文档库 最新最全的文档下载
当前位置:文档库 › 5G通信网络中毫米波室内路径损耗模型研究

5G通信网络中毫米波室内路径损耗模型研究

5G通信网络中毫米波室内路径损耗模型研究
5G通信网络中毫米波室内路径损耗模型研究

室内传播和路径损耗计算及实例(完整版)

室内传播与路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗得估算来预测无线通信系统在其工作环境下得性能;解释了自由空间传播损耗得计算;电磁波在介质中得发射与反射系数得理论计算就是预测反射与发射系数得工具。下面得一些实例与模型就是在2、4GHz工作频率时给出得。 ------------------------------------------------------------------------------------------- 1、简介 大多数无线应用设计人员最关心得问题就是系统能否正常工作在无线信道得最大距离。最简单得方法就是计算与预测:a)系统得动态范围;b)电磁波得传播损耗。 动态范围对设计者而言就是一个重要得系统指标。它决定了传输信道上(收发信机之间)允许得最大功率损耗。决定动态范围得主要指标就是发射功率与接收灵敏度。例如:某系统有80dB得动态范围就是指接收机可以检测到比发射功率低80dB得信号电平。传播损耗就是指传输路径上损失得能量,传播路径就是电磁波传输得路径(从发射机到接收机)。例:如果某路径得传播损耗就是50dB,发射机得功率就是10dB,那末接收机得接收信号电平就是-40dB。 2.自由空间中电磁波得传播 如上所述,当电磁波在自由空间传播时,其路径可认为就是连接收发信机得一条射线,可用Ferris公式计算自由空间得电波传播损耗: Pr/Pt= Gt、Gr、 (λ/4πR)2 (2、1) 式中Pr就是接收功率,Pt就是发射功率,Gt与Gr分别就是发射与接收天线得增益,R就是收发信机之间得距离,功率损耗与收发信机之间得距离R得平方成反比。公式2、1可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) (2、2) 式中Gr与Gt分别代表接收天线与发射天线增益(dB),R就是收发信机之间得距离,λ就是波长。 当λ=12、3cm时(f=2、44GHz)可得出: PL2、44=-Gr-Gt+40、2+20log(R) (2、3) R得单位为米。 图2-1表示了信号频率2、44GHz,天线得增益为0dBi时得自由空间得损耗曲线。 注意:在此公式中收发天线得极化要一致(匹配),天线得极化不同会产生另一损耗系数。一般情况下对于理想得线极化天线,极化损耗同两个天线得极化方向得夹角得余弦得平方成正比。例如:两个偶极天线得方向夹角为45°时,极化损耗系数为-3dB左右。

简化的路径损耗模型

简化的路径损耗模型 信号传播的复杂性使得用一个单一的模型准确描述信号穿越一系列不同的环境的路径损耗的特征非常困难。准确的路径损耗模型可以通过复杂的射线追踪模型或者经验测量获得,其中必须满足严格的系统规范,或者基站和接入点的布局必须在最佳的位置。然而,出于对不同系统设计的通用权衡分析,有时候最好的方式是用一个简单的模型抓住信号传播的本质特征,而不是求助于复杂的路径损耗模型,后者也仅仅是真实的信道的近似。这样,下面这个路径损耗(以距离为自变量的函数)的简单模型成为系统设计的常用方法。 (2.20) 如果用dB衰减的形式表达,则为: (2.21) 在这个近似公式中,K是无单位常数,取值取决于传播、天线参数和阻塞引起的平均衰减,d0是天线远场的参考距离,γ是路径损耗指数。由于在天线近场存在散射现象,模型(2.20)通常只适用于传播距离d>d0,其中室内环境下假设d0的范围是1-10米,室外环境下假设d0的范围是10-100米。K的值小于1,而且通常被设定为在距离d0处的自由空间路径损耗(这个设定已经被经验测试数据证实): (2.22) 或者K也可以由在d0处的测量数据决定,并且进行进一步的优化,以便模型或者经验数据之间的均方误差(MSE)能够最小化。γ的值取决于传播环境:对于近似遵循自由空间模型或者双路径模型的传播来说,γ值相应地取为2—4。在更复杂的环境中,γ值可以通过拟合经验测试数据的最小均方误差(MMSE,Mimimum Mean Square Error)来取得(如下面的例子所示)。或者γ值也可以由考虑了载频和天线高度的经验模型(如Hata模型、Okumura模型等)来取得。表格2.1概括了900MHz下不同的室内环境和室外环境下的γ值。如果载频更高,则路径损耗指数γ也会更高。主要指出的是,室内环境下γ的取值范围变化比较大,这是由地板、隔墙和物体引起的信号衰减导致的。

