文档库 最新最全的文档下载
当前位置:文档库 › 数值分析Matlab作业龙格库塔欧拉方法解二阶微分方程

数值分析Matlab作业龙格库塔欧拉方法解二阶微分方程

数值分析Matlab作业龙格库塔欧拉方法解二阶微分方程
数值分析Matlab作业龙格库塔欧拉方法解二阶微分方程

数值分析M a t l a b作业龙格库塔欧拉方法解二阶微分方

-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

Matlab 应用

使用Euler 和Rungkutta 方法解臂状摆的能量方程

背景 单摆是常见的物理模型,为了得到摆角θ的关于时间的函数,来描述单摆运动。由角动量定理我们知道

ε

J M =

化简得到 0sin 22=+θθl

g dt d 在一般的应用和计算中,只考虑摆角在5度以内的小摆动,因为可以吧简化为θ,这样比较容易解。实际上这是一个解二阶常微分方程的问题。

在这里的单摆是一种特别的单摆,具有均匀的质量M 分布在长为2的臂状摆上,

使用能量法建立方程

W

T =

h mg ?=2J 2

1ω 化简得到

θθcos 35499.722=dt

d 重力加速度取9.80665

1使用欧拉法

令dx

dy z =,这样降阶就把二阶常微分方程转化为一阶微分方程组,再利用向前Euler 方法数值求解。

y(i+1)=y(i)+h*z(i);

z(i+1)=z(i)+h*7.35499*cos(y(i));

y(0)=0

z(0)=0

精度随着h 的减小而更高,因为向前欧拉方法的整体截断误差与h 同阶,(因为是用了泰勒公式)所以欧拉方法的稳定区域并不大。

2.RK4-四阶龙格库塔方法

使用四级四阶经典显式Rungkutta公式

稳定性很好,RK4法是四阶方法,每步的误差是h5阶,而总积累误差为h4

阶。所以比欧拉稳定。

运行第三个程序:在一幅图中显示欧拉法和RK4法,随着截断误差的积累,欧

拉法产生了较大的误差

h=0.01

h=0.0001,仍然是开始较为稳定,逐渐误差变大

总结:RK4是很好的方法,很稳定,而且四阶是很常用的方法,因为到五阶的时候精度并没有相应提升。通过这两种方法计算出角度峰值y=3.141593,周期是1.777510。

三个程序

欧拉法

clear;

clc

h=0.00001;

a=0;b=25;

x=a:h:b;

y(1)=0;

z(1)=0;

for i=1:length(x)-1 % 欧拉

y(i+1)=y(i)+h*z(i);

z(i+1)=z(i)+h*7.35499*cos(y(i));

end

plot(x,y,'r*');

xlabel('时间');

ylabel('角度');

A=[x,y];

%y(find(y==max(y)))

%Num=(find(y==max(y)))

matlab编的4阶龙格库塔法解微分方程的程序

matlab编的4阶龙格库塔法解微分方程的程序 2010-03-10 20:16 function varargout=saxplaxliu(varargin) clc,clear x0=0;xn=1.2;y0=1;h=0.1; [y,x]=lgkt4j(x0,xn,y0,h); n=length(x); fprintf(' i x(i) y(i)\n'); for i=1:n fprintf('%2d %4.4f %4.4f\n',i,x(i),y(i)); end function z=f(x,y) z=-2*x*y^2; function [y,x]=lgkt4j(x0,xn,y0,h) x=x0:h:xn; n=length(x); y1=x; y1(1)=y0; for i=1:n-1 K1=f(x(i),y1(i)); K2=f(x(i)+h/2,y1(i)+h/2*K1); K3=f(x(i)+h/2,y1(i)+h/2*K2); K4=f(x(i)+h,y1(i)+h*K3); y1(i+1)=y1(i)+h/6*(K1+2*K2+2*K3+K4); end y=y1; 结果: i x(i) y(i) 1 0.0000 1.0000 2 0.1000 0.9901 3 0.2000 0.9615 4 0.3000 0.9174 5 0.4000 0.8621 6 0.5000 0.8000 7 0.6000 0.7353 8 0.7000 0.6711 9 0.8000 0.6098 10 0.9000 0.5525 11 1.0000 0.5000 12 1.1000 0.4525 13 1.2000 0.4098

matlab数值计算(命令与示例)

MATLAB数值计算 MATLAB数值计算 (1) 1创建矩阵 (3) 1.1直接输入 (3) 1.2向量 (3) 1.2.1linspace:线性分布 (3) 1.2.2冒号法 (3) 1.3函数创建 (4) 1.3.1eye:单位矩阵 (4) 1.3.2rand:随机矩阵 (4)

