文档库 最新最全的文档下载
当前位置:文档库 › 机械振动和机械波知识点总结

机械振动和机械波知识点总结

机械振动和机械波知识点总结
机械振动和机械波知识点总结

机械振动和机械波

一、知识结构

二、重点知识回顾

1机械振动

(一)机械振动

物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。

(二)简谐振动

1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。

2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位

移方向相反的回复力作用。

3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。

(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。

2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。

(四)单摆:摆角小于5°的单摆是典型的简谐振动。

细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆

的回复力F是重力在圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。

(五)振动图象。

简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。

(六)机械振动的应用——受迫振动和共振现象的分析

(1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。

(2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。

2机械波中的应用问题

1. 理解机械波的形成及其概念。

(1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。

(2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。

(3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。

(4)描述机械波的物理量关系:

注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与

传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。

【例1】单摆的运动规律为:当摆球向平衡位置运动时位移变___,回复力变____,加速度变 ,加速度a 与速度υ的方向 ,速度变 ,摆球的运动性质为_____________________,摆球的动能变_____,势能变___;当摆球远离平衡位置运动时位移变___,回复力变___,加速度变___,加速度a 与速度υ的方向____,速度变___,摆球的运动性质为_____________________,摆球的动能变____,势能变_____

【例2】 如图6-1所示,一个轻弹簧竖直固定在水平地面上,将一个小球轻放在弹簧上,M 点为轻弹簧竖直放置时弹簧顶端位置,在小球下落的过程中,小球以相同的动量通过A 、

B 两点,历时1s ,过B 点后再经过1s ,小球再一次通过B 点,小球在2s 内通过的路程为6cm ,N 点为小球下落的最低点,则小球在做简谐运动的过程中:(1)周期为 ;(2)振幅为 ;(3)

图6-1

小球由M 点下落到N 点的过程中,动能E K 、重力势能E P 、弹性势能E P ’的变化为 ;(4)小球在最低点N 点的加速度大小 重力加速度g (填>、=、<)。

分析:(1)小球以相同动量通过A 、B 两点,由空间上的对称性可知,平衡位置O 在AB 的中点;再由时间上的对称性可知,t AO =t BO =, t BN = t NB =,所以t ON =t OB +t BN =1s ,因此小球做简谐运动的周期T =4t ON =4s 。

(2)小球从A 经B 到N 再返回B 所经过的路程,与小球从B 经A 到M 再返回A 所经过的路程相等。因此小球在一个周期内所通过的路程是12cm ,振幅为3cm 。

(3)小球由M 点下落到N 点的过程中,重力做正功,重力势能减少;弹力做负功,弹性势能增加;小球在振幅处速度为零,在平衡位置处速率最大,所以动能先增大后减小。

(4)M 点为小球的振幅位置,在该点小球只受重力的作用,加速度为g ,方向竖直向下,由空间对称性可知,在另一个振幅位置(N 点)小球的加速度大小为g ,方向竖直向上。

解答:4s ;3cm ;E K 先增大后减小,E P 减少,E P ’ 增加;=。

说明:分析解决本题的关键是正确认识和利用简谐运动的对称性,其对称中心是平衡位置O ,尤其小球在最低点N 点的加速度值,是通过另一个振动最大位移的位置M 来判断的。如果小球是在离弹簧最上端一定高度处释放的,而且在整个运动过程中,弹簧始终处于弹性形变中,那么小球与弹簧接触并运动的过程可以看成是一个不完整的简谐运动。因为小球被弹簧弹起后,在弹簧处于原长时与弹簧分离,这个简谐运动有下方振动最大位移的位置,但无上方振动最大位移的位置,那么小球在运动过程中的最大加速度将大于重力加速度。

【例3】 已知某摆长为1m 的单摆在竖直平面内做简谐运动,则:(1)该单摆的周期为 ;(2)若将该单摆移到表面重力加速度为地球表面重力加速度1/4倍的星球表面,则其振动周期为 ;(3)若在悬点正下方摆长中点处钉一光滑小钉,则该小球摆动的周期为 。

分析:第一问我们可以利用单摆周期公式计算出周期;第二问是通过改变当地重力加速度来改变周期的。只要找出等效重力加速度,代入周期公式即可得解。第三问的情况较为复杂,此时小球的摆动已不再是一个完整的单摆简谐运动。但我们注意到,小球在摆动过程中,摆线在与光滑小钉接触前后,分别做摆长不同的两个简谐运动,所以我们只要求出这两个摆长不同的简谐运动的周期,便可确定出摆动的周期。

解答:(1)依据g

L T π2=,可得T =2s 。 (2)等效重力加速度为4/'g g =,则依据'2'g L T π

=,可得4'=T s 。 (3)钉钉后的等效摆长为:半周期摆长为L 1=1m ,另半周期摆长为L 2=。

则该小球的摆动周期为: 2

22''21+=+=g L g L T ππs

说明:单摆做简谐运动的周期公式是我们学习各种简谐运动中唯一给出定量关系的周期公式。应该特别注意改变周期的因素:摆长和重力加速度。例如:双线摆没有明确给出摆长,需要你去找出等效摆长;再例如:把单摆放入有加速度的系统中,等效重力加速度将发生怎样的变化。比如把单摆放入在轨道上运行的航天器中,因为摆球完全失重,等效重力加速度为0,单摆不摆动。把单摆放入混合场中,比如摆球带电,单摆放入匀强电场中,这时就需要通过分析回复力的来源从而找出等效重力加速度。这类问题将在电学中遇到。

【例4】一弹簧振子做简谐运动,振动图象如图6—3所示。振子依次振动到图中a 、b 、c 、d 、e 、f 、g 、h 各点对应的时刻时,(1)在哪些时刻,弹簧振子具有:沿x 轴正方向的最大加速度;沿x 轴正方向的最大速度。(2)弹簧振子由c 点对应x

轴的位置运动到e 点对应x 轴的位置,和由e 点对应x 轴的位置运动到g 点对应x 轴的位置

所用时间均为。弹簧振子振动的周期是多少(3)弹簧振子由e 点对应时刻振动到g 点对应时刻,它在x 轴上通过的路程是6cm ,求弹

簧振子振动的振幅。

分析:(1)弹簧振子振动的加速度与位移大小成正比,与位移方向相反。振子具有沿x 轴正方向最大加速度,必定是振动到沿x 轴具有负向的最大位移处,即图中f 点对应的时刻。

