6GHz的信号,此信号与幅相接收机中心频率实现同步扫描;S参数测试装置用于分离被测件的入射信号R、反射信号A和传输信号B;幅相接收机将射频信号转换成频率固定的中频信号,为了真实测量出被测网络的幅度特性、相位特性,要求在频率变换过程中,被测信号幅度信息和相位信息都不能丢失,因此必须采用系统锁相技术;显示部分将测量结果以各种形式显示出来。其原理框图如图2所示: 图2矢量网络分析仪整机原理框图 矢量网络分析内置合成信号源产生30k~6GHz的信号,经过S参数测试装置分成两路,一路作为参考信号R,另一路作为激励信号,激励信号经过被测件后产生反射信号A和传输信号B,由S参数测试装置进行分离,R、A、B三路射频信号在幅相接收机中进行下变频,产生4kHz的中频信号,由于采用系统锁相技术,合成扫频信号源和幅相接收机同在一个锁相环路中,共用同一时基,因此被测网络的幅度信息和相位信息包含在4kHz的中频信号中,此中频信号经过A/D模拟数字变换器转换为数字信号,嵌入式计算机和数字信号处理器(DSP)从数字信号中提取被测网络的幅度信息和相位信息,通过比值运算求出被测网络的S参数,最后把测试结果以图形或数据的形式显示在液晶屏幕上。 ◆合成信号源:由3~6GHz YIG振荡器、3.8GHz介质振荡器、源模块组件、时钟参考和小数环组成。

激光可吸入粉尘检测仪使用说明

执行标准: WS/T 206-2001《公共场所空气中可吸入颗粒物(PM10)测定方法——光散射法》 PC-3A型 激光可吸入粉尘检测仪 说 明 书

青岛骏康环保科技有限公司 用户须知 尊敬的用户,欢迎您使用青岛骏康环保科技有限公司生产PC-3A型激光可吸入粉尘检测仪。 本说明书是该仪器的使用说明,也是现场实际操作的必读手册!请您在使用该仪器之前,务必仔细阅读本说明书,以便用好此仪器,使其发挥应有的作用。如有不清楚之处,可与我公司联系;联系地址及电话详见每页页脚处的信息。

注: 1.本仪器不宜在具有油雾及酸雾等腐蚀性气体中工作。 2.不得将烟雾及高浓度颗粒物直接喷入传感器取样口,以免污染光学系统。 3.谨防震动,摔打、碰击。 4.本仪器自销售之日起保修期一年(人为损伤除外)。

PC-3A型激光可吸入粉尘检测仪 一、仪器简介 该仪器以国家环保标准WS/T 206-2001《公共场所空气中可吸入颗粒物(PM10)测定方法——光散射法》为依据由我公司自主研发的新一代智能化测量仪器。 该仪器性价比较高,主要适用于一般性生产车间、公共场所、疾病控制中心、卫生监督和环境监测等部门等,可以实时快速测量空气中可吸入颗粒物浓度,深受广大用户欢迎。 二、工作原理 该仪器是由组装在一起的感应器和数据处理器组成。感应器是本仪器数据采集的关键部件,该部件的原理是将激光束经过一组非球面镜变成一束功率密度均匀分布的细测量光束,在光束轨迹的侧前方为一前焦点落在光束轨迹上,后焦点落在一光电转换器上的散射光收集透镜组,当一流动的取样空气通过激光束与散射光收集镜组的前焦点交汇处时,空气中的尘埃粒子发出与其物理尺寸相对应的散射光,散射光经过光学透镜收集,在后焦点处由光电转换器件接受并转换成相应的电信号。 感应器的采样气体进口设在仪器的顶端位置。采集空气的动力源是一无刷直流风机。数据处理器则将感应器收集到的电信号经过电子切割器将大粒子分离掉以后,由微处理器进行湿度、质量浓度等换算。结果由LED显示器显示、储存或打印。 三、仪器特点 1.利用光散射法原理测量,灵敏度高,稳定性好,测量精度高; 2.交直流两用,按键清晰全面,操作简单; 3.测试速度快,噪声低,重量轻,携带方便;

大型企业数据中心建设方案

目录 第1章总述 (4) 1.1XXX公司数据中心网络建设需求 (4) 1.1.1 传统架构存在的问题 (4) 1.1.2 XXX公司数据中心目标架构 (5) 1.2XXX公司数据中心设计目标 (6) 1.3XXX公司数据中心技术需求 (7) 1.3.1 整合能力 (7) 1.3.2 虚拟化能力 (7) 1.3.3 自动化能力 (8) 1.3.4 绿色数据中心要求 (8) 第2章XXX公司数据中心技术实现 (9) 2.1整合能力 (9) 2.1.1 一体化交换技术 (9) 2.1.2 无丢弃以太网技术 (10) 2.1.3 性能支撑能力 (11) 2.1.4 智能服务的整合能力 (11) 2.2虚拟化能力 (12) 2.2.1 虚拟交换技术 (12) 2.2.2 网络服务虚拟化 (14) 2.2.3 服务器虚拟化 (14) 2.3自动化 (15) 2.4绿色数据中心 (16) 第3章XXX公司数据中心网络设计 (17) 3.1总体网络结构 (17) 3.1.1 层次化结构的优势 (17) 3.1.2 标准的网络分层结构 (17) 3.1.3 XXX公司的网络结构 (18) 3.2全网核心层设计 (19) 3.3数据中心分布层设计 (20) 3.3.1 数据中心分布层虚拟交换机 (20) 3.3.2 数据中心分布层智能服务机箱 (21) 3.4数据中心接入层设计 (22) 3.5数据中心地址路由设计 (25) 3.5.1 核心层 (25) 3.5.2 分布汇聚层和接入层 (25) 3.5.3 VLAN/VSAN和地址规划 (26) 第4章应用服务控制与负载均衡设计 (27) 4.1功能介绍 (27) 4.1.1 基本功能 (27)

相关文档
相关文档 最新文档