1.3.3zeros:全0矩阵 (4) 1.3.4ones:全1矩阵 (5) 2矩阵运算 (5) 2.1加减 (5) 2.1.1[M×N]±[M×N] (5) 2.2乘 (6) 2.2.1[M×N]*a (6) 2.2.2[M×N]*[N×M] (6) 2.3乘方 (7) 2.3.1[M×M]^a (7) 2.3.2a^[M×M] (7) 2.4特殊运算 (8) 2.4.1求逆inv (8) 2.4.2行列式det (8) 2.4.3特征值eig (8) 2.4.4转置'和.' (9) 2.4.5变形reshape (10) 2.4.6翻转rot90,fliplr,flipud (11) 2.4.7抽取diag,tril,triu (12) 2.5数组运算 (12) 2.5.1乘 (12) [M×N].*[M×N] (12) 2.5.2除 (13) [M×N]./[M×N] (14) [M×N].\[M×N] (14) 2.5.3乘方 (14) [M×N].^[M×N] (15) a.^[M×N] (15) 2.6除法 (15) 2.6.1求解线性方程组 (15) 3多项式 (16) 3.1系数表示法poly (16) 3.2求根roots (16) 3.3乘法conv (16) 3.4除法deconv (17) 3.5求值polyval (17) 3.6微分polyder (18)

龙格库塔方法matlab实现

龙格库塔方法matlab实现~ function ff=rk(yy,x0,y0,h,a,b)%yy为y的导函数,x0,y0,为初值,h为步长,a,b为区间 c=(b-a)/h+1;i1=1; %c为迭代步数;i1为迭代步数累加值 y=y0;z=zeros(c,6); %z生成c行,5列的零矩阵存放结果; %每行存放c次迭代结果,每列分别存放k1~k4及y的结果 for x=a:h:b if i1<=c k1=feval(yy,x,y); k2=feval(yy,x+h/2,y+(h*k1)/2); k3=feval(yy,x+h/2,y+(h*k2)/2); k4=feval(yy,x+h,y+h*k3); y=y+(h/6)*(k1+2*k2+2*k3+k4); z(i1,1)=x;z(i1,2)=k1;z(i1,3)=k2;z(i1,4)=k3;z(i1,5)=k4;z(i1,6)=y; i1=i1+1; end end fprintf(‘结果矩阵,第一列为x(n),第二列~第五列为k1~k4,第六列为y(n+1)的结果') z %在命令框输入下列语句 %yy=inline('x+y'); %>> rk(yy,0,1,0.2,0,1) %将得到结果 %结果矩阵,第一列为x(n),第二列~第五列为k1~k4第六列为y(n+1)的结果 %z = % 0 1.0000 1.2000 1.2200 1.4440 1.2428 % 0.2000 1.4428 1.6871 1.7115 1.9851 1.5836 % 0.4000 1.9836 2.2820 2.3118 2.6460 2.0442 % 0.6000 2.6442 3.0086 3.0451 3.4532 2.6510 % 0.8000 3.4510 3.8961 3.9407 4.4392 3.4365 % 1.0000 4.4365 4.9802 5.0345 5.6434 4.4401

matlab 四阶龙格-库塔法求微分方程

Matlab 实现四阶龙格-库塔发求解微分方程 从理论上讲,只要函数在某区间上充分光滑,那么它可以展开为泰勒级数,因此在该区间上的函数值可用各阶导数值近似地表示出来,反之其各阶导数值也可用某些函数值的线性组合近似地表示出来。龙格-库塔法就是将待求函数)(t y 展开为泰勒级数,并用方程函数),(y f t 近似其各阶导数,从而迭代得到)(t y 的数值解。具体来说,四阶龙格-库塔迭代公式为 )22(6 143211k k k k h n n ++++=+y y ),(1n n t k y f = )2/,2/(12hk h t k n n ++=y f )2/,2/(23hk h t k n n ++=y f ),(33hk h t k n n ++=y f 实验内容: 已知二阶系统21x x = ,u x x x 5.02.04.0212+--= ,0)0()0(21==x x ,u 为单位阶跃信号。用四阶龙格-库塔法求数值解。分析步长对结果的影响。 实验总结: 实验报告要求简要的说明实验原理;简明扼要地总结实验内容;编制m 文件,并给出运行结果。报告格式请按实验报告模板编写。 进入matlab , Step1:choose way1 or way2 way1): 可以选择直接加载M 文件(函数M 文件)。 way2): 点击new ——function ,先将shier (函数1文本文件)复制运行; 点击new ——function ,再将RK (函数2文本文件)运行; 点击new ——function ,再将finiRK (函数3文本文件)运行;