自由空间损耗

无线传输距离和发射功率以及频率的关系 功率灵敏度(dBm dBmV dBuV) dBm=10log(Pout/1mW),其中Pout是以mW为单位的功率值 dBmV=20log(Vout /1mV),其中Vout是以mV为单位的电压值 dBuV=20log(Vout /1uV),其中Vout是以uV为单位的电压值 换算关系: Pout=Vout×Vout/R dBmV=10log(R/0.001)+dBm,R为负载阻抗 dBuV=60+dBmV 应用举例 无线通信距离的计算 这里给出自由空间传播时的无线通信距离的计算方法:所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。 通信距离与发射功率、接收灵敏度和工作频率有关。 [Lfs](dB)=32.44+20lgd(km)+20lgf(MHz) 式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。 由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB. 下面的公式说明在自由空间下电波传播的损耗 Los = 32.44 + 20lg d(Km) + 20lg f(MHz) Los=20Lg(4π/c)+20Lg(f(Hz))+20Lg(d(m))=20Lg(4π /3x10^8)+20Lg(f(MHz)x10^6)+20Lg(d(km)x10^3)=20Lg(4π /3)-160+20Lgf+120+20Lgd+60=32.45+20Lgf+20Lgd, d 单位为km,f 单位为MHz Los 是传播损耗,单位为dB,一般车内损耗为8-10dB,馈线损耗8dB

路径损耗模型和参数-ITU

ITU-R P. 1791建议书* 用于评估超宽带设备影响的传播预测方法 (ITU-R 第211/3号课题) (2007年) 范围 本建议书提供适用1-10 GHz频率范围的方法,以计算视距(LoS)和障碍路径环境下室内和室外超宽带(UWB)系统的路径损耗,并评估传统窄带接收机从UWB发射机接收功率的情况。 国际电联无线电通信全会, 考虑到 a) 超宽带(UWB)技术是一项迅速发展的无线技术; b) 采用UWB技术的设备使用多个高速数据流,并覆盖广泛带宽; c) 了解传播特性对于评估UWB设备的影响至关重要; d) 人们既需要了解有关干扰评估的实验(即适用各站址)模型和意见,又需要了解进行详细传播预测所需的确定性(或针对具体站址的)模型, 注意到 a) ITU-R P. 525建议书提供有关自由空间衰减的计算方法; b) ITU-R P. 528建议书提供VHF、UHF和SHF频段航空移动和无线电导航业务的传播曲线; c) ITU-R P. 618建议书提供地对空链路的传播数据和预测方法; d) ITU-R P. 452建议书阐述约0.7 GHz至30 GHz频率范围内地球表面台站之间微波干扰的评估程序; e) ITU-R P. 1238建议书提出有关900 MHz至100 GHz频率范围的室内传播指导; f) ITU-R P. 1411建议书提供约300 MHz至100 GHz频率范围室外短路径的传播方法; *应提请无线电通信第1研究组注意本建议书。

g) ITU-R P.1546建议书提出有关30 MHz至3 GHz频率范围距离为1公里或1公里以上系统的传播指导; h) ITU-R P. 530建议书提供地面视距(LoS)系统设计的传播数据和预测方法, 建议 1应采用本建议书附件1提供的信息和方法计算1 GHz至10 GHz频率范围内UWB设备的路径损耗; 2应采用本建议书附件2提供的信息评估传统窄带接收机从UWB发射机接收的功率。 附件 1 1 引言 UWB视距传输损耗对频率的依赖主要由天线特性决定。因此,通常用于窄带信号传播建模的传统路径损耗模型对于计算UWB信号的路径损耗十分有益。 迄今为止,人们已在复杂多样的环境条件下对UWB传播进行了广泛研究和实验,从而建立了UWB的传播模型及其参数。 UWB设备既可能用于室内,也可能用于室外。在进行传播研究时,人们需要详细了解室内站址的具体情况,包括其几何图形、材料和家具等。对于室外传播,有关建筑物和树木的信息对传播计算至关重要。这些因素往往造成UWB接收机能够解决的、多径效应的产生。因此,UWB传播模型应当容纳UWB设备将运行其中的、典型环境的路径损耗和多径特性。能够广泛代表相关环境传播特性的模型更有助于人们实现上述目标。通常而言,这些模型不需要用户获得大量输入信息即可以进行计算工作。 本建议书确定相关的运行环境和路径损耗类别,并提供估算此类条件下UWB路径损耗的方法。应在确定UWB链路预算工作中采用本建议书。 2 实际运行环境 本建议书仅从无线电传播的角度对环境加以分类。本建议书确定两种不同的室内传播环境和一种室外传播环境。人们认为,这些环境是最具代表性的环境。表1列出了上述三种环境。由于认识到在各类别中存在多种不同的环境,因此本建议书并非旨在对每一种可能的情况都进行建模,而是给出能够代表人们通常遇到的环境的传播模型。