振子振动到平衡位置时,具有最大速度,在h 点时刻,振子速度最大,再稍过一点时间,振子的位移为正值,这就说明在h 点对应的时刻,振子有沿x 轴正方向的最大速度。

(2)图象中c 点和e 点,对应振子沿x 轴从+7cm 处振动到-7cm 处。e 、f 、g 点对应振子沿x 轴,从-7cm 处振动到负向最大位移处再返回到-7cm 处。由对称关系可以得出,振子从c 点对应x 轴位置振动到g 点对应x 轴位置,振子振动半周期,时间为,弹簧振子振动周期为T =。

(3)在e 点、g 点对应时间内,振子从x 轴上-7cm 处振动到负向最大位移处,又返回-7cm 处行程共6cm ,说明在x 轴上负向最大位移处到-7cm 处相距3cm ,弹簧振子的振幅A =10cm 。

解答:(1)f 点;h 点。(2)T =。(3)A =10cm 。

说明:本题主要考察结合振动图象如何判断在振动过程中描述振动的各物理量及其变化。讨论振子振动方向时,可以把振子实际振动情况和图象描述放在一起对比,即在x 轴左侧画一质点做与图象描述完全相同的运动形式。当某段图线随时间的推移上扬时,对应质点的振动方向向上;同理若下降,质点振动方向向下。振动图象时间轴各点的位置也是振子振动到对应时刻平衡位置的标志,在每个时刻振子的位移方向永远背离平衡位置,而回复力和加速度方向永远指向平衡位置,这均与振动速度方向无关。因为振子在一个全振动过程中所通过的路程等于4倍振幅,所以在t 时间内振子振动n 个周期,振子通过的路程就为4nA 。

【例6】 一弹簧振子做简谐运动,周期为T ,以下说法正确的是( )

A. 若t 时刻和(t +Δt )时刻振子运动位移的大小相

6-3

等、方向相同,则Δt 一定等于T 的整数倍

B. 若t 时刻和(t +Δt )时刻振子运动速度的大小相等、方向相反,则Δt 一定等于T /2的整数倍

C. 若Δt =T /2,则在t 时刻和(t +Δt )时刻振子运动的加速度大小一定相等

D. 若Δt =T /2,则在t 时刻和(t +Δt )时刻弹簧的长度一定相等

分析:如图6-4所示为物体做简谐运动的图象。由图象可知,在t 1、t 2两个

时刻,振子在平衡位置同侧的同一位置,即位移大小相等,方向相同,而T t t t <-=?12,

所以选项A 错误。

在t 1时刻振子向远离平衡位置方向振动,即具有正向速度,在

t 2时刻振子向平衡位置方向振动,即具有负向速度,但它们速度大 小相等。而2

12T t t t <-=?。所以选项B 错误。 因为T t t t =-=?14,振子在这两个时刻的振动情况完全相同,所以具有相同的加速度,选项C 正确。 因为2

13T t t t =-=?,振子在这两个时刻位于平衡位置的两侧,即若t 1时刻弹簧处于伸长状态,则t 3时刻弹簧处于压缩状态。所以选项D 错误。

解答:选项C 正确。

说明:做简谐运动的物体具有周期性,即物体振动周期的整数倍后,物体的运动状态与初状态完全相同。做简谐运动的物体具有对称性,即描述振动的物理量的大小(除周期和频率外)在关于平衡位置对称的两点上都相等,但矢量的方向不一定相同。做简谐运动的物体具有往复性,即当物体振动回到同一点时,描述振动的物理量的大小(除周期和频率外)相同,但矢量的方向不一定相同。

【例7】在某介质中,质点O 在t =0时刻由平衡位置开始向上振动。经第一次向上振动到最大位移处。同时,产生的横波水平向右传播了50cm 。在O 点右侧有一点P ,与O 点相距8m 。求:(1)这列横波的波速;(2)波动传播到P 点,P 点刚开始振动时的速度方向;(3)从O 点开始振动到P 点第一次到达波峰位置所需时间

分析:由题目所给条件可知:振源在内振动了1/4周期,波对应向右传播1/4个波长,从而可以确定波长和周期,进而求出波速。因为波匀速向前传播,所以波从O 点传播到P 点所用时间=OP 距离/波速。当波传播到P 点时,O 点的振动形式也传播到了P 点,因而P 点的起振方向与O 点起振方向相同,即为竖直向上,P 点由平衡位置第一次到达波峰还在需要T 4

1时间。

解答:(1)由题意知:周期T =×4=(s)

波长λ=×4=2(m)

∴波速(5==T v λm/s) (2)P 点刚开始振动时的速度方向为竖直向上。

(3)设所求时间为t ,则

7.14

1=+=T v OP t (s ) 说明:题目本身并不难,但要求对机械波的形成和传播能有一个正确的理解,在多数有关机械波的高考题目中也是这样体现的。随着波的传播,振动形式和能量在传播,所以波动涉及到的每一个质点都要把振源的振动形式向外传播,即进行完全重复的振动,其刚开始的振动方向一定与振源的起振方向相同。

【例8】如图6-10所示,甲为某一简谐横波在t =时刻的图象,乙为参与波动的某一质点的振动图象。

(1)两图中的AA ’、OC 各表示什么物理量量值各是多少 (2)说明两图中OA ’B 段图线的意义

(3)该波的波速为多大 (4)画出再经过0 .25s 后的波动图象和振动图象。

(5)甲图中P 点此刻的振动方向。

分析:依据波动图象和振动图象的物理意义来分析判断。注意振动图象和波动图象的区别与联系。

解答:(1)甲图中的AA ’表示振幅A 和x =1m 处的质点在t =时对平衡位置的位移,振幅A =,位移y=;甲图中OC 表示波长,大小=4m 。乙图中AA ’即是质点振动的振幅,又是t =时质点偏离平衡位置的位移,振幅A =,位移y =;OC 表示质点振动的周期,大小T =。

(2)甲图中的OA ’B 段图线表示O 到B 之间的各质点在t =时相对平衡位置的位移,OA 间各质点正向着平衡位置运动,AB 间各质点正在远离平衡位置运动。乙图中的OA ’B 段图线表示该质点在t =0~时间内振动位移随时间变化的情况,在0~内该质点正远离平衡位置运动,在~内该质点正向平衡位置