Matlab作业3(数值分析)答案

Matlab作业3(数值分析) 机电工程学院(院、系)专业班组 学号姓名实验日期教师评定 1.计算多项式乘法(x2+2x+2)(x2+5x+4)。 答: 2. (1)将(x-6)(x-3)(x-8)展开为系数多项式的形式。(2)求解在x=8时多项 式(x-1)(x-2) (x-3)(x-4)的值。 答:(1) (2)

3. y=sin(x),x从0到2π,?x=0.02π,求y的最大值、最小值、均值和标准差。 4.设x=[0.00.30.8 1.1 1.6 2.3]',y=[0.500.82 1.14 1.25 1.35 1.40]',试求二次多项式拟合系数,并据此计算x1=[0.9 1.2]时对应的y1。解:x=[0.0 0.3 0.8 1.1 1.6 2.3]'; %输入变量数据x y=[0.50 0.82 1.14 1.25 1.35 1.40]'; %输入变量数据y p=polyfit(x,y,2) %对x,y用二次多项式拟合,得到系数p x1=[0.9 1.2]; %输入点x1 y1=polyval(p,x1) %估计x1处对应的y1 p = -0.2387 0.9191 0.5318 y1 = a) 1.2909

5.实验数据处理:已知某压力传感器的测试数据如下表 p为压力值,u为电压值,试用多项式 d cp bp ap p u+ + + =2 3 ) ( 来拟 合其特性函数,求出a,b,c,d,并把拟合曲线和各个测试数据点画在同一幅图上。解: >> p=[0.0,1.1,2.1,2.8,4.2,5.0,6.1,6.9,8.1,9.0,9.9]; u=[10,11,13,14,17,18,22,24,29,34,39]; x=polyfit(p,u,3) %得多项式系数 t=linspace(0,10,100); y=polyval(x,t); %求多项式得值 plot(p,u,'*',t,y,'r') %画拟和曲线 x = 0.0195 -0.0412 1.4469 9.8267

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现

函数功能编辑本段回目录 ode是专门用于解微分方程的功能函数,他有ode23,ode45,ode23s等等,采用的是Runge-Kutta算法。ode45表示采用四阶,五阶runge-kutta单步算法,截断误差为(Δx)3。解决的是Nonstiff(非刚性)的常微分方程.是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,换用ode23来解. 使用方法编辑本段回目录 [T,Y] = ode45(odefun,tspan,y0) odefun 是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名 tspan 是区间[t0 tf] 或者一系列散点[t0,t1,...,tf] y0 是初始值向量 T 返回列向量的时间点 Y 返回对应T的求解列向量 [T,Y] = ode45(odefun,tspan,y0,options) options 是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等 [T,Y,TE,YE,IE] =ode45(odefun,tspan,y0,options) 在设置了事件参数后的对应输出 TE 事件发生时间 YE 事件解决时间 IE 事件消失时间 sol =ode45(odefun,[t0 tf],y0...) sol 结构体输出结果 应用举例编辑本段回目录 1 求解一阶常微分方程

程序: 一阶常微分方程 odefun=@(t,y) (y+3*t)/t^2; %定义函数 tspan=[1 4]; %求解区间 y0=-2; %初值 [t,y]=ode45(odefun,tspan,y0); plot(t,y) %作图 title('t^2y''=y+3t,y(1)=-2,1

第06章_MATLAB数值计算_例题源程序汇总

第6章 MATLAB 数值计算 例6.1 求矩阵A 的每行及每列的最大和最小元素,并求整个矩阵的最大和最小元素。 1356 78256323578255631 01-???? -? ?=???? -??A A=[13,-56,78;25,63,-235;78,25,563;1,0,-1]; max(A,[],2) %求每行最大元素 min(A,[],2) %求每行最小元素 max(A) %求每列最大元素 min(A) %求每列最小元素 max(max(A)) %求整个矩阵的最大元素。也可使用命令:max(A(:)) min(min(A)) %求整个矩阵的最小元素。也可使用命令:min(A(:)) 例6.2 求矩阵A 的每行元素的乘积和全部元素的乘积。 A=[1,2,3,4;5,6,7,8;9,10,11,12]; S=prod(A,2) prod(S) %求A 的全部元素的乘积。也可以使用命令prod(A(:)) 例6.3 求向量X =(1!,2!,3!,…,10!)。 X=cumprod(1:10) 例6.4 对二维矩阵x ,从不同维方向求出其标准方差。 x=[4,5,6;1,4,8] %产生一个二维矩阵x y1=std(x,0,1) y2=std(x,1,1) y3=std(x,0,2) y4=std(x,1,2) 例6.5 生成满足正态分布的10000×5随机矩阵,然后求各列元素的均值和标准方差,再求这5列随机数据的相关系数矩阵。 X=randn(10000,5); M=mean(X) D=std(X) R=corrcoef(X)