3路径损耗模型-ITU

ITU-R P.1238-5建议书 用于规划频率范围在900 MHz到100 GHz内的室内无线电 通信系统和无线局域网的传播数据和预测方法 (ITU-R第211/3号课题) (1997-1999-2001-2003-2005-2007年) 范围 本建议书介绍了在900 MHz 至100 GHz频率范围内的室内传播的指导原则,主要内容如下: –路径损耗模型; –时延扩展模型; –极化和天线辐射图的效应; –发射机和接收机选址的效应; –建材装修和家具的效应; –室内物体移动的效应。 考虑到 a)正在开发将在室内工作的许多短距离(工作范围短于1 km)的个人通信应用; b)正如许多现有产品和热门的研究活动所表明的那样,无线局域网(RLAN)和无线专用交换机(WPBX)需求很旺盛; c)希望设立无线局域网标准,可与无线和有线通信都兼容; d)采用非常低功率的短距离系统在移动和个人环境下提供业务有许多优点; e)在建筑物内的传播特性和在同一区域内许多用户引起的干扰这两方面的知识,对系统的有效设计是非常重要的; f)用于系统初步规划和干扰估算的通用(即与位置无关)模型和用于某些细致评估的定型(或具体地点)模型都是需要的; 注意到 a)ITU-R P.1411建议书为频率范围在300 MHz到100 GHz的室外短距离电波传播提供了指导,并且该建议也应该作为同时存在室内和室外传播条件的那些情况下的参考文件。 建议 1 对工作于900 MHz到100 GHz之间的室内无线电系统的传播特性进行评估时,采用附件1中的资料和方法。

附件 1 1 引言 室内无线电系统的传播预测在某些方面是与室外系统有区别的。跟室外系统中一样,根本目的是保证在所要求的区域内有效覆盖(或在点对点系统情况下保证有可靠的传播路径)和避免干扰,包括系统内的干扰以及其他系统的干扰。然而,在室内情况下,覆盖的范围是由建筑物的几何形状明确地限定的,而且建筑物本身的各边界将对传播有影响。除了一建筑物的同一层上的频率要重复使用外,经常还希望在同一建筑物的各层之间要频率共用。这样就增添了三维干扰问题。最后,距离很短,特别是使用毫米波频率的场合,意味着无线电路径附近环境的微小变化可能会对传播特性有重大的影响。 由于这些因素的复杂性,若要着手室内无线电系统的具体规划,就需要知道特定位置的详细情况,如几何形状、材料、家具、预期的使用模型等。但是,为了进行系统初步规划,必须估计出覆盖该区域内所分布的移动站所需要的基站数目以及要估计与其他业务的可能干扰或系统之间的潜在干扰。对这些系统规划的情况而言,通常必须要有代表该环境中的传播特性的模型。同时,为了完成计算,该模型不应该要求使用者提供许多输入信息。 本附件主要说明了在室内无线电环境中遇到的传输损伤的通用的、与位置无关的模型和定性的建议。如有可能,也给出与位置有关的专用模型。在许多情况下,基本模型可用的数据受限于频率或试验环境。当可以取得更多的数据时,希望将附件中的建议加以扩充。同样,要根据使用这些模型过程中取得的经验来改善这些模型的精度。但是,本附件代表了目前可以使用的最佳建议。 2 室内无线电系统中的传播损伤和质量的度量标准 室内无线电信道的传播损伤主要由下列因素所造成: —来自房间内的物体(包括墙和地板)的反射和物体附近的衍射; —穿过墙、地板和其他障碍物的传输损耗; —高频情况下能量的通道效应,特别时走廊中这个效应更明显; —房间中人和物体的运动,包括在无线电链路的一端或两端可能的运动,而引起的传播损伤如下: —路径损耗——不仅有自由空间损耗,还有由于障碍物以及穿过建筑物材料传输引起的附加损耗,并且由于通道效应,自由空间损耗可能会减小; —路径损耗随时间和空间的变化; —从波的反射分量和衍射分量而引起的多径效应; —由于移动终端的随机位置变化而引起的极化失配。 室内无线通信业务可以由如下特性来表征: —高/中/低数据速率;

室内传播和路径损耗计算及实例(完整版)

室内传播和路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在工作频率时给出的。 ------------------------------------------------------------------------------------------- 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态范围;b)电磁波的传播损耗。 动态范围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态范围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态范围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: Pr/Pt= . (λ/4πR)2 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) () 式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=时(f=可得出: =-Gr-Gt++20log(R) () R的单位为米。 图2-1表示了信号频率,天线的增益为0dBi时的自由空间的损耗曲线。

室内传播和路径损耗计算与实例(完整版)

室传播和路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在2.4GHz工作频率时给出的。 ------------------------------------------------------------------------------------------- 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态围;b)电磁波的传播损耗。 动态围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: Pr/Pt= Gt.Gr. (λ/4πR)2 (2.1) 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式2.1可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) (2.2) 式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=12.3cm时(f=2.44GHz)可得出: PL2.44=-Gr-Gt+40.2+20log(R) (2.3) R的单位为米。 图2-1表示了信号频率2.44GHz,天线的增益为0dBi时的自由空间的损耗曲线。 注意:在此公式中收发天线的极化要一致(匹配),天线的极化不同会产生另一损耗系数。一般情况下对于理想的线极化天线,极化损耗同两个天线的极化方向的夹角的余弦的平方成正比。例如:两个偶极天线的方向夹角为45°时,极化损耗系数为-3dB左右。