运动。 (3)由v =/t 可得波速

v =1

4m/s= 4m/s (4)再过,波动图象向右平移x =vt =4m=1m=/4;振动图象在原有的基础上向后延伸T /4,图象分别如图6-11丙、丁所示

(5)已知波的传播方向(或某质点的振动方向)判定图象上该时刻各质点的振动方向(或波的传播方向),常用方法如下:

图6-10 ’ m ’ 图6-10 m

a .带动法:根据波动过程的特点,利用靠近波源的点带动它邻近的离波源稍远的点的特性,在被判定振动方向的点P 附近图象上靠近波源一方找一点P ’,若在P 点的上方,则P ’带动P 向上运动,如图所示;若P ’在P 点的下方,则P ’带动P 向下运动。

b .微平移法:将波形沿波的传播方向做微小移动x

c .口诀法:沿波的传播方向看,“上山低头,下山抬头”,其中“低头”表示质点向下运动,“抬头” 表示质点向上运动。

故P 向上振动。

说明:波动图象和振动图象的形状相似,都是正弦或余弦曲线,其物理意义有本质的区别,但它们之间又有联系,因为参与波动的质点都在各自的平衡位置附近振动,质点振动的周期也等于波动的周期。

【例9】如图6-11所示,一列在x 轴上传播的横波t 0时刻的图线用实线表

示,经Δt =时,其图线用虚线表示。已知此波的波长为2m ,则以下说法正确的是:( )

A. 若波向右传播,则最大周期为2s

B. 若波向左传播,则最大

周期为2s

C. 若波向左传播,则最小

波速是9m/s D. 若波速是19m/s ,则波

的传播方向向左

分析:首先题目中没有给出波的传播方向,因而应分为两种情况讨论。例如波向右传播,图中实线所示横波经过传播的距离可以为, +λ)m, +2λ)m ……,其波形图均为图中虚线所示。因而不论求周期最小值还是求周期的最大值,都可以先写出通式再讨论求解。

解答:如果波向右传播,传播的距离为(+n λ)m (n =1,2,3……),则传播速度为2.022.0n t s v +=?=m/s ,取n =0时对应最小的波速为1m/s ,根据周期v

T λ=,得最大的周期为2s 。因此选项A 是正确的;

如果波向左传播,传播的距离为(n λ-) m (n =1,2,3……),则传播速度为

2.02.02-n t

s v =?=m/s ,取n =1时对应最小的波速为9m/s ,根据周期v

T λ=,得最大的周期为92s 。因此选项C 是正确的,B 是错误的;在向左传播的波速表达式中,当取n =2时,计算得波速为19 m/s ,因此选项D 是正确的。

说明:1. 在已知两个时刻波形图研究波的传播问题时,因为波的传播方向有两种可能,一般存在两组合理的解。又由于波的传播在时间和空间上的周期性,每组解又有多种可能性。为此,这类问题的解题思路一般为:先根据波的图象写出波的传播距离的通式,再根据波速公式列出波速或时间的通式,最后由题目给出的限制条件,选择出符合条件的解。

图6-11

2. 本题还可以直接考虑:例如对选项A :因为波长一定,若周期最大,则波速必最小,波在相同时间内()传播距离必最短,即为。由此可知最小波速为1m/s ,从而依据波速公式可求出最大周期为2s 。其它各选项同理考虑。这样做的主要依据是波是匀速向前传播的,紧抓波速、传播距离、传播时间三者的关系,其实波速公式也是这三者关系的一个体现。

【例10】绳中有列正弦横波,沿x 轴传播,图中6—12中a 、b 是绳上两点,它们在x 轴方向上的距离小于一个波长。a 、b 两点的振动图象如图6-13所示。试

在图6-12上a 、b 之间画出t =时的波形图。

分析:首先我们先由振动图象确定t =时a 、b 两质点在波形图上的位置以及振动方向,然后在一列已经画好的常规波形图上按题意截取所需波形既可。因为题中没给波的传播方向,所以要分两种情况讨论。

解答:由振动图象可知:t =时,质点a 处于正向最大位移处(波峰处),质点b 处于平衡位置且向下振动。先画出一列沿x 轴正方向传播的波形图,如图6-14所示。在图左侧波峰处标出a 点。b 点在a 的右测,到a 点距离小于1个波长的平衡位置,即可能是b 1、b 2两种情况。而振动方向向下的点只有b 2。题中所求沿x

轴正方向传播的波在a 、b 之间的波形图即为图6-14中ab 2段所示。画到原题图

上时波形如图6-15甲(实线)所示。

同理可以画出波沿x 轴负方向传播在a 、b 之间的波形图,如图6-15乙(虚线)所示。

说明:1. 分析解决本题的关键是要搞清楚振动图象和波动图象的区别和联系。振动图象详细描述了质点位移随时间的变化,但要找该质点在波中的位置,就必须关心所画波形图对应哪个时刻,进而由振动图象找到在这个时刻该质点的位置及振动方向。

如果已知质点的振动方向、机械波的传播方向和机械波的波形中的任意两个,就可以对第三个进行判断,这也是贯穿整个机械波这部分内容的基本思路和方法。值得注意的是:如果已知质点的振动方向、波的传播方向,再判断机械波的波形时,由于机械波传播的周期性,可能造成波形的多解。例如本题中没有“a 、b 在x 轴方向上的距离小于一个波长”这个条件,就会造成多解现象。

图6-12

图6-14

本题还可以利用“同侧法”来画图。“同侧法” 是来判断质

点的振动方向、机械波的传播方向和机械波的波形三者关系的方法。其结论是:质点的振动方向、机械波的传播方向必在质点所在波形图线的同一

侧。例如图6-16(甲) 所示是一列沿x 轴正方向传播的简谐波图象,若其上M 点的振动方向向下,则该点的振动方向与波的传播方向在

线的同侧;如图6—16(乙)图所示,若其上M 则该点的振动方向与波的传播方向在M “同侧法”的判定,质点M 的振动方向向下 。 对于本题中沿x 轴正方向传播的情况,因为质点b 向下,波沿x 轴正方向传播,为保证波传播方向、质点振动方向