例6.6 对下列矩阵做各种排序。 185412613713-?? ??=?? ??-?? A A=[1,-8,5;4,12,6;13,7,-13]; sort(A) %对A 的每列按升序排序 -sort(-A,2) %对A 的每行按降序排序 [X,I]=sort(A) %对A 按列排序,并将每个元素所在行号送矩阵I 例6.7 给出概率积分 2 (d x x f x x -? e 的数据表如表6.1所示,用不同的插值方法计算f (0.472)。 x=0.46:0.01:0.49; %给出x ,f(x) f=[0.4846555,0.4937542,0.5027498,0.5116683]; format long interp1(x,f,0.472) %用默认方法,即线性插值方法计算f(x) interp1(x,f,0.472,'nearest') %用最近点插值方法计算f(x) interp1(x,f,0.472,'spline') %用3次样条插值方法计算f(x) interp1(x,f,0.472,'cubic') %用3次多项式插值方法计算f(x) format short 例6.8 某检测参数f 随时间t 的采样结果如表6.2,用数据插值法计算t =2,7,12,17,22,17,32,37,42,47,52,57时的f 值。 T=0:5:65; X=2:5:57;

同济大学数值分析matlab编程题汇编

MATLAB 编程题库 1.下面的数据表近似地满足函数2 1cx b ax y ++=,请适当变换成为线性最小二乘问题,编程求最好的系数c b a ,,,并在同一个图上画出所有数据和函数图像. 625 .0718.0801.0823.0802.0687.0606.0356.0995 .0628.0544.0008.0213.0362.0586.0931.0i i y x ---- 解: x=[-0.931 -0.586 -0.362 -0.213 0.008 0.544 0.628 0.995]'; y=[0.356 0.606 0.687 0.802 0.823 0.801 0.718 0.625]'; A=[x ones(8,1) -x.^2.*y]; z=A\y; a=z(1); b=z(2); c=z(3); xh=-1:0.1:1; yh=(a.*xh+b)./(1+c.*xh.^2); plot(x,y,'r+',xh,yh,'b*')

2.若在Matlab工作目录下已经有如下两个函数文件,写一个割线法程序,求出这两个函数 10 的近似根,并写出调用方式: 精度为10 解: >> edit gexianfa.m function [x iter]=gexianfa(f,x0,x1,tol) iter=0; while(norm(x1-x0)>tol) iter=iter+1; x=x1-feval(f,x1).*(x1-x0)./(feval(f,x1)-feval(f,x0)); x0=x1;x1=x; end >> edit f.m function v=f(x) v=x.*log(x)-1; >> edit g.m function z=g(y) z=y.^5+y-1; >> [x1 iter1]=gexianfa('f',1,3,1e-10) x1 = 1.7632 iter1 = 6 >> [x2 iter2]=gexianfa('g',0,1,1e-10) x2 = 0.7549 iter2 = 8

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现

Matlab中龙格-库塔(Runge-Kutta)方法原理及实现 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。龙格库塔方法的理论基础来源于泰勒公式和使用斜率近似表达微分,它在积分区间多预计算出几个点的斜率,然后进行加权平均,用做下一点的依据,从而构造出了精度更高的数值积分计算方法。如果预先求两个点的斜率就是二阶龙格库塔法,如果预先取四个点就是四阶龙格库塔法。一阶常微分方程可以写作:y'=f(x,y),使用差分概念。 (Yn+1-Yn)/h= f(Xn,Yn)推出(近似等于,极限为Yn') Yn+1=Yn+h*f(Xn,Yn) 另外根据微分中值定理,存在0

所以,为了更好更准确地把握时间关系,应自己在理解龙格库塔原理的基础上,编写定步长的龙格库塔函数,经过学习其原理,已经完成了一维的龙格库塔函数。 仔细思考之后,发现其实如果是需要解多个微分方程组,可以想象成多个微分方程并行进行求解,时间,步长都是共同的,首先把预定的初始值给每个微分方程的第一步,然后每走一步,对多个微分方程共同求解。想通之后发现,整个过程其实很直观,只是不停的逼近计算罢了。编写的定步长的龙格库塔计算函数: function [x,y]=runge_kutta1(ufunc,y0,h,a,b)%参数表顺序依次是微分方程组的函数名称,初始值向量,步长,时间起点,时间终点(参数形式参考了ode45函数) n=floor((b-a)/h);%求步数 x(1)=a;%时间起点 y(:,1)=y0;%赋初值,可以是向量,但是要注意维数 for ii=1:n x(ii+1)=x(ii)+h; k1=ufunc(x(ii),y(:,ii)); k2=ufunc(x(ii)+h/2,y(:,ii)+h*k1/2); k3=ufunc(x(ii)+h/2,y(:,ii)+h*k2/2); k4=ufunc(x(ii)+h,y(:,ii)+h*k3); y(:,ii+1)=y(:,ii)+h*(k1+2*k2+2*k3+k4)/6; %按照龙格库塔方法进行数值求解