室内传播和路径损耗计算及实例11

室内传播和路径损耗计算及实例 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在2.4GHz工作频率时给出的。 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态范围;b)电磁波的传播损耗。 动态范围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态范围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态范围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式2.1可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) (2.2)

式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=12.3cm时(f=2.44GHz)可得出: PL2.44=-Gr-Gt+40.2+20log(R)(2.3) R的单位为米。 图2-1表示了信号频率2.44GHz,天线的增益为0dBi时的自由空间的损耗曲线。 注意:在此公式中收发天线的极化要一致(匹配),天线的极化不同会产生另一损耗系数。一般情况下对于理想的线极化天线,极化损耗同两个天线的极化方向的夹角的余弦的平方成正比。例如:两个偶极天线的方向夹角为45°时,极化损耗系数为-3dB左右。 当收发信机之间的距离很近时,自由空间的传播模型同实际传播相近似。例:在室外环境中天线间的距离远小于它们距地面的高度时,反射波不会对其构成干扰。 3.室内无线电波的传播 今天很多应用都着眼于室内环境(居民小区和办公大楼)。室内环境中的传播损耗预测很复杂,主要问题是要有特定场景的模拟工具。作为模型输入数据的一部分,它们需要地点和结果的物理描述,因此就有了一个更通用更简单的模型方式。 预测室内环境传播损耗的最常用方法是经验公式法。经验公式是基于某一特定环境下的实际测量结果。在实际中发射机和接收机在特定环境中置于不同的距离和位置,测量其功率损耗,通过收集大量的数据导出功率损耗曲线及其函数。 平均值结果显示其功率衰落要远大于自由空间的传播公式所得出的结果。在自由空间模型中,功率衰落同收发信机的距离的平方成反比。室内传播经验公式显示在室内环境中的功率衰落同距离的3或4次方成反比。这是因为通过不同路径到达接收天线的电磁波产生的多径效应对主信号产生严重干扰的结果。

线通信系统中电波传播路径损耗模型研究解析

无线通信系统中电波传播路径损耗模型研究 作者:吴彦鸿, 王聪, 徐灿, Wu Yanhong, Wang Cong, Xu Can 作者单位:吴彦鸿,Wu Yanhong(装备指挥技术学院光电装备系,北京,101416, 王聪,徐灿,Wang Cong,Xu Can(装备指挥技术学院研究生管理大队,北京,101416 刊名: 国外电子测量技术 英文刊名:FOREIGN ELECTRONIC MEASUREMENT TECHNOLOGY 年,卷(期:2009,28(8 被引用次数:1次

参考文献(7条 1.MOLISH A F;Molish;田斌无线通信 2008 2.WALFISCH J;BERTONI H A theorical model of UHF propagation in urban environments 3.CAVDAR I H A statistical approach to Bertoni-Walfisch propagation model for mobile radio design in urban areas 2001 4.MARK J;ZHUANG W无线通信与网络 2004 5.HAYKIN S;MOHER M现代无线通信 2006 6.李焜;王喆无线通信电波传播模型的研究[期刊论文]-无线通信技术 2008(01 7.郭梯云移动通信 2005 相似文献(10条 1.学位论文刘海涛无线通信中电波传播和场强预测的研究2005 无线通信中电波传播和场强预测问题是整个无线通信网络规划的基础性问题,随着移动通信用户数量的增多,原先的蜂窝大区制逐渐被微蜂窝甚至微微蜂窝小区制所取代,在这些无线环境中,建筑物的数量增多,地形的几何尺寸各异,建筑物的平均高度往往高于基站天线的高度,传统的适用于大区制的电波预测经验模型难以得到足够精度的预测结果,给无线网络规划中的场强预测带来困难。因此,以射线跟踪算法为基础的新型的、基于特定环境的电波预测模型正逐渐显示出优势。 射线跟踪模型是以几何光学理论和几何绕射理论为基础,通过电磁波的高频射线近似特性来实现电波传播路径跟踪的数值计算方法,具有很高的精度。但是长期以来,技术发展存在两方面的问题:

空间传播衰耗公式及其他一些经验值详解

WLAN室内传播模型 无线局域网室内覆盖的主要特点是:覆盖范围较小,环境变动较大。一般情况下我们选取以下两种适用于WLAN的模型进行分析。由于室内无线环境千差万别,在规划中需根据实际情况选择参考模型与模型系数。 (1) Devasirvatham模型 Devasirvatham模型又称线性路径衰减模型,公式如下: Pl(d,f)[dB]为室内路径损耗= 其中,为自由空间损耗= d:传播路径;f:电波频率;a:模型系数 (2) 衰减因子模型 就电波空间传播损耗来说,2.4GHz频段的电磁波有近似的路径传播损耗。公式为: PathLoss(dB) = 46 +10* n*Log D(m) 其中,D为传播路径,n为衰减因子。针对不同的无线环境,衰减因子n的取值有所不同。在自由空间中,路径衰减与距离的平方成正比,即衰减因子为2。在建筑物内,距离对路径损耗的影响将明显大于自由空间。一般来说,对于全开放环境下n的取值为2.0~2.5;对于半开放环境下n的取值为2.5~3.0;对于较封闭环境下n的取值为3.0~3.5。典型路径传播损耗理论计算值如表1。

现阶段可提供的2.4GHz电磁波对于各种建筑材质的穿透损耗的经验值如下: ●隔墙的阻挡(砖墙厚度100mm ~300mm):20-40dB; ●楼层的阻挡:30dB以上; ●木制家具、门和其他木板隔墙阻挡2-15dB; ●厚玻璃(12mm):10dB(2450MHz) 开阔空间内,设计覆盖距离尽量不要超过30m。 ●如果天线目标区域之间有20mm左右薄墙阻隔时,设计覆盖距离尽量不要超过20m。 ●如果天线与目标区域之间有较多高于1.5m的家具等阻隔时,设计覆盖距离尽量不要超过20m。 ●如果天线安装在长走廊的一端,设计覆盖距离尽量不要超过20m。 ●如果天线与目标区域之间有一个拐角时,设计覆盖距离尽量不要超过15m。 ●如果天线与目标区域之间有多个拐角时,设计覆盖距离尽量不要超过10m。 ●不要进行隔楼层进行覆盖。

无线路径损耗之射线追踪模型

无线路径损耗之射线追踪模型 1概述 在一个典型的市区或室内环境中,从一个固定源发射出来的无线信号会在环境中碰到多个物体,产生发射信号的反射复制信号、衍射复制信号、散射复制信号等(如下图所示)。这些发射信号的额外复制品——也被称为多径信号分量——与接收器接收到的LOS信号相比,可能有功率上的衰减,可能有时间的延迟,可能有相位和/或频率上的偏移。多径信号和发射信号在接收器端叠加在一起,经常使得接收信号相对发射信号出现严重的扭曲。 在射线追踪模型中,我们假设存在有限数量的反射物,并且这些反射物的位置和导电特性已知。前面说过,借助恰当的边界条件,我们能够通过求解麦克斯韦方程组解出多径传播的细节。然而,计算的复杂性让这个解决方法失去实用性,无法成为一个通用模型。而射线追踪模型用简单例子来代表电磁波的波阵面,从而对信号传播进行了简化。这样,波阵面上的反射、折射和衍射效果就由复杂的麦克斯韦波方程简化为简单的几何方程。当接收器离开最近的散射体的距离大大超过波长,并且所有散射体相对波长足够大、散射体相当平滑时,射线追踪模型

的近似误差非常小。将射线追踪模型和经验测试数据比较后显示,它能够在乡村区域、发射器和接收器都接近地面的城市道路,及附加适当衍射系数的室内环境准确模拟接收信号的功率。不过,射线追踪模型不能准确捕捉除接收功率变化之外的其它传播效应,比如多径信号的时延扩展(delay spread)。 最常用的射线追踪模型包括了所有衰减多径分量、衍射多径分量和散射多径分量。这个模型使用了发射器和接收器周围所有物体的几何特征和导电特征。基于射线追踪的计算机程序,比如朗讯的Wireless Systems Engineering software (WiSE)、Wireless Valley的SitePlannerR和Marconi的PlanetR EV被广泛使用于室内和室外环境的系统规划。在这些程序中,计算机图形和航空照片(室外无线信道)或者建筑结构图(室内无线信道)结合,以获得环境的三维地理图像。 下面的章节依照复杂度的增加描述了几个射线追踪模型。我们从简单的双路径(two-path)模型开始。这个模型预测了LOS路径信号与一个地面反射信号干扰后产生的信号变化。这个模型描绘了几乎没有反射体的孤立区域的信号传播的特性,比如乡村道路或高速公路。通常,对室内环境来说,这不是一个好模型。接下来我们呈现了一个十射线(ten-ray)反射模型,它预测了沿着直路或者走廊的信号传播的变化。最后,我们描述了一个通用模型,它预测了任何传播环境的信号传播。双射线(two-ray或two-path)模型只需要有关天线高度的信息,而十射线模型需要知道天线高度和街道/走廊的宽度信息,通用模型则除了需要上述参数外,还需要知道环境中的反射体、衍射体和散射体的详细的几何和导电特性。 2双路径(two-path)模型 双路径模型用于多径效应只由单一的地面反射决定的情景(如图2.3)。接收信号包括两个分量:1,直达或LOS分量——发射信号经由自由空间传播而到达接收端;2,反射分量——发射信号经过地面反射后到达接收端。 接收端的LOS分量根据自由空间传播损耗公式计算得到(公式2.3)。图2.3中的反射射线则取决于线段r和线段r’。如果我们忽略表面波的衰减效应,通过叠加,双路径模型的接收信号为:

计算2.4GHz频段模块的路径损耗详细教程

计算2.4GHz频段模块的路径损耗详细教程 2.4GHz频段现已成为家庭、办公室和工厂短距离无线应用的普遍选择。通常,2.4GHz信道隶属于免许可的工业、科学和医学(ISM)频段。ZigBee(IEEE 802.15.4)、Bluetooth(IEEE 802.15.1)、Wi-Fi(IEEE 802.11 b/g/n)、无线通用串行总线(WUSB)和私有协议(如MiWi)等许多协议以及部分无绳电话均采用此频段。然而,在2.4GHz ISM 频段运行的不同协议会相互干扰。 因此,评估无线传输的范围和性能以创建相关模型来估算模块用于室内外短距离传输时的路径损耗就显得极为重要。借助创建的模型,设计人员可初步估算出无线通信系统的性能。性能参数包括范围、路径损耗、接收器灵敏度、误码率(BER)和误包率(PER),这些参数在任何通信系统中都非常重要。 以功率和天线类型各不相同的三个模块为例Microchip的MRF24J40MA、MRF24J40MB 和MRF24J40MC。MRF24J40MA是一款经认证的集成PCB天线的2.4GHz IEEE 802.15.4无线收发器模块,适用于无线传感器网络、家庭自动化、楼宇自动化和消费类电子应用。MRF24J40MB与MRF24J40MA类似,不过更适合自动读表系统等长距离应用。MRF24J40MC配有外部天线(如图1所示),同样适用于长距离应用。这三个模块已通过各项法规和模块化认证,它们通过四线制SPI接口与单片机相连。 路径损耗模型大尺寸模型用来预估长距离传输时的平均性能。大尺寸模型取决于距离以及与频率关系不大的重要环境特性。随着距离缩短,该模型会彻底瓦解,但其对于确定无线系统的工作范围并粗略规划网络容量很有用。小尺寸(衰落)模型描述了一对一的信号变化。这类模型主要涉及多路径效应(相位抵消)。路径衰减被视为保持恒定,但主要取决于频率和带宽。 不过,最初的重点通常是信号在短距离或短时间内快速变化的小尺寸模型。如果估算的接收功率足够大(通常与接收器灵敏度有关,也可能与使用的通信协议有关),则这条链路便可用于发送数据。接收功率超出接收器灵敏度的量称为链路余量。 链路余量或衰落余量被定义为确保发送器与接收器间可靠无线链路所需的超出接收器灵

移动通信室内路径损耗传播模型

移动通信室内路径损耗传播模型 ——苏华鸿—— 在室内电磁波传播受影响的因素很多,在有限的空间内环境变化大,墙、顶、地、人和室内物体等都会引起电磁的反射、折射、散射和吸收,电磁场分布十分复杂,电波传播模型相应多种多样。本文着重介绍在测试的基础上总结出来的三种传播模型,可供移动通信室覆盖预测参考用。 一、室内小尺度路径损耗 室内小尺度路径损耗是指短距离、短时间内快速衰落(衰落深度达20~40dB ),其传播模型表达式为: δX d d n d P d P L L +??+=)log(10)()(00 (dB) (式1) 式中:)(d P L 表示路径d 的总损耗值; )(0d P L 表示近地参考距离(30=d ~λ10),自由空间衰减值 n 表示环境和建筑物传播损耗指数(1.6~3.3) δX 表示标准偏差6(3~14)的正态随机变量 二、室内路径损耗因子模型 这一模型灵活性很强,预测路径损耗与测量值的标准偏差为4dB 衰减因子模型表达试为: )()log(10)()(00dB FAF d d n d P d P SF L L +??+= (式2) 式中:SF n 表示同层损耗因子(1.6~3.3) FAF 表示不同层路径损耗附加值(10~20dB )

三、室内自由空间路径损耗附加因子模型 在室内可以认为是自由空间受限的传播路径,这一模型灵活性很强,预测路径损耗与测量值的标准偏差为4dB ,其传播模型表达式为: ))log(20)()(00dB d d d P d P L L (?++=αβ (式3) 式中:β为路径损耗因子(-0.2~1.6dB/m ) 最后,我们利用上述三种模型进行一下室内电波场强覆盖预测: 由于式1中X 与的正态随机变量关系式没有多种,因此实际工程采用式2和式3较多,本文举出二例供工程设计参考用。 例1:假设本工程为某一宾馆的室内分布系统工程,天线输入口功率dBm Pt 5=,吸顶天线增益为dBm Gm 1.2=,同层预测距离15=d 米,0d 设定为1米。)900(5.31)(0MHz f dB d P L ==,)1800(5.37)(0MHz F dB d P L ==。 采用式2先计算出)15(m d P L =、MHz f 900=时总路径损耗值, 其中SF n 取2.8代入式2得: 0)1 15log(8.210)1()15(+?==m P m P L L 9.325.31+= dB 4.64= 预测出距离信号源15米处的场强: R m P G P P L M T dBm --+=)15( (衰减储备dBm 10) dB dB dB dBm 104.641.25--+= dBm 3.67-=