在该点图线的“同侧”,波形图只能是图6-17中实线所示。图线

若为虚线所示,则波传播方向、质点振动方向在该点图线的“两侧”。同理对沿x 轴负方向传播的情况。有时我们还可以用图像平移法画图。

【例19】从一条弦线的两端,各发生一如图6—24所示的脉冲横波,它们均沿弦线传播,速度相等,传播方向相反。已知这两个脉冲的宽度均为L

,当左边脉冲的前端到达弦中的a 点时,右边脉冲的前端正好到达与a 相距L/2的b 点。请画出此时弦线上的脉冲波形。

分析

右传播到a 点,而右边的脉冲前端向左传到b 在a 、b

形如图6—25所示。

说明:此题是依据波的叠加原理而求解的。“叠加”的

核心是位移的叠加,即在叠加区域内每一质点的振动位置由

合位移决定。质点振动速度由合速度决定。

【例20】如图6-26所示,S 1、S 2是振动情况完全相同的两个机械波波源,振

幅为A ,a 、b 、c 三点分别位于S 1、S 2连线的中垂线上,且ab =bc 。某时刻a 是两列波的波峰相遇点,c 是两列波的波谷相遇点,则 ( )

A 、 a 处质点的位移始终为2A

B 、 c 处质点的位移始终为-2A

C 、 b 处质点的振幅为2A

D 、 c 处质点的振幅为2A

分析:因为两个波源的频率相同,振动情况也相同,而a 、b 、c 三点分别到两个波源的距离之差均为0,依判断条件可知该三个点的振动都是加强的,即各点 图6-16(甲) 图6-16(乙) 图6-25 S 1 2

振动的振幅均为两波振幅之和2A。

解答:选项CD是正确的。

说明:对于稳定的干涉现象中的振动始终加强的点,应理解为两列波传到该点的振动位移及振

动方向完全一致,使得该点的振动剧烈,表现为该质点振动的振幅始终最大,而不是位移最大。如本题中的a点此时刻在波峰处,但过1/4周期该点会振动到平衡位置;b点位于ac中点,该时刻它位于平衡位置,但过1/4周期该点会振动到波峰位置。所以a、b、c所在这条线为振动加强区域。

对于稳定的干涉现象中的振动始终减弱的点,应理解为两列波传到该点的振动位移及振动方向相反,使得该点的振动减弱,表现为该质点振动的振幅始终最小,而不是位移最小。

【例22】关于多普勒效应的叙述,下列说法正确的是()

A. 产生多普勒效应的原因是波源频率发生了变化

B. 产生多普勒效应的原因是观察者和波源之间发生了相对运动

C. 甲乙两车相向行驶,两车均鸣笛,且发出的笛声频率相同,乙车中的某旅客听到的甲车笛声频率低于他听到的乙车笛声频率

D. 波源静止时,不论观察者是静止的还是运动的,对波长“感觉”的结果是相等的

【例23】根据多普勒效应,我们知道当波源与观察者相互接近时,观察者接收到的频率增大;如果二者远离,观察者接收到的频率减小。由实验知道遥远的星系所生成的光谱都呈现“红移”,即谱线都向红色部分移动了一段距离,由此现象可知()

A、宇宙在膨胀

B、宇宙在收缩

C、宇宙部分静止不动

D、宇宙只发出红光光谱

【例24】声纳(水声测位移)向水中发出的超声波,遇到障碍物(如鱼群、潜艇、礁石等)后被反射,测出发出超声波到接收到反射波的时间及方向,即可算出障碍物的方位,;雷达则向空中发射电磁波,遇到障碍物后被反射,同样根据发射电磁波到接收到反射波的时间及方向,即可算出障碍物的方位。超声波与电磁波相比较,下列说法正确的是()

A. 超声波和电磁波在传播时,都向外传递能量,但超声波不能传递信息

B. 这两种波都可以在介质中传播,也可以在真空中传播

C. 在真空中传播的速度与在其他介质中传播的速度相比较,这两种波在空气中传播时具有较大的传播速度

D.这两列波传播时,在一个周期内向前传播一个拨长

高中物理专题练习-机械振动与机械波 光及光的本性(含答案)

高中物理专题练习-机械振动与机械波光及光的本性(含答案) (时间:45分钟) 1.(江苏单科,12B)(12分)(1)某同学用单色光进行双缝干涉实验,在屏上观察到如图甲所示的条纹,仅改变一个实验条件后,观察到的条纹如乙图所示.他改变的实验条件可能是________. A.减小光源到单缝的距离 B.减小双缝之间的距离 C.减小双缝到光屏之间的距离 D.换用频率更高的单色光源 (2)在“探究单摆的周期与摆长的关系”实验中,某同学准备好相关实验器材后,把单摆从平 衡位置拉开一个很小的角度后释放,同时按下秒表开始计时,当单摆再次回到释放位置时停止计时,将记录的这段时间作为单摆的周期.以上操作中有不妥之处,请对其中两处加以改正. (3)Morpho蝴蝶的翅膀在阳光的照射下呈现出闪亮耀眼的蓝色光芒,这是因为光照射到翅膀 的鳞片上发生了干涉.电子显微镜下鳞片结构的示意图如图.一束光以入射角i从a点入射,经过折射和反射后从b点出射.设鳞片的折射率为n,厚度为d,两片之间空气层厚度为h.取光在空气中的速度为c,求光从a到b所需的时间t. 2.(江苏单科,12B)(12分)(1)一渔船向鱼群发出超声波,若鱼群正向渔船靠近,则被鱼群反射回来的超声波与发出的超声波相比________. A.波速变大B.波速不变 C.频率变高D.频率不变 (2)用2×106 Hz的超声波检查胆结石,该超声波在结石和胆汁中的波速分别为2 250 m/s和1 500 m/s,则该超声波在结石中的波长是胆汁中的________倍.用超声波检查胆结石是因为超

声波的波长较短,遇到结石时________(选填“容易”或“不容易”)发生衍射. (3)人造树脂是常用的眼镜镜片材料.如图所示,光线射在一人造树脂立方体上,经折射后,射 在桌面上的P点.已知光线的入射角为30°,OA=5 cm,AB=20 cm,BP=12 cm,求该人造树脂材料的折射率n. 3.(新课标全国卷Ⅰ,34)(15分)(1)(5分)在双缝干涉实验中,分别用红色和绿色的激光照射同一双缝.在双缝后的屏幕上,红光的干涉条纹间距Δx1与绿光的干涉条纹间距Δx2相比,Δx1____Δx2(填“>”、“=”或“<”).若实验中红光的波长为630 nm,双缝与屏幕的距离为1.00 m,测得第1条到第6条亮条纹中心间的距离为10.5 mm,则双缝之间的距离为________ mm. (2)(10分)甲、乙两列简谐横波在同一介质中分别沿x轴正向和负向传播,波速均为v=25 cm/s.两列波在t=0时的波形曲线如图所示.求: (ⅰ)t=0时,介质中偏离平衡位置位移为16 cm的所有质点的x坐标; (ⅱ)从t=0开始,介质中最早出现偏离平衡位置位移为-16 cm的质点的时间.