matlab数值分析例题

1、 在MATLAB 中用Jacobi 迭代法讨论线性方程组, 1231231234748212515 x x x x x x x x x -+=?? -+=-??-++=? (1)给出Jacobi 迭代法的迭代方程,并判定Jacobi 迭代法求解此方程组是否收敛。 (2)若收敛,编程求解该线性方程组。 解(1):A=[4 -1 1;4 -8 1;-2 1 5] %线性方程组系数矩阵 A = 4 -1 1 4 -8 1 -2 1 5 >> D=diag(diag(A)) D = 4 0 0 0 -8 0 0 0 5 >> L=-tril(A,-1) % A 的下三角矩阵 L = 0 0 0 -4 0 0 2 -1 0 >> U=-triu(A,1) % A 的上三角矩阵 U = 0 1 -1 0 0 -1 0 0 0 B=inv(D)*(L+U) % B 为雅可比迭代矩阵 B = 0 0.2500 -0.2500 0.5000 0 0.1250 0.4000 -0.2000 0 >> r=eigs(B,1) %B 的谱半径

r = 0.3347 < 1 Jacobi迭代法收敛。 (2)在matlab上编写程序如下: A=[4 -1 1;4 -8 1;-2 1 5]; >> b=[7 -21 15]'; >> x0=[0 0 0]'; >> [x,k]=jacobi(A,b,x0,1e-7) x = 2.0000 4.0000 3.0000 k = 17 附jacobi迭代法的matlab程序如下: function [x,k]=jacobi(A,b,x0,eps) % 采用Jacobi迭代法求Ax=b的解 % A为系数矩阵 % b为常数向量 % x0为迭代初始向量 % eps为解的精度控制 max1= 300; %默认最多迭代300,超过300次给出警告D=diag(diag(A)); %求A的对角矩阵 L=-tril(A,-1); %求A的下三角阵 U=-triu(A,1); %求A的上三角阵 B=D\(L+U); f=D\b; x=B*x0+f; k=1; %迭代次数 while norm(x-x0)>=eps x0=x; x=B*x0+f; k=k+1; if(k>=max1) disp('迭代超过300次,方程组可能不收敛'); return; end end

第3章 MATLAB数值计算-习题 答案

roots([1 -1 -1]) x=linspace(0,2*pi,10); y=sin(x); xi=linspace(0,2*pi,100); y1=interp1(x,y,xi); y2=interp1(x,y,xi,'spline'); y3=interp1(x,y,xi,'cublic'); plot(x,y,'o',xi,y1,xi,y2,xi,y3) x=[0 300 600 1000 1500 2000]; y=[0.9689 0.9322 0.8969 0.8519 0.7989 0.7491]; xi=linspace(0,2000,20); yi=1.0332*exp(-(xi+500)/7756); y1=interp1(x,y,xi,'spline'); subplot(2,1,1);plot(x,y,'o',xi,yi,xi,y1,'*') p=polyfit(x,y,2); y2=polyval(p,xi); subplot(2,1,2);plot(x,y,'o',xi,yi,xi,y2,'*') x=[0 300 600 1000 1500 2000]; y=[0.9689 0.9322 0.8969 0.8519 0.7989 0.7491]; xi=linspace(0,2000,20); y1=interp1(x,y,xi,'spline'); subplot(2,1,1);plot(x,y,'-o', xi,y1,'-*') p=polyfit(x,y,2); y2=polyval(p,xi); subplot(2,1,2);plot(x,y,'-o',xi,y2,'-*')

第2讲 matlab的数值分析

第二讲MATLAB的数值分析 2-1矩阵运算与数组运算 矩阵运算和数组运算是MATLAB数值运算的两大类型,矩阵运算是按矩阵的运算规则进行的,而数组运算则是按数组元素逐一进行的。因此,在进行某些运算(如乘、除)时,矩阵运算和数组运算有着较大的差别。在MATLAB中,可以对矩阵进行数组运算,这时是把矩阵视为数组,运算按数组的运算规则。也可以对数组进行矩阵运算,这时是把数组视为矩阵,运算按矩阵的运算规则进行。 1、矩阵加减与数组加减 矩阵加减与数组加减运算效果一致,运算符也相同,可分为两种情况: (1)若参与运算的两矩阵(数组)的维数相同,则加减运算的结果是将两矩阵的对应元素进行加减,如 A=[1 1 1;2 2 2;3 3 3]; B=A; A+B ans= 2 2 2 4 4 4 6 6 6 (2)若参与运算的两矩阵之一为标量(1*1的矩阵),则加减运算的结果是将矩阵(数组)的每一元素与该标量逐一相加减,如 A=[1 1 1;2 2 2;3 3 3]; A+2 ans= 3 3 3 4 4 4 5 5 5 2、矩阵乘与数组乘 (1)矩阵乘 矩阵乘与数组乘有着较大差别,运算结果也完全不同。矩阵乘的运算符为“*”,运算是按矩阵的乘法规则进行,即参与乘运算的两矩阵的内维必须相同。设A、B为参与乘运算的 =A m×k B k×n。因此,参与运两矩阵,C为A和B的矩阵乘的结果,则它们必须满足关系C m ×n 算的两矩阵的顺序不能任意调换,因为A*B和B*A计算结果很可能是完全不一样的。如:A=[1 1 1;2 2 2;3 3 3]; B=A;