基于COST231模型的无线路径损耗Matlab仿真

基于COST231模型的无线路径损耗Matlab仿真 EURO-COST(European cooperative for scientific and technical research)将Hata 模型扩展到了2GHz频段,具体公式如下: 其中L50,urban(dB)是传播路径损耗的中位值(第50百分位);中等城市或郊区Cm=0 dB;大城市Cm=3dB;载频fc的取值范围是1.5-2(单位GHz);基站天线高度ht 的取值范围是30-200(单位m);终端天线高度hr的取值范围1-10(单位m);发射机和接收机之间的距离d的取值范围是1-20(单位Km);移动天线高度校正因子a(hr)与Hata模型相同,即: 对于中小城市, 对于大城市且fc大于300MHz, 对于大城市且fc小于300MHz, 对于大城市,Matlab的仿真程序源代码为: clear; ht=200; hr=3; Cm=3; % Cm=3 in metropolitan for d=[1 2 4 6 10 15 20] % Kilometer f=1.5:0.001:2; % 1.5GHz-2GHz Loss=46.3+33.9*log10(f)-13.82*log10(ht)-(3.2*(log10(11.75*hr)).^2-4.97)+(44.9-6. 55*log10(ht))*log10(d)+Cm; figure(1); hold on; plot(f,Loss,'r'); end grid; title('Metropolitan'); xlabel('Frequency/MHz'); ylabel('Loss Median/dB');

频率是怎么影响自由空间损耗的

频率是怎样影响空间链路损耗的 摘要:在计算链路损耗时,频率也是重要的组成项。人们通常说,频率越大, 损耗越大。本文从天线接收电磁波的功率方面来解释频率是怎样影响空间损耗的。 关键词:频率、损耗、天线、有效面积 引言:自由空间损耗公式 L fs=32.45dB+20log10d km f MHz(1) 中,d km表示距离,单位是公理,f MHz表示频率,单位是兆赫兹。 这表明,自由空间的损耗不但和距离有关,而且和频率有关。公式符合一般的 经验,比方说波长越短衍射能力越差,遇到障碍物后的损耗就越大。公式是表达的自 由空间损耗,没有遇到障碍物。这又该怎么解释呢? 可以设想一个简单的例子,在自由空间中,有一个孤立系统的点光源在以 100W的功率发光。根据基本的能量守恒定律,以点光源为球心,半径为1Km的圆球,在此球面上得到的光能量应该也是100W。 以此为例,如果换成电磁波点源的话,不论电磁波的频率是多少,在半径1km 的球面上,单位面积的功率应该是一样的。也就是单位面积的功率和频率没有关系, 只和距离有关系。 这似乎是矛盾的,看自由空间损耗公式,损耗和频率有关;从能量守恒的角度 考虑,损耗和频率没有关系。 关键看看自由空间损耗公式是怎么推到出来的,频率f是何时引入的。 一、天线的接收功率 在自由空间中,由点源发射的正弦波应该沿径向传播,因此,我们成此电源为各向同 性的。现在假设发射功率为P rad瓦(W),则距点源d米(m)处电波的单位面积功率为 P fs=P rad/4πd2(w/m2)(2) 式中f s表示自由空间。对于非各向同性的天线(辐射源)而言,若观测点与天线的距离与天线的尺寸相比足够大,则辐射功率P rad可由P t G t表示,其中P t为传递给发射机天线 的功率(3),G t为发射机天线的增益(4)。