高中物理机械振动和机械波知识点

高中物理机械振动和机械波知识点 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅. ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱. ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f. (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹. ②特点:简谐运动的图像是正弦(或余弦)曲线. ③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T. 3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型. (1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°. (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力. (3)作简谐运动的单摆的周期公式为:T=2π ①在振幅很小的条件下,单摆的振动周期跟振幅无关. ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关. ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值). 4.受迫振动 (1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动. (2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关. (3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振. 共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波. (1)机械波产生的条件:①波源;②介质 (2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷). ②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部. [注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.

机械振动和机械波知识点总结与典型例题

高三物理第一轮复习《机械振动和机械波》 一、机械振动: (一)夯实基础: 1、简谐运动、振幅、周期和频率: (1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。 特征是:F=-kx,a=-kx/m (2)简谐运动的规律: ①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。 ②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。 ③振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。 ④当质点向远离平衡位置的方向运动时,质点的速度减小、动量减小、动能减小,但位移增大、回复力增大、加速度增大、势能增大,质点做加速度增大减速运动;当质点向平衡位置靠近时,质点的速度增大、动量增大、动能增大,但位移减小、回复力减小、加速度减小、势能减小,质点做加速度减小的加速运动。 ④弹簧振子周期:T= 2 (与振子质量有关,与振幅无关) (3)振幅A :振动物体离开平衡位置的最大距离称为振幅。它是描述振动强弱的物理量, 是标量。 (4)周期T 和频率f :振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为频率,单位是赫兹(Hz )。周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f. 2、单摆: (1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。 (2)单摆的特点: ○ 1单摆是实际摆的理想化,是一个理想模型; ○ 2单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关; ○3单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角α<100 时,单摆的振动是简谐运动,其振动周期T= g L π 2。 (3)单摆的应用:○1计时器;○2测定重力加速度g=2 24T L π. 3、受迫振动和共振: (1)受迫振动:物体在周期性驱动力作用下的振动叫受迫振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 (2)共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。 ○ 2产生共振的条件:驱动力频率等于物体固有频率。○3共振的应用:转速计、共振筛。 4、简谐运动图象: (1)特点:用演示实验证明简谐运动的图象是一条正弦(或余弦)曲线。 (2)简谐运动图象的应用: ①可求出任一时刻振动质点的位移。 ②可求振幅A :位移的正负最大值。 ③可求周期T :两相邻的位移和速度完全相同的状态的时间间隔。 ④可确定任一时刻加速度的方向。 ⑤可求任一时刻速度的方向。 ⑥可判断某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。 πm K

大学物理 机械振动与机械波

大学物理单元测试 (机械振动与机械波) 姓名: 班级: 学号: 一、选择题 (25分) 1 一质点作周期为T 的简谐运动,质点由平衡位置正方向运动到最大位移一半处所需的最短时间为( D ) (A )T/2 (B )T/4 (C)T/8 (D )T/12 2 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的( E ) (A )7/16 (B )9/16 (C )11/16 (D )13/16 (E )15/16 3 一质点作简谐运动,其振动方程为 )3 2cos( 24.0π π + =t x m, 试用旋转矢量法求出质点由初始状态运动到 x =-0.12 m,v <0的状态所经过的最短时间。 (C ) (A )0.24s (B ) 3 1 (C )3 2 (D )2 1 4 一平面简谐波的波动方程为:)(2cos λνπx t A y - =,在ν 1 = t 时刻,4 31λ= x 与 4 2λ = x 两处质点速度之比:( B ) (A )1 (B )-1 (C )3 (D )1/3 5 一平面简谐机械波在弹性介质中传播,下述各结论哪个正确?( D ) (A)介质质元的振动动能增大时,其弹性势能减小,总机械能守恒. (B)介质质元的振动动能和弹性势能都作周期性变化,但两者相位不相同 (C)介质质元的振动动能和弹性势能的相位在任一时刻都相同,但两者数值不同. (D)介质质元在其平衡位置处弹性势能最大. 二、填空题(25分) 1 一弹簧振子,弹簧的劲度系数为0.3 2 N/m ,重物的质量为0.02 kg ,则这个系统的固有频率为____0.64 Hz ____,相应的振动周期为___0.5π s______. 2 两个简谐振动曲线如图所示,两个简谐振动的频率之比 ν1:ν2 = _2:1__ __,加速度最大值之比a 1m :a 2m = __4:1____,初始速率之比 v 10 :v 20 = _2:1__ ___.

专题(17)机械振动与机械波 光 电磁波(解析版)

第 1 页 共 14 页 2021年高考物理二轮重点专题整合突破 专题(17)机械振动与机械波 光 电磁波(解析版) 高考题型1 机械振动与机械波 1.必须理清的知识联系 2.巧解波的图象与振动图象综合问题的基本方法 3.波的叠加问题 (1)两个振动情况相同的波源形成的波,在空间某点振动加强的条件为Δx =nλ(n =0,1,2,…),振动减弱的条件为Δx =(2n +1)λ 2(n =0,1,2,…).两个振动情况相反的波源形成的波,在空间某点振动加强的条件为Δx = (2n +1)λ 2(n =0,1,2,…),振动减弱的条件为Δx =nλ(n =0,1,2,…). (2)振动加强点的位移随时间而改变,振幅为两波振幅的和A 1+A 2. 4.波的多解问题 由于波的周期性、波传播方向的双向性,波的传播易出现多解问题.