A*B ans= 6 6 6 12 12 12 18 18 18 F=ones(1,3); G=ones(3,1); F*G ans 3 G*F ans= 1 1 1 1 1 1 1 1 1 (2)数组乘 数组乘的运算符为“.*”,运算符中的点号不能遗漏,也不能随意加空格符。参加数组乘运算的两数组的大小必须相等(即同维数组)。数组乘的结果是将两同维数组(矩阵)的对应元素逐一相乘,因此,A.*B和B.*A的计算结果是完全相同的,如: A=[1 1 1 1 1;2 2 2 2 2;3 3 3 3 3]; B=A; A.*B ans= 1 1 1 1 1 4 4 4 4 4 9 9 9 9 9 B.*A ans= 1 1 1 1 1 4 4 4 4 4 9 9 9 9 9 由于矩阵运算和数组运算的差异,能进行数组乘运算的两矩阵,不一定能进行矩阵乘运算。如 A=ones(1,3); B=A; A.*B ans= 1 1 1 A*A ???Error using= =>

龙格-库塔法MATLAB

1. matlab 新建.m文件,编写龙格-库塔法求解函数 function [x,y]=runge_kutta1(ufunc,y0,h,a,b)%参数表顺序依次是微分方程组的函数名称,初始值向量,步长,时间起点,时间终点(参数形式参考了ode45函数) n=floor((b-a)/h); %求步数 x(1)=a;%时间起点 y(:,1)=y0;%赋初值,可以是向量,但是要注意维数 for ii=1:n x(ii+1)=x(ii)+h; k1=ufunc(x(ii),y(:,ii)); k2=ufunc(x(ii)+h/2,y(:,ii)+h*k1/2); k3=ufunc(x(ii)+h/2,y(:,ii)+h*k2/2); k4=ufunc(x(ii)+h,y(:,ii)+h*k3); y(:,ii+1)=y(:,ii)+h*(k1+2*k2+2*k3+k4)/6; %按照龙格库塔方法进行数值求解 end 2.另外再新建一个.,m文件,定义要求解的常微分方程函数 function dx=fun1(t,x) dx =zeros(2,1);%初始化列向量 dx(1) =0.08574*x(2)-1.8874*x(1)-20.17; dx(2) =1.8874*x(1)-0.08574*x(2)+115.16; 3,再新建一个.m文件,利用龙格-库塔方法求解常微分方程 [T1,F1]=runge_kutta1(@fun1,[46.30 1296 ],1,0,20); %求解步骤2定义的fun1常微分方程,@fun1是调用其函数指针,从0到20,间隔为1 subplot(122) plot(T1,F1)%自编的龙格库塔函数效果 title('自编的龙格库塔函数') grid 运行步骤3文件即可得到结果,F1为估测值 或者可以调用matlab自带函数ode45求解 方法如下:

控制系统数字仿真 四阶龙格库塔法

控制系统数字仿真 1.实验目的 1.掌握利用四阶龙格-库塔(Runge-Kutta)法进行控制系统数字仿真的方 法。 2.学习分析高阶系统动态性能的方法。 3.学习系统参数改变对系统性能的影响。 二、实验内容 已知系统结构如下图 若输入为单位阶跃函数,计算当超调量分别为5%,25%,和50%时K的取值(用主导极点方法估算),并根据确定的K值在计算机上进行数字仿真。 三、实验过程 1.计算K值 二阶系统单位阶跃响应的超调量 %100% =? 1.当σ%=5%时