路径损耗和阴影衰落

路径损耗和阴影衰落 1 概述 无线通信是要实现信息准确可靠且高速地传输,然而这个目标的实现存在着严峻的挑战。因为无线信道易受噪声、干扰和其他信道因素影响,而且由于用户的移动和信道的动态变化,这些因素还在随时间随机变化。其中路径损耗和阴影衰落是两个影响接收信号功率非常重要的因素,本文将讲述两者对接收功率变化的影响,并分析相关的信道传播模型。 2 发送信号与接收信号模型 调制器中的振荡器产生实正弦信号,不是复指数信号,实际上信道只改变了发送信号在不同频率处的幅度和相位,因此接收信号也是实信号。又因为我们采用复数信道建模,所以为了便于分析,我们把发送和接收信号表示成一个复信号的实部。下面分别给出发送和接收信号模型。 2.1 发送信号 发送信号表达式为 2()Re{()}c j f t s t u t e π= (1) 其中u(t)一个复信号,P u 为功率,u(t)称为s(t)的复包络,即u(t)的振幅就是s(t)的振幅。发送信号s(t)的功率P t =P u /2。 2.2 接收信号 接收信号表达式与发送信号类似,只是叠加了噪声: 2()Re{()}()c j f t r t v t e n t π=+(2) 其中n(t)为信道噪声。v(t)=u(t)*c(t),其中c(t)是信道的冲激响应。 3 路径损耗 路径损耗是由发射功率的辐射扩散及信道的传播特性造成的。显而易见,传播距离越大,辐射扩散越大,路径损耗也越大。假设发送发送信号功率为Pt ,相应的接收信号功率为Pr 。则定义信道的路径损耗(path loss )为 10 10log t L r P P dB dB P =(3) 信道只能衰减信号,所以用分贝表示的路径损耗一般都是非负值。下面根据不同的信道传播特性对不同的信号传播模型进行简要介绍。 3.1 自由空间路径损耗 在自由空间路径损耗模型中,信号经过自由空间到达距离d 处的接收机,发射机和接收机之间没有任何障碍物,信号沿直线传播,产生接收信号: 2()Re ()c j f t r t t e π?? =????? (4)

无线电波在自由空间传播时的距离计算方法

无线电波在自由空间传播时的距离计算方法 无线电波在自由空间传播时的距离计算方法 所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。 通信距离与发射功率、接收灵敏度和工作频率有关。 [Lfs](dB)=32.44+20lgd(km)+20lgf(MHz) 式中Lfs为传输损耗, d为传输距离, 频率的单位以MHz计算。 由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB. 下面的公式说明在自由空间下电波传播的损耗 Los = 32.44 + 20lg d(Km) + 20lg f(MHz) Los 是传播损耗,单位为dB d是距离,单位是Km f是工作频率,单位是MHz 下面举例说明一个工作频率为433.92MHz,发射功率为+10dBm(10mW),接收灵敏度为 -105dBm的系统在自由空间的传播距离:

1. 由发射功率+10dBm,接收灵敏度为-105dBm Los = 115dB 2. 由Los、f 计算得出d =30公里 这是理想状况下的传输距离,实际的应用中是会低于该值,这是因为无线通信要受到各种外界因素的影响,如大气、阻挡物、多径等造成的损耗,将上述损耗的参考值计入上式中,即可计算出近似通信距离。 假定大气、遮挡等造成的损耗为25dB,可以计算得出通信距离为: d =1.7公里 结论: 无线传输损耗每增加6dB, 传送距离减小一倍。 无线传输路径分析是无线传输网络设计的重要步骤,通过对传输路径的分析便于网络设计者根据无线链路的裕量大小选择合适类型的天线(方向,极化,增益等指标),安装天线高度,选择合适的馈缆和长度等。下面将简单介绍一下无线传输路径分析中的自由空间损耗的计算,信号接收强度的计算,链路系统裕量的计算几个主要方面的内容。 1.自由空间损耗的计算 自由空间损耗是指电磁波在传输路径中的衰落,计算公式如下: Lbf=32.5+20lgF+20lgD Lbf=自由空间损耗(dB) D=距离(km) F=频率(MHz) 2400MHz:Lbf=100+20lgD

自由空间信号衰减计算

自由空间信号衰减计算 下面介绍的是理论上通讯100公里时的信号衰减: 自由空间传输损耗定义 Ls为自由空间传输损耗(dB) f 为发射频率(GHz) d 为站间距离(Km) Ls=92.4+20Lg f(GHz)+20Lg d(Km) dB 可见: 自由空间传输损耗Ls决定于站间距离和工作频率 常见的信号增益: * 放大器输出电平:-------------10W = 40dBm * 天线增益G1: ------------- G1=15dBm * 天线增益G2: ------------- G1=15dBm * 接收机灵敏度 ------------ = -83dBm * 馈线2.6米(车内) L(2.6)衰减 --------------------------0.40 dB/米×2.6=1.04dB * 馈线6.8米(车外到网桥天线) L(6.8) 衰减--------------------------0.40 dB/米×6.8=2.72 dB * 高频电缆接头 ----------------0.1-0.2 dB/个(5-6个) * 单站馈线系统总损耗0.2×5+1.04≈3.dB 实际中的换算如下: f 为发射频率(GHz)=2.485(最高频点) d 为站间距离(Km)=150 Ls=92.4+20Lg 2.485+20Lg 100 dB =92.4+8+40=140.4 dB 系统设备的总增益如下:(带宽保证在5Mbps的情况下) Gs=发射功率 + 天线增益(发端) + 天线增益(收端)- 天馈线及接头插入损耗(发端) -天馈线及接头插入损耗(收端) + 收信放大器增益-接收机灵敏度 =40+15+15-3-2 +17 -(-83 dB) =165dB Gs – Ls = 24.6 dB 这个是增益储备,防备在恶劣条件下的信号衰 减增大,导致网络中断。

相关文档
相关文档 最新文档