第 2 页 共 14 页 【例1】 (2020·全国卷Ⅲ·34(1))如图1,一列简谐横波平行于x 轴传播,图中的实线和虚线分别为t =0和t =0.1 s 时的波形图.已知平衡位置在x =6 m 处的质点,在0到0.1 s 时间内运动方向不变.这列简谐波的周期为________ s ,波速为________ m/s ,传播方向沿x 轴________(填“正方向”或“负方向”). 图1 【答案】0.4 10 负方向 【解析】根据x =6 m 处的质点在0到0.1 s 时间内运动方向不变,可知波沿x 轴负方向传播,且T 4=0.1 s , 得T =0.4 s ,由题图知波长λ=4 m ,则波速v =λ T =10 m/s. 【例2】(多选)(2019·全国卷Ⅲ·34)一简谐横波沿x 轴正方向传播,在t =T 2时刻,该波的波形图如图2(a)所示, P 、Q 是介质中的两个质点.图(b)表示介质中某质点的振动图象.下列说法正确的是( ) 图2 A .质点Q 的振动图象与图(b)相同 B .在t =0时刻,质点P 的速率比质点Q 的大 C .在t =0时刻,质点P 的加速度的大小比质点Q 的大 D .平衡位置在坐标原点的质点的振动图象如图(b)所示 E .在t =0时刻,质点P 与其平衡位置的距离比质点Q 的大 【答案】CDE 【解析】t =T 2时刻,题图(b)表示介质中的某质点从平衡位置向下振动,而题图(a)中质点Q 在t =T 2 时刻从平

高中物理机械振动知识点总结

一. 教案内容: 第十一章机械振动 本章知识复习归纳 二. 重点、难点解读 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线 方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表

高中物理机械振动和机械波知识点.doc

高中物理机械振动和机械波知识点 "机械振动和机械波是高中物理教学中的难点,有哪些知识点需要学生学习呢?下面我给大家带来高中物理课本中机械振动和机械波知识点,希望对你有帮助。 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅. ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱. ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即 T=1/f. (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.

②特点:简谐运动的图像是正弦(或余弦)曲线. ③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T. 3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型. (1)单摆的振动可看作简谐运动的条件是:最大摆角<5. (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力. (3)作简谐运动的单摆的周期公式为: ①在振幅很小的条件下,单摆的振动周期跟振幅无关. ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关. ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g等于摆球静止在平衡位置时摆线的张力与摆球质量的比值). 4.受迫振动 (1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.

机械振动和机械波知识点总结教学教材

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==? λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 2. 会用图像法分析机械振动和机械波。 振动图像,例:波的图像,例: 振动图像与波的图像的区别横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置 表征单个质点振动的位移随时间变 化的规律 表征大量质点在同一时刻相对于平衡位 置的位移 相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T s =4 相邻的两个振动始终同向的质点间的距 离表示波长。例:λ=8m

高考物理二轮复习专题机械振动与机械波光学案

专题11 机械振动与机械波 光 本专题在高考中的出题方向,一是以图象为主,考查简谐运动的特点和波传播的空间关系,题型为选择题、填空题或计算题;二是以常规模型或实际生活材料为背景,考查折射率、全反射等基本规律的应用,题型为选择题或计算题。 高频考点:波动图象的分析及应用;振动图象与波动图象的综合分析;波的多解问题;光的折射及折射率的计算;光的折射与全反射的综合。 考点一、波动图象的分析及应用 例 (2020·全国Ⅲ卷)(多选)如图,一列简谐横波沿x 轴正方向传播,实线为t =0时的波形图,虚线为t =0.5 s 时的波形图。已知该简谐波的周期大于0.5 s 。关于该简谐波,下列说法正确的是( ) A .波长为2 m B .波速为6 m/s C .频率为1.5 Hz D .t =1 s 时,x =1 m 处的质点处于波峰 E .t =2 s 时,x =2 m 处的质点经过平衡位置 【审题立意】本题考查机械波的相关知识,意在考查考生对与机械波相关的物理量的理解和掌握,以及分析波形图的能力。 【解题思路】由题图可知简谐横波的波长为λ=4 m ,A 项错误;波沿x 轴正向传播,t =0.5 s =3 4T , 可得周期T =23 s ,频率f =1T =1.5 Hz ,波速v =λ T =6 m/s ,B 、C 项正确;t =0时刻,x =1 m 处的质点 在波峰,经过1 s =3 2T ,一定在波谷,D 项错误;t =0时刻,x =2 m 处的质点在平衡位置,经过2 s =3T , 质点一定经过平衡位置,E 项正确。 【参考答案】BCE 【技能提升】解题常见误区及提醒 1. 误认为波的传播速度与质点振动速度相同; 2. 误认为波的位移与质点振动位移相同; 3. 实际上每个质点都以它的平衡位置为中心振动,并不随波迁移。 【变式训练】2020年2月6日23时50分,台湾花莲县附近海域发生6.5级地震。如果该地震中的简谐横波在地球中匀速传播的速度大小为4 km/s ,已知波沿x 轴正方向传播,某时刻刚好传到N 处,如图所示,则下列说法中正确的是( ) 考向预测 知识与技巧的梳理

机械振动 知识点总结

机械振动 1、判断简谐振动的方法 简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。特征是:F=-kx,a=-kx/m. 要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。 然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。 2、简谐运动中各物理量的变化特点 简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系: 如果弄清了上述关系,就很容易判断各物理量的变化情况 3、简谐运动的对称性 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。 理解好对称性这一点对解决有关问题很有帮助。 4、简谐运动的周期性 5、简谐运动图象 简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。 6、受迫振动与共振 (1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 位移x 回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K 2

N考核《大学物理学》机械振动与机械波部分练习题(解答)

《大学物理学》机械振动与机械波部分练习题(解答) 一、选择题 1.一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 ( C ) (A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。 2.两个简谐振动的振动曲线如图所示,则有 ( A ) (A )A 超前/2π; (B )A 落后/2π; (C )B 超前/2π; (D )B 落后/2π。 3.一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: ( D ) (A )/4T ; (B )/6T ; (C )/8T ; (D )/12T 。 4.分振动方程分别为13cos(50)4 x t π π=+ 和234cos(50)4 x t ππ=+ (SI 制)则它们的合 振动表达式为: ( C ) (A )5cos(50)4 x t π π=+ ; (B )5cos(50)x t π=; (C )1 15cos(50)2 7 x t tg π π-=+ +; (D )1 45cos(50)2 3 x t tg π π-=+ +。 5.两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l ?和2l ?,且1l ?=22l ?,两弹簧振子的周期之比T 1:T 2为 ( B ) (A )2; (B )2; (C )1/2; (D )2/1。 6.一个平面简谐波沿x 轴负方向传播,波速u=10m/s 。x =0处,质点振动曲线如图所示,则该波的表式为 (A ))2 20 2 cos( 2π π π + + =x t y m ; (B ))2 20 2 cos( 2π π π - + =x t y m ; (C ))2 20 2 sin( 2π π π + + =x t y m ; (D ))2 20 2 sin( 2π π π - + =x t y m 。 2 -