解得 ζ=0.690 设主导极点 =ζa + a=0.69a+j0.72a 代入D (s )= 32 1025s s s K +++=0中, 32(0.690.72)10(0.690.72)25(0.690.72)0 a j a a j a a j a K ++++++=解得K=31.3,a=-2.10 即1,2 1.45 1.52s j =-± 2. 当σ%=25%时 解得 ζ=0.403 设主导极点 =ζa + a=0.403a+j0.915a 代入D (s )= 321025s s s K +++=0中, 32(0.4030.915)10(0.4030.915)25(0.4030.915)0 a j a a j a a j a K ++++++=解得K=59.5,a=-2.75 即1,2 1.11 2.53s j =-± 3. 当σ%=50%时 解得 ζ=0.215 设主导极点 =ζa + a=0.215a+j0.977a 代入D (s )= 321025s s s K +++=0中, 32(0.2150.977)10(0.2150.977)25(0.2150.977)0 a j a a j a a j a K ++++++=解得K=103,a=-3.48

东南大学-数值分析上机题作业-MATLAB版

2015.1.9 上机作业题报告 JONMMX 2000

1.Chapter 1 1.1题目 设S N =∑1j 2?1 N j=2 ,其精确值为 )1 1 123(21+--N N 。 (1)编制按从大到小的顺序1 1 131121222-+ ??+-+-=N S N ,计算S N 的通用程序。 (2)编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-= N N S N ,计算S N 的通用程序。 (3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) (4)通过本次上机题,你明白了什么? 1.2程序 1.3运行结果

1.4结果分析 按从大到小的顺序,有效位数分别为:6,4,3。 按从小到大的顺序,有效位数分别为:5,6,6。 可以看出,不同的算法造成的误差限是不同的,好的算法可以让结果更加精确。当采用从大到小的顺序累加的算法时,误差限随着N 的增大而增大,可见在累加的过程中,误差在放大,造成结果的误差较大。因此,采取从小到大的顺序累加得到的结果更加精确。 2.Chapter 2 2.1题目 (1)给定初值0x 及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。 (2)给定方程03 )(3 =-=x x x f ,易知其有三个根3,0,3321= *=*-=*x x x ○1由牛顿方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收敛于根x2*。试确定尽可能大的δ。 ○2试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。 (3)通过本上机题,你明白了什么? 2.2程序

Matlab大数值计算题目

Matlab大数值计算题目 1、统计附件1中的数据,对其中的数据划分区间,从0到50,每 10个单位一个区间,分为5个区间,统计每个区间的数量,画出柱状图。 Matlab程序: clear;clc;close all Data=xlsread('数据.xls'); Q=0:10:50; n=length(Data); m=length(Q); T=zeros(size(Q)); for s=1:n for t=1:m-1 if Data(s)>Q(t)&Data(s)

2、统计附件2中第二列数据中1至100每个数字出现的总次数, 附件2中第三列为每出现第二列数字所对应的次数,最后画出柱状图。 Matlab程序: clear;clc;close all Data=load('WEIBOIDWITHCOMMENTS.txt'); DATA=Data(:,2); t=Data(:,3); % m=max(DATA); m=100; T=zeros(m,1); for i=1:m data=DATA; data(data~=ones(size(data))*i)=0; data(data~=0)=1; n=data.*t; N=sum(n); T(i)=N; end bar(T)

3、 找到矩阵迷宫的通路,矩阵第1行第1列为迷宫的入口,第8行 第8列为迷宫的出口。(0表示路,1表示墙) 000 00000011 11010000 01010010 11010010 11010010 00011010 01000011 11110?????????????????????????? Matlab 程序: 主程序: clear all clc maze=[0,0,0,0,0,0,0,0; 0,1,1,1,1,0,1,0; 0,0,0,0,1,0,1,0; 0,1,0,0,0,0,1,0; 0,1,0,1,1,0,1,0; 0,1,0,0,0,0,1,1; 0,1,0,0,1,0,0,0; 0,1,1,1,1,1,1,0]; total=0; maze(1,1)=3;

龙格库塔法求微分方程2

《MATLAB 程序设计实践》课程考核 一、编程实现“四阶龙格-库塔(R-K )方法求常微分方程”,并举一 例应用之。 【实例】采用龙格-库塔法求微分方程: ?? ?==+-=0 , 0)(1 '00 x x y y y 1、算法说明: 在龙格-库塔法中,四阶龙格-库塔法的局部截断误差约为o(h5),被广泛应用于解微分方程的初值问题。其算法公式为: )22(6 3211k k k h y y n n +++=+ 其中: ?????????++=++=++ ==) ,() 21 ,21()21 ,21() ,(34 23121hk y h x f k hk y h x f k hk y h x f k y x f k n n n n n n n n 2、流程图: 2.1、四阶龙格-库塔(R-K )方法流程图:

2.2、实例求解流程图:

3、源程序代码 3.1、四阶龙格-库塔(R-K)方法源程序: function [x,y] = MyRunge_Kutta(fun,x0,xt,y0,PointNum,varargin) %Runge-Kutta 方法解微分方程形为 y'(t)=f(x,y(x)) %此程序可解高阶的微分方程。只要将其形式写为上述微分方程的向量形式 %函数 f(x,y): fun %自变量的初值和终值:x0, xt %y0表示函数在x0处的值,输入初值为列向量形式 %自变量在[x0,xt]上取的点数:PointNum %varargin为可输入项,可传适当参数给函数f(x,y) %x:所取的点的x值 %y:对应点上的函数值 if nargin<4 | PointNum<=0 PointNum=100; end if nargin<3 y0=0; end y(1,:)=y0(:)'; %初值存为行向量形式h=(xt-x0)/(PointNum-1); %计算步长 x=x0+[0:(PointNum-1)]'*h; %得x向量值 for k=1:(PointNum)%迭代计算 f1=h*feval(fun,x(k),y(k,:),varargin{:}); f1=f1(:)'; %得公式k1 f2=h*feval(fun,x(k)+h/2,y(k,:)+f1/2,varargin{:}); f2=f2(:)'; %得公式k2 f3=h*feval(fun,x(k)+h/2,y(k,:)+f2/2,varargin{:}); f3=f3(:)'; %得公式k3 f4=h*feval(fun,x(k)+h,y(k,:)+f3,varargin{:}); f4=f4(:)'; %得公式k4 y(k+1,:)=y(k,:)+(f1+2*(f2+f3)+f4)/6; %得y(n+1) end 3.2、实例求解源程序: %运行四阶R-K法

数值分析上机题(matlab版)(东南大学)

数值分析上机题(matlab版)(东南大学)

数值分析上机报告

第一章 一、题目 精确值为)1 1 123(21+--N N 。 1) 编制按从大到小的顺序 1 1 131121222-+??+-+-= N S N ,计算S N 的通用程序。 2) 编制按从小到大的顺序 1 21 1)1(111222-+??+--+-= N N S N ,计算S N 的通用程序。 3) 按两种顺序分别计算6 42 10,10, 10S S S ,并指出有效位 数。(编制程序时用单精度) 4) 通过本次上机题,你明白了什么? 二、通用程序 clear N=input('Please Input an N (N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); Sn1=single(0); for a=2:N; Sn1=Sn1+1/(a^2-1); end Sn2=single(0); for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); end fprintf('The value of Sn using different algorithms (N=%d)\n',N); disp('____________________________________________________') fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1); fprintf('Caculate from small to large %f\n',Sn2);

龙格库塔法求微方程matlab

龙格—库塔方法求解微分方程初值问题 (数学1201+41262022+陈晓云) 初值问题: y x x -+=2dx dy ,10≤≤x 1)0(y = 四阶龙格-库塔公式: ()y x K n n ,f 1= ????? ? ??+=+K h y x K n h n 122f ,2 ??? ??++=K y x f K h n h n 232,2 ()K h y h x f K n n 34,++= ()K K K K y y h n 4 3211n 226++++=+ 程序: 1)建立四阶龙格-库塔函数 function [ x,y ] = nark4( dyfun,xspan,y0,h ) % dyfun 为一阶微分方程的函数;y0为初始条件;xspan 表示x 的区间;h 为区间的步长; x=xspan(1):h:xspan(2); y(1)=y0; for n=1:length(x)-1 k1=feval(dyfun,x(n),y(n)); k2=feval(dyfun,x(n)+h/2,y(n)+h/2*k1); k3=feval(dyfun,x(n)+h/2,y(n)+h/2*k2); k4=feval(dyfun,x(n+1),y(n)+h*k3); y(n+1)=y(n)+h*(k1+k2*2+2*k3+k4)/6; end x=x;y=y;

2)执行程序(m文件) dyfun=inline('x^2+x-y'); [x,y1]=nark4(dyfun,[0,1],1,0.1); x=0:0.1:1; Format long y2=x.^2-x+1 R4=y2-y1 [x',y1',y2',R4'] y2=dsolve('Dy=x^2+x-y','y(0)=1','x') plot(x,y1,'b*-') hold on y3=inline('x^2-x+1') fplot(y3,[0,1],'ro-') legend('R-K4','解析解') 3)执行结果 ans = X RK4近似值解析值 0 1.000000000000000 1.000000000000000 0.100000000000000 0.910000208333333 0.910000000000000 0.200000000000000 0.840000396841146 0.840000000000000 0.300000000000000 0.790000567410084 0.790000000000000 0.400000000000000 0.760000721747255 0.760000000000000 0.500000000000000 0.750000861397315 0.750000000000000 0.600000000000000 0.760000987757926 0.760000000000000 0.700000000000000 0.790001102093746 0.790000000000000 0.800000000000000 0.840001205549083 0.840000000000000 0.900000000000000 0.910001299159352 0.910000000000000 1.000000000000000 1.000001383861433 1.000000000000000

相关文档
相关文档 最新文档