机械振动与机械波计算题

机械振动与机械波(计算题) 1.(16分)如图甲是某简谐横波在t=0时刻的图像,如图乙是A 点的振动图像,试求: (1)A 点的振幅多大、此时振动的方向如何 (2)该波的波长和振动频率。 (3)该波的波速的大小及方向如何 2.(10分)如图1所示,一列简谐横波沿x 轴正方向传播,波速为v = 80m/s 。P 、S 、Q 是波传播方向上的三个质点,已知距离PS = 、SQ = 。在t = 0的时刻,波源P 从平衡位置(x = 0,y = 0)处开始向上振动(y 轴正方向),振幅为15cm ,振动周期T = 。 (1)求这列简谐波的波长λ ; (2)在图2中画出质点P 的位移—时间图象(在图中标出横轴的标度,至少画出一个周期); (3)在图3中画出波传到Q 点时的波形图(在图中标出横轴的标度)。 v 图1 x - -×甲 乙

3.(9分) (1)下列说法中正确的是________. A .水面上的油膜在阳光照射下会呈现彩色,这是由光的衍射造成的 B .根据麦克斯韦的电磁场理论可知,变化的电场周围一定可以产生变化的磁场 C .狭义相对论认为:不论光源与观察者做怎样的相对运动,光速都是一样的 D .在“探究单摆周期与摆长的关系”的实验中,测量单摆周期应该从小球经过最大位移处开始计时,以减小实验误差 (2)如图9所示,一个半径为R 的14 透明球体放置在水平面上,一束蓝光从A 点沿水平方向射入球体后经B 点射出,最后射到水平面上的C 点.已知OA = 2 R ,该球 体对蓝光的折射率为.则它从球面射出时的出射角β=________;若换用一束红光同样从A 点射向该球体,则它从球体射出后落到水平面上形成的光点与C 点相比,位置________(填“偏左”、“偏右”或“不变”). (3)一列简谐横波沿x 轴正方向传播,周期为2 s ,t =0时刻的波形如图10所示.该列波的波速是________m/s ;质点a 平衡位置的坐标x a = m ,再经________s 它第一次经过平衡位置向y 轴正方向运动. 4.如图12-2-12甲所示,在某介质中波源A 、B 相距d =20 m ,t =0时两者开始上下振动,A 只振动了半个周期,B 连续振动,所形成的波的传播速度都为v = m/s ,开始阶段两波源的振动图象如图乙所示. (1)定性画出t = s 时A 波所达位置一定区域内的实际波形; (2)求时间t =16 s 内从A 发出的半波前进过程中所遇到的波峰个数. y /c t/ × 0 15 -15 图2 y /c x/m 0 15 -15 图3

高考物理专题16机械振动和机械波 真题分类汇编(教师版)

专题16 机械振动和机械波 1.(2019·新课标全国Ⅰ卷)一简谐横波沿x 轴正方向传播,在t = 2 T 时刻,该波的波形图如图(a )所示,P 、Q 是介质中的两个质点。图(b )表示介质中某质点的振动图像。下列说法正确的是 A .质点Q 的振动图像与图(b )相同 B .在t =0时刻,质点P 的速率比质点Q 的大 C .在t =0时刻,质点P 的加速度的大小比质点Q 的大 D .平衡位置在坐标原点的质点的振动图像如图(b )所示 E .在t =0时刻,质点P 与其平衡位置的距离比质点Q 的大 【答案】CDE 【解析】由图(b )可知,在2T t = 时刻,质点正在向y 轴负方向振动,而从图(a )可知,质点Q 在2 T t = 正在向y 轴正方向运动,故A 错误;由2 T t = 的波形图推知,0t =时刻,质点P 正位于波谷,速率为零;质点Q 正在平衡位置,故在0t =时刻,质点P 的速率小于质点Q ,故B 错误;0t =时刻,质点P 正位于波谷,具有沿y 轴正方向最大加速度,质点Q 在平衡位置,加速度为零,故C 正确;0t =时刻,平衡位置在坐标原点处的质点,正处于平衡位置,沿y 轴正方向运动,跟(b )图吻合,故D 正确;0t =时刻,质点P 正位于波谷,偏离平衡位置位移最大,质点Q 在平衡位置,偏离平衡位置位移为零,故E 正确。故本题选CDE 。 2.(2019·新课标全国Ⅱ卷)如图,长为l 的细绳下方悬挂一小球a 。绳的另一端固定在天花板上O 点处,在O 点正下方3 4 l 的O '处有一固定细铁钉。将小球向右拉开,使细绳与竖直方向成一小角度(约为2°)后由静止释放,并从释放时开始计时。当小球a 摆至最低位置时,细绳会受到铁钉的阻挡。设小球相对于其平衡位置的水平位移为x ,向右为正。下列图像中,能描述小球在开始一个周期内的x-t 关系的是

专题七 第2讲 机械振动和机械波 光 电磁波

第2讲 机械振动和机械波 光 电磁 波 机械振动和机械波 [必 备 知 识] 1.必须理清知识间的联系 2.必须弄明的六个问题 (1)单摆的回复力是重力的切向分力,或合力在切向的分力。单摆固有周期T =2πl g 。 (2)阻尼振动的振幅尽管在减小,但其振动周期(频率)不变,它是由振动系统决定的。 (3)稳定时,受迫振动的周期或频率等于驱动力的周期或频率,与物体的固有频率无关。共振图象的横坐标为驱动力的频率,纵坐标为受迫振动物体的振幅。共振条件:f 驱=f 固。 (4)机械波必须要在介质中传播。振动质点是“亦步亦趋”,但不“随波逐流”! (5)横波是质点振动方向与波的传播方向垂直的波。注意:“垂直”是一个直线和一个面的关系——沿水平方向传播的横波,质点可能不只是上下振动。 (6)机械波传播时,频率(f )由振源决定,与介质无关且稳定不变,波速(v )由介质决定。波从一种介质进入另一种介质,频率不会发生变化,因为速度变化了,所

以波长将发生改变。 [真题示例] 1.[2017·全国卷Ⅰ,34(1)]如图1(a),在xy平面内有两个沿z方向做简谐振动的点波源S1(0,4)和S2(0,-2)。两波源的振动图线分别如图(b)和图(c)所示。两列波的波速均为1.00 m/s。两列波从波源传播到点A(8,-2)的路程差为________m,两列波引起的点B(4,1)处质点的振动相互________(填“加强”或“减弱”),点C(0,0.5)处质点的振动相互________(填“加强”或“减弱”)。 图1 解析由几何关系可知两波源到A点的距离为AS1=10 m,AS2=8 m,所以两波的路程差为2 m;同理可得,BS1-BS2=0,为波长的整数倍,由振动图象知两振源振动方向相反,故B点振动减弱;两波源到C点的路程差为Δx=CS1-CS2=1 m,波长λ=v T=2 m,所以C点振动加强。 答案2减弱加强 2.[2017·全国卷Ⅲ,34(1)]如图2,一列简谐横波沿x轴正方向传播,实线为t=0时的波形图,虚线为t=0.5 s时的波形图。已知该简谐波的周期大于0.5 s。关于该简谐波,下列说法正确的是________。(填正确答案标号) 图2 A.波长为2 m B.波速为6 m/s C.频率为1.5 Hz D.t=1 s时,x=1 m处的质点处于波峰

机械振动和机械波知识点总结

机械振动和机械波 、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位 置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力, 它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是: a 物体离开平衡位置后要受到回复力作用。 b 、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。 简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡 位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也 可说是物体在跟位移大小成正比, 方向跟位移相反的回复力作用下的振动, 即F= — kx ,其中 “一”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比, 方向跟位移方向相反 的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用, 简谐振动的特点在于它是 一种周期性运动, 它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能) 都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入 面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“ A ”表示,它是标量,为正 值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动 在振动过程中,动 机械振动;:!振动在媒质中传递

高考物理:机械振动和机械波知识点

高考物理:机械振动和机械波知识点 :高三就是到了冲刺的阶段,大家在大量练习习题的时候,也不要忘记巩固知识点,只有很好的掌握知识点,才能运用到解题中。接下来是小编为大家总结的高考物理知识点,希望大家喜欢。 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动。 (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。 ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。 ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。 (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振动图

像不是质点的运动轨迹。 ②特点:简谐运动的图像是正弦(或余弦)曲线。 ③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。 2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。 3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。单摆是一种理想化模型。 (1)单摆的振动可看作简谐运动的条件是:最大摆角α5°。 (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。 ①在振幅很小的条件下,单摆的振动周期跟振幅无关。 ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关。 ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g‘等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。

物理机械波知识点总结

物理机械波知识点总结 导读:高中物理选修3-4机械波重要知识点 描述机械波的物理量——波长、波速和频率(周期)的关系 ⑴波长λ:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。 ⑵频率f:波的频率由波源决定,在任何介质中频率保持不变。 ⑶波速v:单位时间内振动向外传播的距离。波速的大小由介质决定。 波的干涉和衍射 衍射:波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长相差不多。 干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。 稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。 判断加强与减弱区域的方法一般有两种:一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。干涉和衍射是波所特有的现象。

高中物理选修3-4重要知识点 相对论的时空观 经典物理学的时空观(牛顿物理学的绝对时空观):时间和空间是脱离物质而存在的,是绝对的,空间与时间之间没有任何联系。 相对论的时空观(爱因斯坦相对论的相对时空观):空间和时间都与物质的运动状态有关。 相对论的时空观更具有普遍性,但是经典物理学作为相对论的特例,在宏观低速运动时仍将发挥作用。 时间和空间的相对性(时长尺短) 1.同时的相对性:指两个事件,在一个惯性系中观察是同时的,但在另外一个惯性系中观察却不再是同时的。 2.长度的相对性:指相对于观察者运动的物体,在其运动方向的长度,总是小于物体静止时的长度。而在垂直于运动方向上,其长度保持不变。 高中物理机械振动和机械波知识点 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度

机械振动及机械波知识点(全)知识讲解

机械波的产生和传播 知识点一:波的形成和传播 (一)介质 能够传播振动的媒介物叫做介质。(如:绳、弹簧、水、空气、地壳等) (二)机械波 机械振动在介质中的传播形成机械波。 (三)形成机械波的条件 (1)要有 ;(2)要有能传播振动的 。 注意:有机械波 有机械振动,而有机械振动 能产生机械波。 (四)机械波的传播特征 (1)机械波传播的仅仅是 这种运动形式,介质本身并不随波 。 沿波的传播方向上各质点的振动都受它前一个质点的带动而做 振动,因此波动的过程是介质中相邻质点间依次“带动”、由近及远相继振动起来的过程,是将这种运动形式在介质中依次向外传播的过程。 对简谐波而言各质点振动的振幅和周期都 ,各质点仅在各自的 位置附近振动,并 随波动过程的发生而沿波传播方向发生迁移。 (2)波是传递能量的一种运动形式。 波动的过程也是由于相邻质点间由近及远地依次做功的过程,所以波动过程也是能量由近及远的传播过程。因此机械波也是传播 的一种形式。 (五)波的分类 波按照质点 方向和波的 方向的关系,可分为: (1)横波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。凸起的最高处叫 ,凹下的最底处叫 。 (2)纵波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。质点分布最密的地方叫作 ,质点分布最疏的地方叫作 。 知识点二:描述机械波的物理量知识 (一)波长(λ) 两个 的、在振动过程中对 位置的位移总是相等的质点间的距离叫波长。 在横波中,两个 的波峰(或波谷)间的距离等于波长。 在纵波中,两个 的密部(或疏部)间的距离等于波长。 振动在一个 内在介质中传播的距离等于一个波长。 (二)频率(f ) 波的频率由 决定,一列波,介质中各质点振动频率都相同,而且都等于波源的频率。 在传播过程中,只要波源的振动频率一定,则无论在什么介质中传播,波的频率都不变。 (三)波速(v ) 振动在介质中传播的速度,指单位时间内振动向外传播的距离,即x v t ?=?。 波速的大小由 的性质决定。一列波在不同介质中传播其波速不同。 对机械波来说,空气中的波速小于液体中的波速,小于固体中的波速。 (四)波速与波长和频率的关系 v = 注意:一列波的波长是受 和 制约的,即一列波在不同介质中传播时,波长不同。 知识点三:机械波的图象 (一)机械波的图象 波的传播也可用图象直观地表达出来。在平面直角坐标系中,用横坐标表示介质中各质点的 位置;用纵坐标表示某一时刻,各质点偏离 位置的位移,连接各位移矢量的末端,得出的曲线即为波的图象, (二)物理意义 表示各质点在某一时刻离开 位置的情况。

相关文档
相关文档 最新文档